1
|
Nuzhnaya TV, Sorokan AV, Burkhanova GF, Maksimov IV, Veselova SV. The Role of Cytokinins and Abscisic Acid in the Growth, Development and Virulence of the Pathogenic Fungus Stagonospora nodorum (Berk.). Biomolecules 2024; 14:517. [PMID: 38785924 PMCID: PMC11117529 DOI: 10.3390/biom14050517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Stagonospora nodorum Berk. to synthesize three groups of hormones (CKs, ABA and auxins) and studied the effect of exogenous ABA and zeatin on the growth, sporulation and gene expression of necrotrophic effectors (NEs) and transcription factors (TFs) in them. Various isolates of S. nodorum synthesized different amounts of CKs, ABA and indoleacetic acid. Using exogenous ABA and zeatin, we proved that the effect of these hormones on the growth and sporulation of S. nodorum isolates can be opposite, depends on both the genotype of the isolate and on the concentration of the hormone and is carried out through the regulation of carbohydrate metabolism. ABA and zeatin regulated the expression of fungal TF and NE genes, but correlation analysis of these parameters showed that this effect depended on the genotype of the isolate. This study will contribute to our understanding of the role of the hormones ABA and CKs in the biology of the fungal pathogen S. nodorum.
Collapse
Affiliation(s)
- Tatyana V. Nuzhnaya
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Antonina V. Sorokan
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| | - Guzel F. Burkhanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| | - Igor V. Maksimov
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| | - Svetlana V. Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (T.V.N.); (A.V.S.); (G.F.B.); (I.V.M.)
| |
Collapse
|
2
|
Ali Q, Khan AR, Tao S, Rajer FU, Ayaz M, Abro MA, Gu Q, Wu H, Kuptsov V, Kolomiets E, Gao X. Broad-spectrum antagonistic potential of Bacillus spp. volatiles against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae. PHYSIOLOGIA PLANTARUM 2023; 175:e14087. [PMID: 38148207 DOI: 10.1111/ppl.14087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Rhizoctonia solani and Xanthomonas oryzae pv. oryzae (Xoo) are the two major diseases affecting the quality and quantity of rice production. In the current study, volatile organic compounds (VOCs) of Bacillus spp. were used as green biocontrol agents for plant diseases. In in vitro experiments, Bacillus spp. FZB42, NMTD17, and LLTC93-VOCs displayed strong antimicrobial volatile activity with inhibition rates of 76, 66, and 78% for R. solani and 78, 81, and 76% for Xoo, respectively, compared to control. The synthetic VOCs, namely Pentadecane (PDC), Benzaldehyde (BDH), 1,2-Benz isothiazol-3(2H)-one (1,2-BIT), and mixture (MIX) of VOCs showed high volatile activity with inhibition rates of 86, 86, 89, and 92% against R. solani and 81, 81, 82, and 86%, respectively, against Xoo as compared to control. In addition, the scanning and transmission electron microscopes (SEM and TEM) analyses were performed to examine the effect of Bacillus and synthetic VOC treatments on R. solani and Xoo morphology. The analysis revealed the deformed and irregularized morphology of R. solani mycelia and Xoo cells after VOC treatments. The microscopic analysis showed that the rapid inhibition was due to severe oxidative productions inside the R. solani mycelia and Xoo cells. By using molecular docking, it was determined that the synthetic VOCs entered the active binding site of trehalase and NADH dehydrogenase proteins, causing R. solani and Xoo cells to die prematurely and an accumulation of ROS. In the greenhouse experiment, FZB42, NMTD17, and LLTC93-VOCs significantly reduced the lesions of R. solani 8, 7, and 6 cm, and Xoo 7, 6, and 6 cm, respectively, then control. The synthetic VOCs demonstrated that the PDC, BDH, 1,2-BIT, and MIX-VOCs significantly reduced R. solani lesions on leaves 6, 6, 6, and 5 cm and Xoo 6, 5, 5, and 4 cm, respectively, as compared to control. Furthermore, plant defence-related genes and antioxidant enzymes were upregulated in rice plants. These findings provide novel mechanisms by which Bacillus antimicrobial VOCs control plant diseases.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Sheng Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Pakistan
| | - Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Manzoor Ali Abro
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Pakistan
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Vladislav Kuptsov
- State Scientific Production Association "Chemical synthesis and biotechnology", Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Emilia Kolomiets
- State Scientific Production Association "Chemical synthesis and biotechnology", Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
3
|
A secondary function of trehalose-6-phosphate synthase is required for resistance to oxidative and desiccation stress in Fusarium verticillioides. Fungal Biol 2023; 127:918-926. [PMID: 36906382 DOI: 10.1016/j.funbio.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The disaccharide trehalose has long been recognized for its role as a stress solute, but in recent years some of the protective effects previously ascribed to trehalose have been suggested to arise from a function of the trehalose biosynthesis enzyme trehalose-6-phosphate (T6P) synthase that is distinct from its catalytic activity. In this study, we use the maize pathogenic fungus Fusarium verticillioides as a model to explore the relative contributions of trehalose itself and a putative secondary function of T6P synthase in protection against stress as well as to understand why, as shown in a previous study, deletion of the TPS1 gene coding for T6P synthase reduces pathogenicity against maize. We report that a TPS1-deletion mutant of F. verticillioides is compromised in its ability to withstand exposure to oxidative stress meant to simulate the oxidative burst phase of maize defense and experiences more ROS-induced lipid damage than the wild-type strain. Eliminating T6P synthase expression also reduces resistance to desiccation, but not resistance to phenolic acids. Expression of catalytically-inactive T6P synthase in the TPS1-deletion mutant leads to a partial rescue of the oxidative and desiccation stress-sensitive phenotypes, suggesting the importance of a T6P synthase function that is independent of its role in trehalose synthesis.
Collapse
|
4
|
Yang Y, Yu L, Qiu X, Xiong D, Tian C. A putative terpene cyclase gene ( CcPtc1) is required for fungal development and virulence in Cytospora chrysosperma. Front Microbiol 2023; 14:1084828. [PMID: 36891381 PMCID: PMC9986285 DOI: 10.3389/fmicb.2023.1084828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Cytospora chrysosperma is a destructive plant pathogenic fungus, which causes canker disease on numerous woody plants. However, knowledge concerning the interaction between C. chrysosperma and its host remains limited. Secondary metabolites produced by phytopathogens often play important roles in their virulence. Terpene cyclases (TC), polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) are the key components for the synthesis of secondary metabolites. Here, we characterized the functions of a putative terpene type secondary metabolite biosynthetic core gene CcPtc1 in C. chrysosperma, which was significantly up-regulated in the early stages of infection. Importantly, deletion of CcPtc1 greatly reduced fungal virulence to the poplar twigs and they also showed significantly reduced fungal growth and conidiation compared with the wild-type (WT) strain. Furthermore, toxicity test of the crude extraction from each strain showed that the toxicity of crude extraction secreted by ΔCcPtc1 were strongly compromised in comparison with the WT strain. Subsequently, the untargeted metabolomics analyses between ΔCcPtc1 mutant and WT strain were conducted, which revealed 193 significantly different abundant metabolites (DAMs) inΔCcPtc1 mutant compared to the WT strain, including 90 significantly downregulated metabolites and 103 significantly up-regulated metabolites, respectively. Among them, four key metabolic pathways that reported to be important for fungal virulence were enriched, including pantothenate and coenzyme A (CoA) biosynthesis. Moreover, we also detected significant alterations in a series of terpenoids, among which (+)-ar-turmerone, pulegone, ethyl chrysanthemumate, and genipin were significantly down-regulated, while cuminaldehyde and (±)-abscisic acid were significantly up-regulated. In conclusion, our results demonstrated that CcPtc1 acts as a virulence-related secondary metabolism factor and provides new insights into the pathogenesis of C. chrysosperma.
Collapse
Affiliation(s)
- Yuchen Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiaolin Qiu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Liu C, Guo H, Liu H, Yu J, Li S, Zhu T, Owusu AM, Li S. Differential Metabolomics Reveals Pathogenesis of Pestalotiopsis kenyana Causing Leaf Spot Disease of Zanthoxylum schinifolium. J Fungi (Basel) 2022; 8:1208. [PMID: 36422029 PMCID: PMC9698000 DOI: 10.3390/jof8111208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/13/2022] [Indexed: 07/30/2023] Open
Abstract
Pepper leaf spot is a common disease of Zanthoxylum schinifolium. When it is serious, it directly affects the growth of Z. schinifolium, making the plant unable to blossom and bear fruit, which seriously restricts the development of the Z. schinifolium industry. Therefore, the pathogenic mechanism of leaf spots should be explored to provide a basis for a comprehensive understanding of the disease. Using liquid chromatography-mass spectrometry (LC-MS) technology combined with the data-dependent acquisition, the full spectrum analysis of pathogen mycelium samples was carried out. Partial least squares discriminant analysis (PLS-DA) was used to reveal the differences in metabolic patterns among different groups. Hierarchical clustering analysis (HCA) and PLS-DA were used to reveal the relationship between samples and metabolites, which reflected the metabolomics changes of Pestalotiopsis kenyana in the logarithmic growth phase of mycelia, the stable growth phase of mycelia, the massive spore stage, the induction culture conditions of PDA and Z. schinifolium leaves, and the possible pathogenic substances were selected for pathogenicity detection. PLS-DA had a strong predictive ability, indicating a clear analysis trend between different groups. The results of the metabolomics analysis showed that the differential metabolites of pathogenic bacteria were abundant at different stages and under different medium conditions, and the content of metabolites changed significantly. There were 3922 differential metabolites in nine groups under positive and negative ion modes, including lipids and lipid molecules, organic acids and their derivatives, organic heterocyclic compounds, organic oxygen compounds, carbohydrate polyketides, nucleosides, nucleotides, and analogs. The results of the pathogenicity test showed that the leaves treated with 3,5-dimethoxy benzoic acid, S-(5-adenosy)-l-homocysteine, 2-(1H-indol-3-yl) acetic acid, l-glutamic acid, and 2-(2-acetyl-3,5-dihydroxy phenyl) acetic acid showed different degrees of yellowish-brown lesions. This indicated that these substances may be related to the pathogenicity of P. kenyana, and the incidence was more serious when treated with 3,5-dimethoxybenzoic acid and S-(5-adenosy)- l -homocysteine. This study provides a basis for further analysis of differential metabolites and provides a theoretical reference for the prevention and treatment of Z. schinifolium leaf spot.
Collapse
Affiliation(s)
- Chang Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Haiyao Guo
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Han Liu
- Ganzi Institute of Forestry Research, Kangding 626700, China
| | - Jiawen Yu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Adjei Mark Owusu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- National Forestry and Grassland Administration, Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
6
|
Metabonomics analysis of postharvest citrus response to Penicillium digitatum infection. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Xu C, Chen H, Wu Q, Wu Y, Daly P, Chen J, Yang H, Wei L, Zhuang Y. Trehalose-6-phosphate phosphatase inhibitor: N-(phenylthio) phthalimide, which can inhibit the DON biosynthesis of Fusarium graminearum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104917. [PMID: 34446193 DOI: 10.1016/j.pestbp.2021.104917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Fusarium head blight(FHB)caused by Fusarium graminearum species complex (FGSC) is one of the most important diseases around the world. Deoxynivalenol (DON) is a type of mycotoxin produced by FGSC when infecting cereal crops. It is a serious threat to the health of both humans and livestock. Trehalose-6-phosphate phosphatase (TPP), a conserved metabolic enzyme found in many plants and pathogens, catalyzes the formation of trehalose. N-(phenylthio) phthalimide (NPP) has been reported to inhibit the normal growth of nematodes by inhibiting the activity of TPP, but this inhibitor of nematodes has not previously been tested against F. graminearum. In this study, we found that TPP in F. graminearum (FgTPP) had similar secondary structures and conserved cysteine (Cys356) to nematodes by means of bioinformatics. At the same time, the sensitivity of F. graminearum strains to NPP was determined. NPP exhibited a better inhibitory effect on conidia germination than mycelial growth. In addition, the effects of NPP on DON biosynthesis and trehalose biosynthesis pathway in PH-1 were also determined. We found that NPP decreased DON production, trehalose content, glucose content and TPP enzyme activity but increased trehalose-6-phosphate content and trehalose-6-phosphate synthase (TPS) enzyme activity. Moreover, the expression of TRI1, TRI4, TRI5, TRI6, and TPP genes were downregulated, on the contrary, the TPS gene was upregulated. Finally, in order to further determine the control ability of NPP on DON production in the field, we conducted a series of field experiments, and found that NPP could effectively reduce the DON content in wheat grain and had a general control effect on FHB. In conclusion, the research in this study will provide important theoretical basis for controlling FHB caused by F. graminearum and reducing DON production in the field.
Collapse
Affiliation(s)
- Chao Xu
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China.
| | - Hongzhou Chen
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China
| | - Qinyan Wu
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China
| | - Yuqi Wu
- College of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jian Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Hongfu Yang
- Zhenjiang Academy of Agricultural Sciences, Jiangsu Academy of Agricultural Sciences, Jurong 212400, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yiqing Zhuang
- Testing Center, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| |
Collapse
|
8
|
Duan SG, Hong K, Tang M, Tang J, Liu LX, Gao GF, Shen ZJ, Zhang XM, Yi Y. Untargeted metabolite profiling of petal blight in field-grown Rhododendron agastum using GC-TOF-MS and UHPLC-QTOF-MS/MS. PHYTOCHEMISTRY 2021; 184:112655. [PMID: 33540237 DOI: 10.1016/j.phytochem.2021.112655] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Petal blight caused by fungi is among the most destructive diseases of Rhododendron, especially Rhododendron agastum. Nonetheless, the metabolite changes that occur during petal blight are unknown. We used untargeted gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) and ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) to compare the metabolite profiles of healthy and petal blight R. agastum flowers. Using GC-TOF-MS, 571 peaks were extracted, of which 189 metabolites were tentatively identified. On the other hand, 364 and 277 metabolites were tentatively identified in the positive and negative ionization modes of the UHPLC-QTOF-MS/MS, respectively. Principal component analysis (PCA) and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) were able to clearly discriminate between healthy and petal blight flowers. Differentially abundant metabolites were primarily enriched in the biosynthesis of specialized metabolites. 17 accumulated specialized metabolites in petal blight flowers have been reported to have antifungal activity, and literature indicates that 9 of them are unique to plants. 3 metabolites (chlorogenic acid, medicarpin, and apigenin) are reportedly involved in resistance to blight caused by pathogens. We therefore speculate that the accumulation of chlorogenic acid, medicarpin, and apigenin may be involved in the resistance to petal blight. Our results suggest that these metabolites may be used as candidate biocontrol agents for the control fungal petal blight in Rhododendron.
Collapse
Affiliation(s)
- Sheng-Guang Duan
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Kun Hong
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Jing Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Lun-Xian Liu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China
| | - Gui-Feng Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhi-Jun Shen
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xi-Min Zhang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China.
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of Plant Physiology and Development Regulation, School of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550001, China.
| |
Collapse
|
9
|
Functional Characterization of Core Regulatory Genes Involved in Sporulation of the Nematophagous Fungus Purpureocillium lavendulum. mSphere 2020; 5:5/5/e00932-20. [PMID: 33115838 PMCID: PMC8534313 DOI: 10.1128/msphere.00932-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nematophagous fungus Purpureocillium lavendulum is a natural enemy of plant-parasitic nematodes, which cause severe economic losses in agriculture worldwide. The production of asexual spores (conidia) in P. lavendulum is crucial for its biocontrol activity against nematodes. In this study, we characterized the core regulatory genes involved in conidiation of P. lavendulum at the molecular level. The central regulatory pathway is composed of three genes, P. lavendulumbrlA (PlbrlA), PlabaA, and PlwetA, which regulate the early, middle, and late stages of asexual development, respectively. The deletion of PlbrlA completely inhibited conidiation, with only conidiophore stalks produced. PlAbaA determines the differentiation of conidia from phialides. The deletion of PlwetA affected many phenotypes related to conidial maturation, including abscission of conidia from conidium strings, thickening of the cell wall layers, vacuole generation inside the cytoplasm, production of trehalose, tolerance to heat shock, etc. Comparative analyses showed that the upstream regulators of the core regulatory pathway of conidiation, especially the “fluffy” genes, were different from those in Aspergillus. Besides their roles in conidiation, the central regulators also influence the production of secondary metabolites, such as the leucinostatins, in P. lavendulum. Our study revealed a set of essential genes controlling conidiation in P. lavendulum and provided a framework for further molecular genetic studies on fungus-nematode interactions and for the biocontrol of plant-parasitic nematodes. IMPORTANCE Plant-parasitic nematodes cause serious damage to crops throughout the world. Purpureocillium lavendulum is a nematophagous fungus which is a natural enemy of nematodes and a potential biocontrol agent against plant-parasitic nematodes. The conidia play an important role during infection of nematodes. In this study, we identified and characterized genes involved in regulating asexual development of P. lavendulum. We found that these genes not only regulate conidiation but also influence secondary-metabolite production. This work provides a basis for future studies of fungus-nematode interactions and nematode biocontrol.
Collapse
|
10
|
Kolainis S, Koletti A, Lykogianni M, Karamanou D, Gkizi D, Tjamos SE, Paraskeuopoulos A, Aliferis KA. An integrated approach to improve plant protection against olive anthracnose caused by the Colletotrichum acutatum species complex. PLoS One 2020; 15:e0233916. [PMID: 32470037 PMCID: PMC7259717 DOI: 10.1371/journal.pone.0233916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
The olive tree (Olea europaea L.) is the most important oil-producing crop of the Mediterranean basin. However, although plant protection measures are regularly applied, disease outbreaks represent an obstacle towards the further development of the sector. Therefore, there is an urge for the improvement of plant protection strategies based on information acquired by the implementation of advanced methodologies. Recently, heavy fungal infections of olive fruits have been recorded in major olive-producing areas of Greece causing devastating yield losses. Thus, initially, we have undertaken the task to identify their causal agent(s) and assess their pathogenicity and sensitivity to fungicides. The disease was identified as the olive anthracnose, and although Colletotrichum gloeosporioides and Colletotrichum acutatum species complexes are the two major causes, the obtained results confirmed that in Southern Greece the latter is the main causal agent. The obtained isolates were grouped into eight morphotypes based on their phenotypes, which differ in their sensitivities to fungicides and pathogenicity. The triazoles difenoconazole and tebuconazole were more toxic than the strobilurins being tested. Furthermore, a GC/EI/MS metabolomics model was developed for the robust chemotaxonomy of the isolates and the dissection of differences between their endo-metabolomes, which could explain the obtained phenotypes. The corresponding metabolites-biomarkers for the discrimination between morphotypes were discovered, with the most important ones being the amino acids L-tyrosine, L-phenylalanine, and L-proline, the disaccharide α,α-trehalose, and the phytotoxic pathogenesis-related metabolite hydroxyphenylacetate. These metabolites play important roles in fungal metabolism, pathogenesis, and stress responses. The study adds critical information that could be further exploited to combat olive anthracnose through its monitoring and the design of improved, customized plant protection strategies. Also, results suggest the necessity for the comprehensive mapping of the C. acutatum species complex morphotypes in order to avoid issues such as the development of fungicide-resistant genotypes.
Collapse
Affiliation(s)
- Stefanos Kolainis
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
| | - Anastasia Koletti
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
| | - Maira Lykogianni
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
- Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, Kifissia, Greece
| | - Dimitra Karamanou
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
| | - Danai Gkizi
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| | - Sotirios E. Tjamos
- Laboratory of Plant Pathology, Agricultural University of Athens, Athens, Greece
| | - Antonios Paraskeuopoulos
- Directorate of Rural Economy and Veterinary of Trifilia, Prefecture of Peloponnese, Kyparissia, Greece
| | - Konstantinos A. Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Athens, Greece
- Department of Plant Science, Ste-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
11
|
Lykogianni M, Papadopoulou EA, Sapalidis A, Tsiourvas D, Sideratou Z, Aliferis KA. Metabolomics reveals differential mechanisms of toxicity of hyperbranched poly(ethyleneimine)-derived nanoparticles to the soil-borne fungus Verticillium dahliae Kleb. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104535. [PMID: 32359556 DOI: 10.1016/j.pestbp.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/28/2020] [Accepted: 02/01/2020] [Indexed: 06/11/2023]
Abstract
There is a consensus on the urge for the discovery and assessment of alternative, improved sources of bioactivity that could be developed as plant protection products (PPPs), in order to combat issues that the agrochemical sector is facing. Based on the recent advances in nanotechnology, nanoparticles seem to have a great potential towards the development of the next generation nano-PPPs used as active ingredients (a.i.) per se or as nanocarriers in their formulation. Nonetheless, information on their mode(s)-of-action (MoA) and mechanisms of toxicity is yet largely unknown, representing a bottleneck in their further assessment and development. Therefore, we have undertaken the task to assess the fungitoxicity of hyperbranched poly(ethyleneimine) (HPEI), quaternized hyperbranched poly(ethyleneimine) (QPEI), and guanidinylated hyperbranched poly(ethyleneimine) (GPEI) nanoparticles to the soil-born plant pathogenic fungus Verticillium dahliae Kleb, and dissect their effects on its metabolism applying GC/EI/MS metabolomics. Results revealed that functionalization of HPEI nanoparticles with guanidinium end groups (GPEI) increases their toxicity to V. dahliae, while functionalization with quaternary ammonium end groups (QPEI) decreases it. The treatments with the nanoparticles affected the chemical homeostasis of the fungus, altering substantially its amino acid pool, energy production, and fatty acid content, causing additionally oxidative and osmotic stresses. To the best of our knowledge, this is the first report on the comparative toxicity of HPEI, QPEI, and GPEI to filamentous fungi applying metabolomics. The findings could be exploited in the study of the quantitative structure-activity relationship (QSAR) of HPEI-derived nanoparticles and their further development as nano-PPPs.
Collapse
Affiliation(s)
- Maira Lykogianni
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Laboratory of Biological Control of Pesticides, Benaki Phytopathological Institute, 8 St. Delta str., 145 61, Kifissia, Attica, Greece
| | - Evgenia-Anna Papadopoulou
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Andreas Sapalidis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Part. Gregoriou & Neapoleos 27, Agia Paraskevi 153 44, Athens, Greece
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Part. Gregoriou & Neapoleos 27, Agia Paraskevi 153 44, Athens, Greece
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Part. Gregoriou & Neapoleos 27, Agia Paraskevi 153 44, Athens, Greece
| | - Konstantinos A Aliferis
- Laboratory of Pesticide Science, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; Department of Plant Science, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
12
|
Chen F, Ma R, Chen XL. Advances of Metabolomics in Fungal Pathogen-Plant Interactions. Metabolites 2019; 9:metabo9080169. [PMID: 31443304 PMCID: PMC6724083 DOI: 10.3390/metabo9080169] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
Plant disease caused by fungus is one of the major threats to global food security, and understanding fungus-plant interactions is important for plant disease control. Research devoted to revealing the mechanisms of fungal pathogen-plant interactions has been conducted using genomics, transcriptomics, proteomics, and metabolomics. Metabolomics research based on mass spectrometric techniques is an important part of systems biology. In the past decade, the emerging field of metabolomics in plant pathogenic fungi has received wide attention. It not only provides a qualitative and quantitative approach for determining the pathogenesis of pathogenic fungi but also helps to elucidate the defense mechanisms of their host plants. This review focuses on the methods and progress of metabolomics research in fungal pathogen-plant interactions. In addition, the prospects and challenges of metabolomics research in plant pathogenic fungi and their hosts are addressed.
Collapse
Affiliation(s)
- Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruijing Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao-Lin Chen
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Bönnighausen J, Schauer N, Schäfer W, Bormann J. Metabolic profiling of wheat rachis node infection by Fusarium graminearum - decoding deoxynivalenol-dependent susceptibility. THE NEW PHYTOLOGIST 2019; 221:459-469. [PMID: 30084118 DOI: 10.1111/nph.15377] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/09/2018] [Indexed: 05/20/2023]
Abstract
Fusarium graminearum is a filamentous ascomycete and the causal agent of Fusarium head blight on wheat that threatens food and feed production worldwide as infection reduces crop yield both quantitatively by interfering with kernel development and qualitatively by poisoning any remaining kernels with mycotoxins. In wheat, F. graminearum infects spikelets and colonizes the entire head by growing through the rachis node at the bottom of each spikelet. Without the mycotoxin deoxynivalenol (DON), the pathogen cannot penetrate the rachis node and wheat is able to resist colonization. Using a global metabolite profiling approach we compared the metabolic profile of rachis nodes inoculated with either water, the Fusarium graminearum wild-type or the DON-deficient ∆tri5 mutant. Extensive metabolic rearrangements mainly affect metabolites for general stress perception and signaling, reactive oxygen species (ROS) metabolism, cell wall composition, the tri-carbonic acid (TCA) cycle and γ-aminobutyric acid (GABA) shunt as well as sugar alcohols, amino acids, and storage carbohydrates. The results revealed specific, DON-related susceptibility factors. Wild-type infection resulted in an oxidative burst and the induction of plant programmed cell death, while spread of the DON-deficient mutant was blocked in a jasmonate (JA)-related defense reaction in concert with other factors. Hence, the ∆tri5 mutant is prone to defense reactions that are, in the case of a wild-type infection, not initiated.
Collapse
Affiliation(s)
- Jakob Bönnighausen
- Department of Molecular Phytopathology, Institute of Plant Science and Microbiology (IPM), University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Nicolas Schauer
- Metabolomic Discoveries GmbH, Am Mühlenberg 11, D-14476, Potsdam, Germany
| | - Wilhelm Schäfer
- Department of Molecular Phytopathology, Institute of Plant Science and Microbiology (IPM), University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
| | - Jörg Bormann
- Department of Molecular Phytopathology, Institute of Plant Science and Microbiology (IPM), University of Hamburg, Ohnhorststr. 18, D-22609, Hamburg, Germany
- Department for Cell Biology, University of Bremen, Leobener Str. NW2, 28359, Bremen, Germany
| |
Collapse
|
14
|
Sevastos A, Kalampokis IF, Panagiotopoulou A, Pelecanou M, Aliferis KA. Implication of Fusarium graminearum primary metabolism in its resistance to benzimidazole fungicides as revealed by 1H NMR metabolomics. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:50-61. [PMID: 29891377 DOI: 10.1016/j.pestbp.2018.03.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Fungal metabolomics is a field of high potential but yet largely unexploited. Focusing on plant-pathogenic fungi, no metabolomics studies exist on their resistance to fungicides, which represents a major issue that the agrochemical and agricultural sectors are facing. Fungal infections cause quantitative, but also qualitative yield losses, especially in the case of mycotoxin-producing species. The aim of the study was to correlate metabolic changes in Fusarium graminearum strains' metabolomes with their carbendazim-resistant level and discover corresponding metabolites-biomarkers, with primary focus on its primary metabolism. For this purpose, comparative 1H NMR metabolomics was applied to a wild-type and four carbendazim-resistant Fusarium graminearum strains following or not exposure to the fungicide. Results showed an excellent discrimination between the strains based on their carbendazim-resistance following exposure to low concentration of the fungicide (2 mg L-1). Both genotype and fungicide treatments had a major impact on fungal metabolism. Among the signatory metabolites, a positive correlation was discovered between the content of F. graminearum strains in amino acids of the aromatic and pyruvate families, l-glutamate, l-proline, l-serine, pyroglutamate, and succinate and their carbendazim-resistance level. In contrary, their content in l-glutamine and l-threonine, had a negative correlation. Many of these metabolites play important roles in fungal physiology and responses to stresses. This work represents a proof-of-concept of the applicability of 1H NMR metabolomics for high-throughput screening of fungal mutations leading to fungicide resistance, and the study of its biochemical basis, focusing on the involvement of primary metabolism. Results could be further exploited in programs of resistance monitoring, genetic engineering, and crop protection for combating fungal resistance to fungicides.
Collapse
Affiliation(s)
- A Sevastos
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - I F Kalampokis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - A Panagiotopoulou
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - M Pelecanou
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - K A Aliferis
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece; Department of Plant Science, Macdonald Campus of McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
15
|
Lin SY, Chooi YH, Solomon PS. The global regulator of pathogenesis PnCon7 positively regulates Tox3 effector gene expression through direct interaction in the wheat pathogen Parastagonospora nodorum. Mol Microbiol 2018; 109:78-90. [PMID: 29722915 DOI: 10.1111/mmi.13968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
To investigate effector gene regulation in the wheat pathogenic fungus Parastagonospora nodorum, the promoter and expression of Tox3 was characterised through a series of complementary approaches. Promoter deletion and DNase I footprinting experiments identified a 25 bp region in the Tox3 promoter as being required for transcription. Subsequent yeast one-hybrid analysis using the DNA sequence as bait identified that interacting partner as the C2H2 zinc finger transcription factor PnCon7, a putative master regulator of pathogenesis. Silencing of PnCon7 resulted in the down-regulation of Tox3 demonstrating that the transcription factor has a positive regulatory role on gene expression. Analysis of Tox3 expression in the PnCon7 silenced strains revealed a strong correlation with PnCon7 transcript levels, supportive of a direct regulatory role. Subsequent pathogenicity assays using PnCon7-silenced isolates revealed that the transcription factor was required for Tox3-mediated disease. The expression of two other necrotrophic effectors (ToxA and Tox1) was also affected but in a non-dose dependent manner suggesting that the regulatory role of PnCon7 on these genes was indirect. Collectively, these data have advanced our fundamental understanding of the Con7 master regulator of pathogenesis by demonstrating its positive regulatory role on the Tox3 effector in P. nodorum through direct interaction.
Collapse
Affiliation(s)
- Shao-Yu Lin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
16
|
ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA. Fungal Biol 2018; 122:322-332. [DOI: 10.1016/j.funbio.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 01/06/2023]
|
17
|
Sundar GS, Islam E, Braza RD, Silver AB, Le Breton Y, McIver KS. Route of Glucose Uptake in the Group a Streptococcus Impacts SLS-Mediated Hemolysis and Survival in Human Blood. Front Cell Infect Microbiol 2018; 8:71. [PMID: 29594067 PMCID: PMC5861209 DOI: 10.3389/fcimb.2018.00071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/27/2018] [Indexed: 12/29/2022] Open
Abstract
The transport and metabolism of glucose has been shown to have far reaching consequences in the transcriptional profile of many bacteria. As glucose is most often the preferred carbon source for bacteria, its presence in the environment leads to the repression of many alternate carbohydrate pathways, a condition known as carbon catabolite repression (CCR). Additionally, the expression of many virulence factors is also dependent on the presence of glucose. Despite its importance, little is known about the transport routes of glucose in the human pathogen Streptococcus pyogenes. Considering that Streptococcus pyogenes is an important human pathogen responsible for over 500,000 deaths every year, we characterized the routes of glucose transport in an effort to understand its importance in GAS pathogenesis. Using a deletion of glucokinase (ΔnagC) to block utilization of glucose imported by non-PTS pathways, we determined that of the two glucose transport pathways in GAS (PTS and non-PTS), the non-PTS pathway played a more significant role in glucose transport. However, the expression of both pathways is linked by a currently unknown mechanism, as blocking the non-PTS uptake of glucose reduces ptsI (EI) expression. Similar to the effects of the deletion of the PTS pathway, lack of the non-PTS pathway also leads to the early activity of Streptolysin S. However, this early activity did not adversely or favorably affect survival of ΔnagC in whole human blood. In a subcutaneous murine infection model, ΔnagC-infected mice showed increased lesion severity at the local site of infection; although, lesion size and dissemination from the site of infection was similar to wild type. Here, we show that glucose transport in GAS is primarily via a non-PTS pathway. The route of glucose transport differentially affects the survival of GAS in whole human blood, as well as the lesion size at the local site of infection in a murine skin infection model.
Collapse
Affiliation(s)
- Ganesh S Sundar
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Emrul Islam
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Rezia D Braza
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Aliyah B Silver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, United States
| |
Collapse
|
18
|
Additive roles of two TPS genes in trehalose synthesis, conidiation, multiple stress responses and host infection of a fungal insect pathogen. Appl Microbiol Biotechnol 2017; 101:3637-3651. [DOI: 10.1007/s00253-017-8155-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/29/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
|
19
|
Sundar GS, Islam E, Gera K, Le Breton Y, McIver KS. A PTS EII mutant library in Group A Streptococcus identifies a promiscuous man-family PTS transporter influencing SLS-mediated hemolysis. Mol Microbiol 2016; 103:518-533. [PMID: 27862457 DOI: 10.1111/mmi.13573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 01/10/2023]
Abstract
The Group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive human pathogen that must adapt to unique host environments in order to survive. Links between sugar metabolism and virulence have been demonstrated in GAS, where mutants in the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exhibited Streptolysin S (SLS)-mediated hemolysis during exponential growth. This early onset hemolysis correlated with an increased lesion size and severity in a murine soft tissue infection model when compared with parental M1T1 MGAS5005. To identify the PTS components responsible for this phenotype, we insertionally inactivated the 14 annotated PTS EIIC-encoding genes in the GAS MGAS5005 genome and subjected this library to metabolic and hemolysis assays to functionally characterize each EIIC. It was found that a few EIIs had a very limited influence on PTS sugar metabolism, whereas others were fairly promiscuous. The mannose-specific EII locus, encoded by manLMN, was expressed as a mannose-inducible operon that exhibited the most influence on PTS sugar metabolism, including mannose. Importantly, components of the mannose-specific EII also acted to prevent the early onset of SLS-mediated hemolysis. Interestingly, these roles were not identical in two different M1T1 GAS strains, highlighting the possible versatility of the PTS to adapt to strain-specific needs.
Collapse
Affiliation(s)
- Ganesh S Sundar
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Emrul Islam
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Kanika Gera
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Yoann Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
20
|
Cervantes-Chávez JA, Valdés-Santiago L, Bakkeren G, Hurtado-Santiago E, León-Ramírez CG, Esquivel-Naranjo EU, Landeros-Jaime F, Rodríguez-Aza Y, Ruiz-Herrera J. Trehalose is required for stress resistance and virulence of the Basidiomycota plant pathogen Ustilago maydis. MICROBIOLOGY-SGM 2016; 162:1009-1022. [PMID: 27027300 DOI: 10.1099/mic.0.000287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trehalose is an important disaccharide that can be found in bacteria, fungi, invertebrates and plants. In some Ascomycota fungal plant pathogens, the role of trehalose was recently studied and shown to be important for conferring protection against several environmental stresses and for virulence. In most of the fungi studied, two enzymes are involved in the synthesis of trehalose: trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate phosphatase (Tps2). To study the role of trehalose in virulence and stress response in the Basidiomycota maize pathogen Ustilago maydis, Δtps2 deletion mutants were constructed. These mutants did not produce trehalose as confirmed by HPLC analysis, showing that the single gene disruption impaired its biosynthesis. The mutants displayed increased sensitivity to oxidative, heat, acid, ionic and osmotic stresses as compared to the wild-type strains. Virulence of Δtps2 mutants to maize plants was extremely reduced compared to wild-type strains, possibly due to reduced capability to deal with the hostile host environment. The phenotypic traits displayed by Δtps2 strains were fully restored to wild-type levels when complemented with the endogenous UmTPS2 gene, or a chimeric construct having the Saccharomyces cerevisiae TPS2 ORF. This report demonstrates the presence of a single biosynthetic pathway for trehalose, and its importance for virulence in this model Basidiomycota plant pathogen.
Collapse
Affiliation(s)
- José Antonio Cervantes-Chávez
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Laura Valdés-Santiago
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| | - Guus Bakkeren
- Agriculture & Agri-Food Canada, Summerland Research & Development, BC, Canada
| | - Edda Hurtado-Santiago
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | | | - Edgardo Ulises Esquivel-Naranjo
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Fidel Landeros-Jaime
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Santiago de Querétaro, Qro, Mexico
| | - Yolanda Rodríguez-Aza
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| | - José Ruiz-Herrera
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Irapuato, Irapuato, Gto, Mexico
| |
Collapse
|
21
|
John E, Lopez-Ruiz F, Rybak K, Mousley CJ, Oliver RP, Tan KC. Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of Parastagonospora nodorum on wheat. MICROBIOLOGY-SGM 2016; 162:1023-1036. [PMID: 26978567 PMCID: PMC5042077 DOI: 10.1099/mic.0.000280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The HOG1 mitogen-activated protein kinase (MAPK) pathway is activated through two-component histidine kinase (HK) signalling. This pathway was first characterized in the budding yeast Saccharomyces cerevisiae as a regulator of osmotolerance. The fungus Parastagonospora nodorum is the causal agent of septoria nodorum blotch of wheat. This pathogen uses host-specific effectors in tandem with general pathogenicity mechanisms to carry out its infection process. Genes showing strong sequence homology to S. cerevisiae HOG1 signalling pathway genes have been identified in the genome of P. nodorum. In this study, we examined the role of the pathway in the virulence of P. nodorum on wheat by disrupting putative pathway component genes: HOG1 (SNOG_13296) MAPK and NIK1 (SNOG_11631) hybrid HK. Mutants deleted in NIK1 and HOG1 were insensitive to dicarboximide and phenylpyrrole fungicides, but not a fungicide that targets ergosterol biosynthesis. Furthermore, both Δnik1 and Δhog1 mutants showed increased sensitivity to hyperosmotic stress. However, HOG1, but not NIK1, is required for tolerance to elevated temperatures. HOG1 deletion conferred increased tolerance to 6-methoxy-2-benzoxazolinone, a cereal phytoalexin. This suggests that the HOG1 signalling pathway is not exclusively associated with NIK1. Both Δnik1 and Δhog1 mutants retained the ability to infect and cause necrotic lesions on wheat. However, we observed that the Δhog1 mutation resulted in reduced production of pycnidia, asexual fruiting bodies that facilitate spore dispersal during late infection. Our study demonstrated the overlapping and distinct roles of a HOG1 MAPK and two-component HK signalling in P. nodorum growth and pathogenicity.
Collapse
Affiliation(s)
- Evan John
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Francisco Lopez-Ruiz
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Kasia Rybak
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Carl J Mousley
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct and Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Richard P Oliver
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| | - Kar-Chun Tan
- Department of Environment and Agriculture, Centre for Crop and Disease Management, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
22
|
Syme RA, Tan KC, Hane JK, Dodhia K, Stoll T, Hastie M, Furuki E, Ellwood SR, Williams AH, Tan YF, Testa AC, Gorman JJ, Oliver RP. Comprehensive Annotation of the Parastagonospora nodorum Reference Genome Using Next-Generation Genomics, Transcriptomics and Proteogenomics. PLoS One 2016; 11:e0147221. [PMID: 26840125 PMCID: PMC4739733 DOI: 10.1371/journal.pone.0147221] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022] Open
Abstract
Parastagonospora nodorum, the causal agent of Septoria nodorum blotch (SNB), is an economically important pathogen of wheat (Triticum spp.), and a model for the study of necrotrophic pathology and genome evolution. The reference P. nodorum strain SN15 was the first Dothideomycete with a published genome sequence, and has been used as the basis for comparison within and between species. Here we present an updated reference genome assembly with corrections of SNP and indel errors in the underlying genome assembly from deep resequencing data as well as extensive manual annotation of gene models using transcriptomic and proteomic sources of evidence (https://github.com/robsyme/Parastagonospora_nodorum_SN15). The updated assembly and annotation includes 8,366 genes with modified protein sequence and 866 new genes. This study shows the benefits of using a wide variety of experimental methods allied to expert curation to generate a reliable set of gene models.
Collapse
Affiliation(s)
- Robert A. Syme
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - James K. Hane
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
- Curtin Institute for Computation, Curtin University, Bentley, WA, Australia
| | - Kejal Dodhia
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Thomas Stoll
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Marcus Hastie
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Eiko Furuki
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Simon R. Ellwood
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Angela H. Williams
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | | | - Alison C. Testa
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Jeffrey J. Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Richard P. Oliver
- Centre for Crop & Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
- * E-mail:
| |
Collapse
|
23
|
Dupont P, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, Day RC, Scott B, Cox MP. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. THE NEW PHYTOLOGIST 2015; 208:1227-40. [PMID: 26305687 PMCID: PMC5049663 DOI: 10.1111/nph.13614] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/18/2015] [Indexed: 05/21/2023]
Abstract
Beneficial associations between plants and microbes play an important role in both natural and agricultural ecosystems. For example, associations between fungi of the genus Epichloë, and cool-season grasses are known for their ability to increase resistance to insect pests, fungal pathogens and drought. However, little is known about the molecular changes induced by endophyte infection. To study the impact of endophyte infection, we compared the expression profiles, based on RNA sequencing, of perennial ryegrass infected with Epichloë festucae with noninfected plants. We show that infection causes dramatic changes in the expression of over one third of host genes. This is in stark contrast to mycorrhizal associations, where substantially fewer changes in host gene expression are observed, and is more similar to pathogenic interactions. We reveal that endophyte infection triggers reprogramming of host metabolism, favouring secondary metabolism at a cost to primary metabolism. Infection also induces changes in host development, particularly trichome formation and cell wall biogenesis. Importantly, this work sheds light on the mechanisms underlying enhanced resistance to drought and super-infection by fungal pathogens provided by fungal endophyte infection. Finally, our study reveals that not all beneficial plant-microbe associations behave the same in terms of their effects on the host.
Collapse
Affiliation(s)
- Pierre‐Yves Dupont
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Carla J. Eaton
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Jason J. Wargent
- Institute of Agriculture and EnvironmentMassey UniversityPalmerston North4442New Zealand
| | - Susanne Fechtner
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Peter Solomon
- Research School of BiologyCollege of Medicine, Biology and EnvironmentAustralian National UniversityCanberraACT0200Australia
| | - Jan Schmid
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
| | - Robert C. Day
- School of Medical SciencesUniversity of OtagoDunedin9054New Zealand
| | - Barry Scott
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| | - Murray P. Cox
- Institute of Fundamental SciencesMassey UniversityPalmerston North4442New Zealand
- The Bio‐Protection Research CentreMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
24
|
SnPKS19 Encodes the Polyketide Synthase for Alternariol Mycotoxin Biosynthesis in the Wheat Pathogen Parastagonospora nodorum. Appl Environ Microbiol 2015; 81:5309-17. [PMID: 26025896 DOI: 10.1128/aem.00278-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022] Open
Abstract
Alternariol (AOH) is an important mycotoxin from the Alternaria fungi. AOH was detected for the first time in the wheat pathogen Parastagonospora nodorum in a recent study. Here, we exploited reverse genetics to demonstrate that SNOG_15829 (SnPKS19), a close homolog of Penicillium aethiopicum norlichexanthone (NLX) synthase gene gsfA, is required for AOH production. We further validate that SnPKS19 is solely responsible for AOH production by heterologous expression in Aspergillus nidulans. The expression profile of SnPKS19 based on previous P. nodorum microarray data correlated with the presence of AOH in vitro and its absence in planta. Subsequent characterization of the ΔSnPKS19 mutants showed that SnPKS19 and AOH are not involved in virulence and oxidative stress tolerance. Identification and characterization of the P. nodorum SnPKS19 cast light on a possible alternative AOH synthase gene in Alternaria alternata and allowed us to survey the distribution of AOH synthase genes in other fungal genomes. We further demonstrate that phylogenetic analysis could be used to differentiate between AOH synthases and the closely related NLX synthases. This study provides the basis for studying the genetic regulation of AOH production and for development of molecular diagnostic methods for detecting AOH-producing fungi in the future.
Collapse
|
25
|
Rudd JJ, Kanyuka K, Hassani-Pak K, Derbyshire M, Andongabo A, Devonshire J, Lysenko A, Saqi M, Desai NM, Powers SJ, Hooper J, Ambroso L, Bharti A, Farmer A, Hammond-Kosack KE, Dietrich RA, Courbot M. Transcriptome and metabolite profiling of the infection cycle of Zymoseptoria tritici on wheat reveals a biphasic interaction with plant immunity involving differential pathogen chromosomal contributions and a variation on the hemibiotrophic lifestyle definition. PLANT PHYSIOLOGY 2015; 167:1158-85. [PMID: 25596183 PMCID: PMC4348787 DOI: 10.1104/pp.114.255927] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/16/2015] [Indexed: 05/17/2023]
Abstract
The hemibiotrophic fungus Zymoseptoria tritici causes Septoria tritici blotch disease of wheat (Triticum aestivum). Pathogen reproduction on wheat occurs without cell penetration, suggesting that dynamic and intimate intercellular communication occurs between fungus and plant throughout the disease cycle. We used deep RNA sequencing and metabolomics to investigate the physiology of plant and pathogen throughout an asexual reproductive cycle of Z. tritici on wheat leaves. Over 3,000 pathogen genes, more than 7,000 wheat genes, and more than 300 metabolites were differentially regulated. Intriguingly, individual fungal chromosomes contributed unequally to the overall gene expression changes. Early transcriptional down-regulation of putative host defense genes was detected in inoculated leaves. There was little evidence for fungal nutrient acquisition from the plant throughout symptomless colonization by Z. tritici, which may instead be utilizing lipid and fatty acid stores for growth. However, the fungus then subsequently manipulated specific plant carbohydrates, including fructan metabolites, during the switch to necrotrophic growth and reproduction. This switch coincided with increased expression of jasmonic acid biosynthesis genes and large-scale activation of other plant defense responses. Fungal genes encoding putative secondary metabolite clusters and secreted effector proteins were identified with distinct infection phase-specific expression patterns, although functional analysis suggested that many have overlapping/redundant functions in virulence. The pathogenic lifestyle of Z. tritici on wheat revealed through this study, involving initial defense suppression by a slow-growing extracellular and nutritionally limited pathogen followed by defense (hyper) activation during reproduction, reveals a subtle modification of the conceptual definition of hemibiotrophic plant infection.
Collapse
Affiliation(s)
- Jason J Rudd
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Kostya Kanyuka
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Keywan Hassani-Pak
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Mark Derbyshire
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Ambrose Andongabo
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Jean Devonshire
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Artem Lysenko
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Mansoor Saqi
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Nalini M Desai
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Stephen J Powers
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Juliet Hooper
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Linda Ambroso
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Arvind Bharti
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Andrew Farmer
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Kim E Hammond-Kosack
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Robert A Dietrich
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| | - Mikael Courbot
- Department of Plant Biology and Crop Science (J.J.R., K.K., M.D., J.D., J.H., K.E.H.-K.) and Department of Computational and Systems Biology (K.H.-P., A.A., A.L., M.S., S.J.P.), Rothamsted Research, Harpenden, Hertshire AL5 2JQ, United Kingdom;Metabolon, Inc., Durham, North Carolina 27713 (N.M.D.);Syngenta Biotechnology, Inc., Research Triangle Park, North Carolina 27709 (L.A., A.B., R.A.D.);National Center for Genome Resources, Santa Fe, New Mexico 87505 (A.F.); andSyngenta Crop Protection AG, Crop Protection Research, CH-4332 Stein, Switzerland (M.C.)
| |
Collapse
|
26
|
Eaton CJ, Dupont PY, Solomon P, Clayton W, Scott B, Cox MP. A Core Gene Set Describes the Molecular Basis of Mutualism and Antagonism in Epichloë spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:218-31. [PMID: 25496592 DOI: 10.1094/mpmi-09-14-0293-fi] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Beneficial plant-fungal interactions play an important role in the ability of plants to survive changing environmental conditions. In contrast, phytopathogenic fungi fall at the opposite end of the symbiotic spectrum, causing reduced host growth or even death. In order to exploit beneficial interactions and prevent pathogenic ones, it is essential to understand the molecular differences underlying these alternative states. The association between the endophyte Epichloë festucae and Lolium perenne (perennial ryegrass) is an excellent system for studying these molecular patterns due to the existence of several fungal mutants that have an antagonistic rather than a mutualistic interaction with the host plant. By comparing gene expression in a wild-type beneficial association with three mutant antagonistic associations disrupted in key signaling genes, we identified a core set of 182 genes that show common differential expression patterns between these two states. These gene expression changes are indicative of a nutrient-starvation response, as supported by the upregulation of genes encoding degradative enzymes, transporters, and primary metabolism, and downregulation of genes encoding putative small-secreted proteins and secondary metabolism. These results suggest that disruption of a mutualistic symbiotic interaction may lead to an elevated uptake and degradation of host-derived nutrients and cell-wall components, reminiscent of phytopathogenic interactions.
Collapse
|
27
|
Wang M, Sun X, Zhu C, Xu Q, Ruan R, Yu D, Li H. PdbrlA, PdabaA and PdwetA control distinct stages of conidiogenesis in Penicillium digitatum. Res Microbiol 2015; 166:56-65. [DOI: 10.1016/j.resmic.2014.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/01/2014] [Accepted: 12/07/2014] [Indexed: 11/17/2022]
|
28
|
Xu YJ, Wang C, Ho WE, Ong CN. Recent developments and applications of metabolomics in microbiological investigations. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Song XS, Li HP, Zhang JB, Song B, Huang T, Du XM, Gong AD, Liu YK, Feng YN, Agboola RS, Liao YC. Trehalose 6-phosphate phosphatase is required for development, virulence and mycotoxin biosynthesis apart from trehalose biosynthesis in Fusarium graminearum. Fungal Genet Biol 2013; 63:24-41. [PMID: 24291007 DOI: 10.1016/j.fgb.2013.11.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/11/2022]
Abstract
Trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) are required for trehalose biosynthesis in yeast and filamentous fungi, including Fusarium graminearum. Three null mutants Δtps1, Δtps2 and Δtps1-Δtps2, each carrying either a single deletion of TPS1 or TPS2 or a double deletion of TPS1-TPS2, were generated from a toxigenic F. graminearum strain and were not able to synthesize trehalose. In contrast to its reported function in yeasts and filamentous fungi, TPS1 appeared dispensable for development and virulence. However, deletion of TPS2 abolished sporulation and sexual reproduction; it also altered cell polarity and ultrastructure of the cell wall in association with reduced chitin biosynthesis. The cell polarity alteration was exhibited as reduced apical growth and increased lateral growth and branching with increased hyphal and cell wall widths. Moreover, the TPS2-deficient strain displayed abnormal septum development and nucleus distribution in its conidia and vegetative hyphae. The Δtps2 mutant also had 62% lower mycelial growth on potato dextrose agar and 99% lower virulence on wheat compared with the wild-type. The Δtps1, Δtps2 and Δtps1-Δtps2 mutants synthesized over 3.08-, 7.09- and 2.47-fold less mycotoxins, respectively, on rice culture compared with the wild-type. Comparative transcriptome analysis revealed that the Δtps1, Δtps2 and Δtps1-Δtps2 mutants had 486, 1885 and 146 genotype-specific genes, respectively, with significantly changed expression profiles compared with the wild-type. Further dissection of this pathway will provide new insights into regulation of fungal development, virulence and trichothecene biosynthesis.
Collapse
Affiliation(s)
- Xiu-Shi Song
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Bo Song
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tao Huang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Xiao-Min Du
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - An-Dong Gong
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yi-Ke Liu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yan-Ni Feng
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Rebecca S Agboola
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China; National Center of Plant Gene Research (Wuhan), Wuhan 430070, People's Republic of China.
| |
Collapse
|
30
|
Mead O, Thynne E, Winterberg B, Solomon PS. Characterising the role of GABA and its metabolism in the wheat pathogen Stagonospora nodorum. PLoS One 2013; 8:e78368. [PMID: 24265684 PMCID: PMC3827059 DOI: 10.1371/journal.pone.0078368] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/19/2013] [Indexed: 01/13/2023] Open
Abstract
A reverse genetics approach was used to investigate the role of γ-aminobutyric acid metabolism in the wheat pathogenic fungus Stagonospora nodorum. The creation of mutants lacking Sdh1, the gene encoding succinic semialdehyde dehydrogenase, resulted in strains that grew poorly on γ-aminobutyric acid as a nitrogen source. The sdh1 mutants were more susceptible to reactive oxygen stress but were less affected by increased growth temperatures. Pathogenicity assays revealed that the metabolism of γ-aminobutyric acid is required for complete pathogenicity. Growth assays of the wild-type and mutant strains showed that the inclusion of γ-aminobutyric acid as a supplement in minimal media (i.e., not as a nitrogen or carbon source) resulted in restricted growth but increased sporulation. The addition of glutamate, the precursor to GABA, had no effect on either growth or sporulation. The γ-aminobutyric acid effect on sporulation was found to be dose dependent and not restricted to Stagonospora nodorum with a similar effect observed in the dothideomycete Botryosphaeria sp. The positive effect on sporulation was assayed using isomers of γ-aminobutyric acid and other metabolites known to influence asexual development in Stagonospora nodorum but no effect was observed. These data demonstrate that γ-aminobutyric acid plays an important role in Stagonospora nodorum in responding to environmental stresses while also having a positive effect on asexual development.
Collapse
Affiliation(s)
- Oliver Mead
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Eli Thynne
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Britta Winterberg
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
| | - Peter S. Solomon
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
31
|
Du Fall LA, Solomon PS. The necrotrophic effector SnToxA induces the synthesis of a novel phytoalexin in wheat. THE NEW PHYTOLOGIST 2013; 200:185-200. [PMID: 23782173 DOI: 10.1111/nph.12356] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/03/2013] [Indexed: 05/03/2023]
Abstract
Stagonospora nodorum and Pyrenophora tritici-repentis produce the effector ToxA that interacts with the dominant susceptibility gene in wheat, Tsn1. However, the way in which ToxA induces cell death and causes disease is unclear. Here, we performed comprehensive metabolite profiling of ToxA-infiltrated wheat (Triticum aestivum) to observe the secondary metabolite response to this effector. A strong induction of secondary metabolism subsequent to SnToxA infiltration was observed, including the monoamine serotonin. We established a novel role for serotonin as a phytoalexin in wheat and demonstrated that serotonin strongly inhibited sporulation of S. nodorum. Microscopy revealed that serotonin interferes with spore formation and maturation within pycnidial structures of the fungus. Subsequent analysis of S. nodorum exposed to serotonin revealed metabolites changes previously associated with sporulation, including trehalose and alternariol. Furthermore, we identified significantly lower concentrations of serotonin during infection compared with infiltration with ToxA, providing evidence that S. nodorum may suppress plant defence. This is the first study demonstrating induction of plant secondary metabolites in response to a necrotrophic effector that have significant antifungal potential against the pathogen. While it is generally accepted that necrotrophs exploit host cell responses, the current research strengthens the notion that necrotrophs require mechanisms to overcome plant defence to survive initial stages of infection.
Collapse
Affiliation(s)
- Lauren A Du Fall
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| | - Peter S Solomon
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| |
Collapse
|
32
|
Gummer JPA, Trengove RD, Oliver RP, Solomon PS. Dissecting the role of G-protein signalling in primary metabolism in the wheat pathogen Stagonospora nodorum. Microbiology (Reading) 2013; 159:1972-1985. [DOI: 10.1099/mic.0.067009-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Joel P. A. Gummer
- Metabolomics Australia, Murdoch University, Perth 6150, WA, Australia
- Separation Science and Metabolomics Laboratory, Murdoch University, Perth 6150, WA, Australia
| | - Robert D. Trengove
- Metabolomics Australia, Murdoch University, Perth 6150, WA, Australia
- Separation Science and Metabolomics Laboratory, Murdoch University, Perth 6150, WA, Australia
| | - Richard P. Oliver
- Australian Centre for Necrotrophic Fungal Pathogens, Department of Environment and Agriculture, Curtin University, Perth 6102, WA, Australia
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, Australian National University, ACT 0200, Australia
| |
Collapse
|
33
|
|
34
|
Calmes B, Guillemette T, Teyssier L, Siegler B, Pigné S, Landreau A, Iacomi B, Lemoine R, Richomme P, Simoneau P. Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola. FRONTIERS IN PLANT SCIENCE 2013; 4:131. [PMID: 23717316 PMCID: PMC3652318 DOI: 10.3389/fpls.2013.00131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/20/2013] [Indexed: 05/29/2023]
Abstract
In this study, the physiological functions of fungal mannitol metabolism in the pathogenicity and protection against environmental stresses were investigated in the necrotrophic fungus Alternaria brassicicola. Mannitol metabolism was examined during infection of Brassica oleracea leaves by sequential HPLC quantification of the major soluble carbohydrates and expression analysis of genes encoding two proteins of mannitol metabolism, i.e., a mannitol dehydrogenase (AbMdh), and a mannitol-1-phosphate dehydrogenase (AbMpd). Knockout mutants deficient for AbMdh or AbMpd and a double mutant lacking both enzyme activities were constructed. Their capacity to cope with various oxidative and drought stresses and their pathogenic behavior were evaluated. Metabolic and gene expression profiling indicated an increase in mannitol production during plant infection. Depending on the mutants, distinct pathogenic processes, such as leaf and silique colonization, sporulation, survival on seeds, were impaired by comparison to the wild-type. This pathogenic alteration could be partly explained by the differential susceptibilities of mutants to oxidative and drought stresses. These results highlight the importance of mannitol metabolism with respect to the ability of A. brassicicola to efficiently accomplish key steps of its pathogenic life cycle.
Collapse
Affiliation(s)
- Benoit Calmes
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Thomas Guillemette
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Lény Teyssier
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Benjamin Siegler
- Plateforme d'Ingénierie et Analyses Moléculaires, Université d'AngersAngers Cedex, France
| | - Sandrine Pigné
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Anne Landreau
- SONAS EA 921, SFR 4207, QUASAV UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, Université d'AngersAngers Cedex, France
| | | | - Rémi Lemoine
- Ecologie, Biologie des Interactions, UMR 7267 CNRS/Université de PoitiersPoitiers, France
| | - Pascal Richomme
- SONAS EA 921, SFR 4207, QUASAV UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, Université d'AngersAngers Cedex, France
| | - Philippe Simoneau
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| |
Collapse
|
35
|
Gummer JPA, Trengove RD, Oliver RP, Solomon PS. A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum. BMC Microbiol 2012; 12:131. [PMID: 22759704 PMCID: PMC3492189 DOI: 10.1186/1471-2180-12-131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 06/07/2012] [Indexed: 11/25/2022] Open
Abstract
Background It has been well established that the Gα subunit of the heterotrimeric G-protein in the wheat pathogen Stagonospora nodorum is required for a variety of phenotypes including pathogenicity, melanisation and asexual differentiation. The roles though of the Gγ and Gβ subunits though were unclear. The objective of this study was to identify and understand the role of these subunits and assess their requirement for pathogenicity and development. Results G-protein Gγ and Gβ subunits, named Gga1 and Gba1 respectively, were identified in the Stagonospora nodorum genome by comparative analysis with known fungal orthologues. A reverse genetics technique was used to study the role of these and revealed that the mutant strains displayed altered in vitro growth including a differential response to a variety of exogenous carbon sources. Pathogenicity assays showed that Stagonospora nodorum strains lacking Gba1 were essentially non-pathogenic whilst Gga1-impaired strains displayed significantly slower growth in planta. Subsequent sporulation assays showed that like the previously described Gα subunit mutants, both Gba1 and Gga1 were required for asexual sporulation with neither mutant strain being able to differentiate either pycnidia nor pycnidiospores under normal growth conditions. Continued incubation at 4°C was found to complement the mutation in each of the G-protein subunits with nearly wild-type levels of pycnidia recovered. Conclusion This study provides further evidence on the significance of cAMP-dependent signal transduction for many aspects of fungal development and pathogenicity. The observation that cold temperatures can complement the G-protein sporulation defect now provides an ideal tool by which asexual differentiation can now be dissected.
Collapse
Affiliation(s)
- Joel P A Gummer
- Separation Science Laboratory, Murdoch University, Perth 6150WA, Australia
| | | | | | | |
Collapse
|
36
|
Vincent D, Du Fall LA, Livk A, Mathesius U, Lipscombe RJ, Oliver RP, Friesen TL, Solomon PS. A functional genomics approach to dissect the mode of action of the Stagonospora nodorum effector protein SnToxA in wheat. MOLECULAR PLANT PATHOLOGY 2012; 13:467-82. [PMID: 22111512 PMCID: PMC6638714 DOI: 10.1111/j.1364-3703.2011.00763.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, proteomics and metabolomics were used to study the wheat response to exposure to the SnToxA effector protein secreted by the fungal pathogen Stagonospora nodorum during infection. Ninety-one different acidic and basic proteins and 101 metabolites were differentially abundant when comparing SnToxA- and control-treated wheat leaves during a 72-h time course. Proteins involved in photosynthesis were observed to increase marginally initially after exposure, before decreasing rapidly and significantly. Proteins and metabolites associated with the detoxification of reactive oxygen species in the chloroplast were also differentially abundant during SnToxA exposure, implying that the disruption of photosynthesis causes the rapid accumulation of chloroplastic reactive oxygen species. Metabolite profiling revealed major metabolic perturbations in central carbon metabolism, evidenced by significant increases in tricarboxylic acid (TCA) cycle intermediates, suggestive of an attempt by the plant to generate ATP and reducing equivalents in response to the collapse of photosynthesis caused by SnToxA. This was supported by the observation that the TCA cycle enzyme malate dehydrogenase was up-regulated in response to SnToxA. The infiltration of SnToxA also resulted in a significant increase in abundance of many pathogenicity-related proteins, even in the absence of the pathogen or other pathogen-associated molecular patterns. This approach highlights the complementary nature of proteomics and metabolomics in studying effector-host interactions, and provides further support for the hypothesis that necrotrophic pathogens, such as S. nodorum, appear to exploit existing host cell death mechanisms to promote pathogen growth and cause disease.
Collapse
Affiliation(s)
- Delphine Vincent
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, ACT 0200, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Oliver RP, Friesen TL, Faris JD, Solomon PS. Stagonospora nodorum: from pathology to genomics and host resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:23-43. [PMID: 22559071 DOI: 10.1146/annurev-phyto-081211-173019] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Stagonospora nodorum is a major necrotrophic pathogen of wheat that causes the diseases S. nodorum leaf and glume blotch. A series of tools and resources, including functional genomics, a genome sequence, proteomics and metabolomics, host-mapping populations, and a worldwide collection of isolates, have enabled the dissection of pathogenicity mechanisms. Metabolic and signaling genes required for pathogenicity have been defined. Interaction with the host is dominated by interplay of fungal effectors that induce necrosis on wheat lines carrying specific sensitivity loci. As such, the pathogen has emerged as a model for the Pleosporales group of pathogens.
Collapse
Affiliation(s)
- Richard P Oliver
- Australian Center for Necrotrophic Fungal Pathogens, Curtin University, Perth WA 6845, Australia.
| | | | | | | |
Collapse
|
38
|
Disruption of Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase does not affect growth in glucose but impairs growth at high temperature. PLoS One 2011; 6:e23695. [PMID: 21931609 PMCID: PMC3171402 DOI: 10.1371/journal.pone.0023695] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/22/2011] [Indexed: 11/18/2022] Open
Abstract
We have cloned the Yarrowia lipolytica TPS1 gene encoding trehalose-6-P synthase by complementation of the lack of growth in glucose of a Saccharomyces cerevisiae tps1 mutant. Disruption of YlTPS1 could only be achieved with a cassette placed in the 3' half of its coding region due to the overlap of its sequence with the promoter of the essential gene YlTFC1. The Yltps1 mutant grew in glucose although the Y. lipolytica hexokinase is extremely sensitive to inhibition by trehalose-6-P. The presence of a glucokinase, insensitive to trehalose-6-P, that constitutes about 80% of the glucose phosphorylating capacity during growth in glucose may account for the growth phenotype. Trehalose content was below 1 nmol/mg dry weight in Y. lipolytica, but it increased in strains expressing YlTPS1 under the control of the YlTEF1 promoter or with a disruption of YALI0D15598 encoding a putative trehalase. mRNA levels of YlTPS1 were low and did not respond to thermal stresses, but that of YlTPS2 (YALI0D14476) and YlTPS3 (YALI0E31086) increased 4 and 6 times, repectively, by heat treatment. Disruption of YlTPS1 drastically slowed growth at 35°C. Homozygous Yltps1 diploids showed a decreased sporulation frequency that was ascribed to the low level of YALI0D20966 mRNA an homolog of the S. cerevisiae MCK1 which encodes a protein kinase that activates early meiotic gene expression.
Collapse
|
39
|
Portal O, Izquierdo Y, De Vleesschauwer D, Sánchez-Rodríguez A, Mendoza-Rodríguez M, Acosta-Suárez M, Ocaña B, Jiménez E, Höfte M. Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis-banana interaction. PLANT CELL REPORTS 2011; 30:913-28. [PMID: 21279642 DOI: 10.1007/s00299-011-1008-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/14/2023]
Abstract
Mycosphaerella fijiensis, a hemibiotrophic fungus, is the causal agent of black leaf streak disease, the most serious foliar disease of bananas and plantains. To analyze the compatible interaction of M. fijiensis with Musa spp., a suppression subtractive hybridization (SSH) cDNA library was constructed to identify transcripts induced at late stages of infection in the host and the pathogen. In addition, a full-length cDNA library was created from the same mRNA starting material as the SSH library. The SSH procedure was effective in identifying specific genes predicted to be involved in plant-fungal interactions and new information was obtained mainly about genes and pathways activated in the plant. Several plant genes predicted to be involved in the synthesis of phenylpropanoids and detoxification compounds were identified, as well as pathogenesis-related proteins that could be involved in the plant response against M. fijiensis infection. At late stages of infection, jasmonic acid and ethylene signaling transduction pathways appear to be active, which corresponds with the necrotrophic life style of M. fijiensis. Quantitative PCR experiments revealed that antifungal genes encoding PR proteins and GDSL-like lipase are only transiently induced 30 days post inoculation (dpi), indicating that the fungus is probably actively repressing plant defense. The only fungal gene found was induced 37 dpi and encodes UDP-glucose pyrophosphorylase, an enzyme involved in the biosynthesis of trehalose. Trehalose biosynthesis was probably induced in response to prior activation of plant antifungal genes and may act as an osmoprotectant against membrane damage.
Collapse
Affiliation(s)
- Orelvis Portal
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5, 54 830, Santa Clara, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Song X, Rampitsch C, Soltani B, Mauthe W, Linning R, Banks T, McCallum B, Bakkeren G. Proteome analysis of wheat leaf rust fungus, Puccinia triticina, infection structures enriched for haustoria. Proteomics 2011; 11:944-63. [PMID: 21280219 DOI: 10.1002/pmic.201000014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 11/22/2010] [Accepted: 12/05/2010] [Indexed: 01/16/2023]
Abstract
Puccinia triticina (Pt) is a representative of several cereal-infecting rust fungal pathogens of major economic importance world wide. Upon entry through leaf stomata, these fungi establish intracellular haustoria, crucial feeding structures. We report the first proteome of infection structures from parasitized wheat leaves, enriched for haustoria through filtration and sucrose density centrifugation. 2-D PAGE MS/MS and gel-based LC-MS (GeLC-MS) were used to separate proteins. Generated spectra were compared with a partial proteome predicted from a preliminary Pt genome and generated ESTs, to a comprehensive genome-predicted protein complement from the related wheat stem rust fungus, Puccinia graminis f. sp. tritici (Pgt) and to various plant resources. We identified over 260 fungal proteins, 16 of which matched peptides from Pgt. Based on bioinformatic analyses and/or the presence of a signal peptide, at least 50 proteins were predicted to be secreted. Among those, six have effector protein signatures, some are related and the respective genes of several seem to belong to clusters. Many ribosomal structural proteins, proteins involved in energy, general metabolism and transport were detected. Measuring gene expression over several life cycle stages of ten representative candidates using quantitative RT-PCR, all were shown to be strongly upregulated and four expressed solely upon infection.
Collapse
Affiliation(s)
- Xiao Song
- Agriculture & Agri-Food Canada, Pacific Agri-Food Research Centre, Summerland, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Lowe RGT, Allwood JW, Galster AM, Urban M, Daudi A, Canning G, Ward JL, Beale MH, Hammond-Kosack KE. A combined ¹H nuclear magnetic resonance and electrospray ionization-mass spectrometry analysis to understand the basal metabolism of plant-pathogenic Fusarium spp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1605-18. [PMID: 20718668 DOI: 10.1094/mpmi-04-10-0092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many ascomycete Fusarium spp. are plant pathogens that cause disease on both cereal and noncereal hosts. Infection of wheat ears by Fusarium graminearum and F. culmorum typically results in bleaching and a subsequent reduction in grain yield. Also, a large proportion of the harvested grain can be spoiled when the colonizing Fusarium mycelia produce trichothecene mycotoxins, such as deoxynivalenol (DON). In this study, we have explored the intracellular polar metabolome of Fusarium spp. in both toxin-producing and nonproducing conditions in vitro. Four Fusarium spp., including nine well-characterized wild-type field isolates now used routinely in laboratory experimentation, were explored. A metabolic "triple-fingerprint" was recorded using (1)H nuclear magnetic resonance and direct-injection electrospray ionization-mass spectroscopy in both positive- and negative-ionization modes. These combined metabolomic analyses revealed that this technique is sufficient to resolve different wild-type isolates and different growth conditions. Principal components analysis was able to resolve the four species explored-F. graminearum, F. culmorum, F. pseudograminearum, and F. venenatum-as well as individual isolate differences from the same species. The external nutritional environment was found to have a far greater influence on the metabolome than the genotype of the organism. Conserved responses to DON-inducing medium were evident and included increased abundance of key compatible solutes, such as glycerol and mannitol. In addition, the concentration of γ-aminobutyric acid was elevated, indicating that the cellular nitrogen status may be affected by growth on DON-inducing medium.
Collapse
Affiliation(s)
- Rohan G T Lowe
- Centre for Sustainable Pest and Disease Management, Department of Plant Pathology and Microbiology, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Borges CL, Bailão AM, Báo SN, Pereira M, Parente JA, de Almeida Soares CM. Genes potentially relevant in the parasitic phase of the fungal pathogen Paracoccidioides brasiliensis. Mycopathologia 2010; 171:1-9. [PMID: 20669049 DOI: 10.1007/s11046-010-9349-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 07/13/2010] [Indexed: 11/26/2022]
Abstract
Paracoccidioides brasiliensis, a fungal pathogen of humans, switches from a filamentous spore-forming mold in the soil to a pathogenic budding-yeast in the human host. Dimorphism is regulated mainly by the temperature of incubation. Representational difference analysis (RDA) was performed between yeast cells of isolate Pb01 and from isolate Pb4940, the last growing as mycelia at the host temperature. Transcripts exhibiting increased expression during development of the yeast parasitic phase comprised those involved mainly in response to stress, transcriptional regulation and nitrogen metabolism. In this way, the isolate Pb01 increased the expression of a variety of transcripts encoding cell rescue proteins such as the heat shock protein HSP30, alpha-trehalose-phosphate synthase and DDR48 stress protein, suggesting the relevance of the defense mechanism against oxidative/heat shock stress in the fungal yeast phase. Other differentially expressed genes between the two isolates included those coding for cell wall/membrane-related proteins, suggesting the relevance of the fungal surface and it's remodeling to the dimorphism. We provide a set of novel yeast preferentially expressed genes and demonstrate the effectiveness of RDA for studying P. brasiliensis dimorphism.
Collapse
Affiliation(s)
- Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74001-970, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Griffiths W, Koal T, Wang Y, Kohl M, Enot D, Deigner HP. Targeted Metabolomics for Biomarker Discovery. Angew Chem Int Ed Engl 2010; 49:5426-45. [DOI: 10.1002/anie.200905579] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Griffiths W, Koal T, Wang Y, Kohl M, Enot D, Deigner HP. “Targeted Metabolomics” in der Biomarkerforschung. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
45
|
Wang G, Zhao G, Feng Y, Xuan J, Sun J, Guo B, Jiang G, Weng M, Yao J, Wang B, Duan D, Liu T. Cloning and comparative studies of seaweed trehalose-6-phosphate synthase genes. Mar Drugs 2010; 8:2065-79. [PMID: 20714424 PMCID: PMC2920543 DOI: 10.3390/md8072065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/04/2010] [Accepted: 06/30/2010] [Indexed: 11/25/2022] Open
Abstract
The full-length cDNA sequence (3219 base pairs) of the trehalose-6-phosphate synthase gene of Porphyra yezoensis (PyTPS) was isolated by RACE-PCR and deposited in GenBank (NCBI) with the accession number AY729671. PyTPS encodes a protein of 908 amino acids before a stop codon, and has a calculated molecular mass of 101,591 Daltons. The PyTPS protein consists of a TPS domain in the N-terminus and a putative TPP domain at the C-terminus. Homology alignment for PyTPS and the TPS proteins from bacteria, yeast and higher plants indicated that the most closely related sequences to PyTPS were those from higher plants (OsTPS and AtTPS5), whereas the most distant sequence to PyTPS was from bacteria (EcOtsAB). Based on the identified sequence of the PyTPS gene, PCR primers were designed and used to amplify the TPS genes from nine other seaweed species. Sequences of the nine obtained TPS genes were deposited in GenBank (NCBI). All 10 TPS genes encoded peptides of 908 amino acids and the sequences were highly conserved both in nucleotide composition (>94%) and in amino acid composition (>96%). Unlike the TPS genes from some other plants, there was no intron in any of the 10 isolated seaweed TPS genes.
Collapse
Affiliation(s)
- Guoliang Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Freeman BC, Chen C, Beattie GA. Identification of the trehalose biosynthetic loci of Pseudomonas syringae and their contribution to fitness in the phyllosphere. Environ Microbiol 2010; 12:1486-97. [PMID: 20192963 DOI: 10.1111/j.1462-2920.2010.02171.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surprisingly little is known of the trehalose biosynthetic pathways in pseudomonads, despite the importance of trehalose to protecting cells from environmental stresses such as low water availability. The genome of the foliar pathogen Pseudomonas syringae pv. tomato strain DC3000 contains genes for two trehalose biosynthetic pathways, TreS and TreYZ, and lacks genes for the more common OtsAB pathway. Deletion of either the treS (PSPTO_2760-2762) or treY/treZ (PSPTO_3125-3134) locus eliminated trehalose accumulation and reduced bacterial growth under hyperosmotic conditions. In evaluating the role of trehalose in P. syringae fitness on leaves, we found that a double deletion mutant lacking these loci exhibited poorer survival than the wild type on tomato leaves over a 2-week period in a growth chamber. Similarly, this mutant exhibited reduced survival on leaves of susceptible and resistant cultivars of the host plant tomato and of the non-host plant soybean over a 10-day period in field plots. Thus, the trehalose biosynthetic loci in P. syringae, which are highly conserved among pseudomonads, contributed to DC3000 fitness on leaves, supporting a role for trehalose in P. syringae survival and population maintenance in the phyllosphere.
Collapse
Affiliation(s)
- Brian C Freeman
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
47
|
The transcription factor StuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum. EUKARYOTIC CELL 2010; 9:1100-8. [PMID: 20495056 DOI: 10.1128/ec.00064-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Stagonospora nodorum StuA transcription factor gene SnStuA was identified by homology searching in the genome of the wheat pathogen Stagonospora nodorum. Gene expression analysis revealed that SnStuA transcript abundance increased throughout infection and in vitro growth to peak during sporulation. To investigate its role, the gene was deleted by homologous recombination. The growth of the resulting mutants was retarded on glucose compared to the wild-type growth, and the mutants also failed to sporulate. Glutamate as a sole carbon source restored the growth rate defect observed on glucose, although sporulation remained impaired. The SnstuA strains were essentially nonpathogenic, with only minor growth observed around the point of inoculation. The role of SnstuA was investigated using metabolomics, which revealed that this gene's product played a key role in regulating central carbon metabolism, with glycolysis, the TCA cycle, and amino acid synthesis all affected in the mutants. SnStuA was also found to positively regulate the synthesis of the mycotoxin alternariol. Gene expression studies on the recently identified effectors in Stagonospora nodorum found that SnStuA was a positive regulator of SnTox3 but was not required for the expression of ToxA. This study has uncovered a multitude of novel regulatory targets of SnStuA and has highlighted the critical role of this gene product in the pathogenicity of Stagonospora nodorum.
Collapse
|
48
|
Tan KC, Ipcho SVS, Trengove RD, Oliver RP, Solomon PS. Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. MOLECULAR PLANT PATHOLOGY 2009; 10:703-15. [PMID: 19694958 PMCID: PMC6640398 DOI: 10.1111/j.1364-3703.2009.00565.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
SUMMARY Peer-reviewed literature is today littered with exciting new tools and techniques that are being used in all areas of biology and medicine. Transcriptomics, proteomics and, more recently, metabolomics are three of these techniques that have impacted on fungal plant pathology. Used individually, each of these techniques can generate a plethora of data that could occupy a laboratory for years. When used in combination, they have the potential to comprehensively dissect a system at the transcriptional and translational level. Transcriptomics, or quantitative gene expression profiling, is arguably the most familiar to researchers in the field of fungal plant pathology. Microarrays have been the primary technique for the last decade, but others are now emerging. Proteomics has also been exploited by the fungal phytopathogen community, but perhaps not to its potential. A lack of genome sequence information has frustrated proteomics researchers and has largely contributed to this technique not fulfilling its potential. The coming of the genome sequencing era has partially alleviated this problem. Metabolomics is the most recent of these techniques to emerge and is concerned with the non-targeted profiling of all metabolites in a given system. Metabolomics studies on fungal plant pathogens are only just beginning to appear, although its potential to dissect many facets of the pathogen and disease will see its popularity increase quickly. This review assesses the impact of transcriptomics, proteomics and metabolomics on fungal plant pathology over the last decade and discusses their futures. Each of the techniques is described briefly with further reading recommended. Key examples highlighting the application of these technologies to fungal plant pathogens are also reviewed.
Collapse
Affiliation(s)
- Kar-Chun Tan
- Australian Centre for Necrotrophic Fungal Pathogens, SABC, Faculty of Health Sciences, Murdoch University, Murdoch 6150, Australia
| | | | | | | | | |
Collapse
|