1
|
He D, Li Y, Ma Q, Han L, Tang D, Miao Y. The phase-separating Magnaporthe oryzae MoSpa2 complex organizes actin nucleation centers for plant infection. THE PLANT CELL 2025; 37:koaf097. [PMID: 40315356 PMCID: PMC12124403 DOI: 10.1093/plcell/koaf097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/02/2025] [Indexed: 05/04/2025]
Abstract
The polarized actin cable from the Spitzenkörper at the hyphal tip fuels filamentous growth in diverse biphasic fungal pathogens. This multicomponent complex, featuring the actin nucleator Bni1 and its associated actin regulator, initiates actin polymerization, guiding biphasic fungal growth and host infection. How dynamic assembly of the Spitzenkörper and actin cable is achieved to support filamentous fungi that undergo multistage morphogenesis for host invasion remains unclear. These fungi include Magnaporthe oryzae (M. oryzae), which undergoes a multistage morphological transition during host plant infection. Here, we showed that the M. oryzae scaffolder protein MoSpa2 remodels actin cable networks in space and time by assembling the polarisome complex via phase separation, thereby supporting polarized growth in M. oryzae. Via its N-terminal intrinsically disordered regions, MoSpa2 first stimulates actin cable assembly through multivalent interactions with the MoBni1 nucleator, after which it creates polarized actin cable bundles by association with F-actin and a concurrent inhibition of cofilin-mediated F-actin depolymerization. MoSPA2 mutants exhibit impaired hyphal growth and a reduced ability to infect host plants, underling the significance of this scaffolder. Overall, this work elucidates the fundamental mechanisms underlying fungal morphogenesis, offering the potential for targeted interventions in pathogenesis.
Collapse
Affiliation(s)
- Danxia He
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Yuanbao Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianqian Ma
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Libo Han
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
2
|
Cano-Domínguez N, Callejas-Negrete OA, Pérez-Mozqueda LL, Martínez-Andrade JM, Delgado-Álvarez DL, Castro-Longoria E. The small Ras-like GTPase BUD-1 modulates conidial germination and hyphal growth guidance in the filamentous fungus Neurospora crassa. Fungal Genet Biol 2023; 168:103824. [PMID: 37454888 DOI: 10.1016/j.fgb.2023.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
In filamentous fungi, the hypha orientation is essential for polarized growth and morphogenesis. The ability to re-orient tip growth in response to environmental cues is critical for the colony survival. Therefore, hyphal tip orientation and tip extension are distinct mechanisms that operate in parallel during filamentous growth. In yeast, the axial growth orientation requires a pathway regulated by Rsr1p/Bud1p, a Ras-like GTPase protein, which determines the axial budding pattern. However, in filamentous fungi the function of the Rsr1/Bud1p gene (krev-1 homolog) has not been completely characterized. In this work, we characterized the phenotype of a homokaryon mutant Bud1p orthologous in Neurospora crassa (△bud-1) and tagged BUD-1 with the green fluorescent protein (GFP) to determine its localization and cell dynamics under confocal microscopy. During spore germination BUD-1 was localized at specific points along the plasma membrane and during germ tube emergence it was located at the tip of the germ tubes. In mature hyphae BUD-1 continued to be located at the cell tip and was also present at sites of branch emergence and at the time of septum formation. The △bud-1 mutant showed a delayed germination, and the orientation of hyphae was somewhat disrupted. Also, the hypha diameter was reduced approximately 37 % with respect to the wild type. The lack of BUD-1 affected the Spitzenkörper (Spk) formation, trajectory, the localization of polarisome components BNI-1 and SPA-2, and the actin cytoskeleton polarization. The results presented here suggest that BUD-1 participates in the establishment of a new polarity axis. It may also mediate the delivery of secretory vesicles for the efficient construction of new plasma membrane and cell wall.
Collapse
Affiliation(s)
- Nallely Cano-Domínguez
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico; Department of Cell Biology and Development, Institute of Cellular Physiology (IFC), National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Olga A Callejas-Negrete
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Luis L Pérez-Mozqueda
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico; Center for Wine and Vine Studies (CEVIT), Technical and Higher Education Center (CETYS), Ensenada, Baja California, Mexico
| | - Juan M Martínez-Andrade
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Diego L Delgado-Álvarez
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico.
| |
Collapse
|
3
|
Eisermann I, Garduño‐Rosales M, Talbot NJ. The emerging role of septins in fungal pathogenesis. Cytoskeleton (Hoboken) 2023; 80:242-253. [PMID: 37265147 PMCID: PMC10952683 DOI: 10.1002/cm.21765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
Fungal pathogens undergo specific morphogenetic transitions in order to breach the outer surfaces of plants and invade the underlying host tissue. The ability to change cell shape and switch between non-polarised and polarised growth habits is therefore critical to the lifestyle of plant pathogens. Infection-related development involves remodelling of the cytoskeleton, plasma membrane and cell wall at specific points during fungal pathogenesis. Septin GTPases are components of the cytoskeleton that play pivotal roles in actin remodelling, micron-scale plasma membrane curvature sensing and cell polarity. Septin assemblages, such as rings, collars and gauzes, are known to have important roles in cell shape changes and are implicated in formation of specialised infection structures to enter plant cells. Here, we review and compare the reported functions of septins of plant pathogenic fungi, with a special focus on invasive growth. Finally, we discuss septins as potential targets for broad-spectrum antifungal plant protection strategies.
Collapse
Affiliation(s)
- Iris Eisermann
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | | |
Collapse
|
4
|
Kakizaki T, Abe H, Kotouge Y, Matsubuchi M, Sugou M, Honma C, Tsukuta K, Satoh S, Shioya T, Nakamura H, Cannon KS, Woods BL, Gladfelter A, Takeshita N, Muraguchi H. Live-cell imaging of septins and cell polarity proteins in the growing dikaryotic vegetative hypha of the model mushroom Coprinopsis cinerea. Sci Rep 2023; 13:10132. [PMID: 37349479 PMCID: PMC10287680 DOI: 10.1038/s41598-023-37115-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
The developmental biology underlying the morphogenesis of mushrooms remains poorly understood despite the essential role of fungi in the terrestrial environment and global carbon cycle. The mushroom Coprinopsis cinerea is a leading model system for the molecular and cellular basis of fungal morphogenesis. The dikaryotic vegetative hyphae of this fungus grow by tip growth with clamp cell formation, conjugate nuclear division, septation, subapical peg formation, and fusion of the clamp cell to the peg. Studying these processes provides many opportunities to gain insights into fungal cell morphogenesis. Here, we report the dynamics of five septins, as well as the regulators CcCla4, CcSpa2, and F-actin, visualized by tagging with fluorescent proteins, EGFP, PA-GFP or mCherry, in the growing dikaryotic vegetative hyphae. We also observed the nuclei using tagged Sumo proteins and histone H1. The five septins colocalized at the hyphal tip in the shape of a dome with a hole (DwH). CcSpa2-EGFP signals were observed in the hole, while CcCla4 signals were observed as the fluctuating dome at the hyphal tip. Before septation, CcCla4-EGFP was also occasionally recruited transiently around the future septum site. Fluorescent protein-tagged septins and F-actin together formed a contractile ring at the septum site. These distinct specialized growth machineries at different sites of dikaryotic vegetative hyphae provide a foundation to explore the differentiation program of various types of cells required for fruiting body formation.
Collapse
Affiliation(s)
- Tetsuya Kakizaki
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Haruki Abe
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Yuuka Kotouge
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Mitsuki Matsubuchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Mayu Sugou
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Chiharu Honma
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Kouki Tsukuta
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Souichi Satoh
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Tatsuhiro Shioya
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Hiroe Nakamura
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan
| | - Kevin S Cannon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin L Woods
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology, Duke University, Durham, USA
| | - Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Japan
| | - Hajime Muraguchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo-nakano, Akita, 010-0195, Japan.
| |
Collapse
|
5
|
Li C, Xu D, Hu M, Zhang Q, Xia Y, Jin K. MaNCP1, a C2H2 Zinc Finger Protein, Governs the Conidiation Pattern Shift through Regulating the Reductive Pathway for Nitric Oxide Synthesis in the Filamentous Fungus Metarhizium acridum. Microbiol Spectr 2022; 10:e0053822. [PMID: 35536030 PMCID: PMC9241723 DOI: 10.1128/spectrum.00538-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
Asexual sporulation is the most common reproduction mode of fungi. Most filamentous fungi have two conidiation patterns, normal conidiation and microcycle conidiation, which may be regulated by nutritional conditions. Nitrogen source can affect the fungal conidiation pattern, but the regulatory mechanism is not fully understood. In this study, we report a C2H2 zinc finger protein, MaNCP1, which has typical transcription factor characteristics and is screened from the subtractive library regulated by nitrate in the entomopathogenic fungus Metarhizium acridum. MaNCP1 and its N-terminal play critical roles in the conidiation pattern shift. Further study shows that MaNCP1 interacts with MaNmrA, which also contributes to the conidiation pattern shift and is involved in the reductive pathway of nitric oxide (NO) synthesis. Intriguingly, the conidiation pattern of the MaNCP1-disruption strain (ΔMaNCP1) can be restored to microcycle conidiation when grown on the microcycle conidiation medium, SYA, supplemented with NO donor or overexpressing MaNmrA in ΔMaNCP1. Here, we reveal that MaNCP1 governs the conidiation pattern shift through regulating the reductive synthesis of NO by physically targeting MaNmrA in M. acridum. This work provides new mechanistic insights into how changes in nitrogen utilization are linked to the regulation of fungal morphological changes. IMPORTANCE Fungal conidia play important roles in the response to environmental stimuli and evasion of the host immune system. The nitrogen source is one of the main factors affecting shifts in fungal conidiation patterns, but the regulatory mechanism involved is not fully understood. In this work, we report that the C2H2 zinc finger protein, MaNCP1, governs the conidiation pattern shift in M. acridum by targeting the MaNmrA gene, thereby altering the regulation of the reductive pathway for NO synthesis. This work provides further insights into how the nutritional environment can regulate the morphogenesis of filamentous fungi.
Collapse
Affiliation(s)
- Chaochuang Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Dingxiang Xu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Meiwen Hu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Qipei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People’s Republic of China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, People’s Republic of China
| |
Collapse
|
6
|
Cao S, Li W, Li C, Wang G, Jiang W, Sun H, Deng Y, Chen H. The CHY-Type Zinc Finger Protein FgChy1 Regulates Polarized Growth, Pathogenicity, and Microtubule Assembly in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:362-375. [PMID: 33369502 DOI: 10.1094/mpmi-07-20-0206-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microtubules (MTs), as transport tracks, play important roles in hyphal-tip growth in filamentous fungi, but MT-associated proteins involved in polarized growth remain unknown. Here, we found that one novel zinc finger protein, FgChy1, is required for MT morphology and polarized growth in Fusarium graminearum. The Fgchy1 mutant presented curved and directionless growth of hyphae. Importantly, the conidia and germ tubes of the Fgchy1 mutant exhibited badly damaged and less-organized beta-tubulin cytoskeletons. Compared with the wild type, the Fgchy1 mutant lost the ability to maintain polarity and was also more sensitive to the anti-MT drugs carbendazim and nocodazole, likely due to the impaired MT cytoskeleton. Indeed, the hyphae of the wild type treated with nocodazole exhibited a morphology consistent with that of the Fgchy1 mutant. Interestingly, the disruption of FgChy1 resulted in the off-center localization of actin patches and the polarity-related polarisome protein FgSpa2 from the hyphal-tip axis. A similar defect in FgSpa2 localization was also observed in the nocodazole-treated wild-type strain. In addition, FgChy1 is also required for conidiogenesis, septation, sexual reproduction, pathogenicity, and deoxynivalenol production. Overall, this study provides the first demonstrations of the functions of the novel zinc finger protein FgChy1 in polarized growth, development, and virulence in filamentous fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Chaohui Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiang Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
7
|
Silva PM, Puerner C, Seminara A, Bassilana M, Arkowitz RA. Secretory Vesicle Clustering in Fungal Filamentous Cells Does Not Require Directional Growth. Cell Rep 2020; 28:2231-2245.e5. [PMID: 31433995 DOI: 10.1016/j.celrep.2019.07.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/22/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022] Open
Abstract
During symmetry breaking, the highly conserved Rho GTPase Cdc42 becomes stabilized at a defined site via an amplification process. However, little is known about how a new polarity site is established in an already asymmetric cell-a critical process in a changing environment. The human fungal pathogen Candida albicans switches from budding to filamentous growth in response to external cues, a transition controlled by Cdc42. Here, we have used optogenetic manipulation of cell polarity to reset growth in asymmetric filamentous C. albicans cells. We show that increasing the level of active Cdc42 on the plasma membrane results in disruption of the exocyst subunit Sec3 localization and a striking de novo clustering of secretory vesicles. This new cluster of secretory vesicles is highly dynamic, moving by hops and jumps, until a new growth site is established. Our results reveal that secretory vesicle clustering can occur in the absence of directional growth.
Collapse
Affiliation(s)
- Patrícia M Silva
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
8
|
Peng L, Yu Q, Wei H, Zhu N, Ren T, Liang C, Xu J, Tian L, Li M. The TRP Ca2+ channel Yvc1 regulates hyphal reactive oxygen species gradient for maintenance of polarized growth in Candida albicans. Fungal Genet Biol 2019; 133:103282. [DOI: 10.1016/j.fgb.2019.103282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/26/2022]
|
9
|
Callejas-Negrete OA, Castro-Longoria E. The role of GYP-3 in cellular morphogenesis of Neurospora crassa: Analyzing its relationship with the polarisome. Fungal Genet Biol 2019; 128:49-59. [DOI: 10.1016/j.fgb.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/18/2022]
|
10
|
Fischer MS, Glass NL. Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Front Microbiol 2019; 10:619. [PMID: 31001214 PMCID: PMC6455062 DOI: 10.3389/fmicb.2019.00619] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication and cell fusion are fundamental biological processes across the tree of life. Survival is often dependent upon being able to identify nearby individuals and respond appropriately. Communication between genetically different individuals allows for the identification of potential mating partners, symbionts, prey, or predators. In contrast, communication between genetically similar (or identical) individuals is important for mediating the development of multicellular organisms or for coordinating density-dependent behaviors (i.e., quorum sensing). This review describes the molecular and genetic mechanisms that mediate cell-to-cell communication and cell fusion between cells of Ascomycete filamentous fungi, with a focus on Neurospora crassa. Filamentous fungi exist as a multicellular, multinuclear network of hyphae, and communication-mediated cell fusion is an important aspect of colony development at each stage of the life cycle. Asexual spore germination occurs in a density-dependent manner. Germinated spores (germlings) avoid cells that are genetically different at specific loci, while chemotropically engaging with cells that share identity at these recognition loci. Germlings with genetic identity at recognition loci undergo cell fusion when in close proximity, a fitness attribute that contributes to more rapid colony establishment. Communication and cell fusion also occur between hyphae in a colony, which are important for reinforcing colony architecture and supporting the development of complex structures such as aerial hyphae and sexual reproductive structures. Over 70 genes have been identified in filamentous fungi (primarily N. crassa) that are involved in kind recognition, chemotropic interactions, and cell fusion. While the hypothetical signal(s) and receptor(s) remain to be described, a dynamic molecular signaling network that regulates cell-cell interactions has been revealed, including two conserved MAP-Kinase cascades, a conserved STRIPAK complex, transcription factors, a NOX complex involved in the generation of reactive oxygen species, cell-integrity sensors, actin, components of the secretory pathway, and several other proteins. Together these pathways facilitate the integration of extracellular signals, direct polarized growth, and initiate a transcriptional program that reinforces signaling and prepares cells for downstream processes, such as membrane merger, cell fusion and adaptation to heterokaryon formation.
Collapse
Affiliation(s)
- Monika S. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
11
|
Sun X, Su X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J Microbiol Biotechnol 2019; 35:54. [PMID: 30900052 DOI: 10.1007/s11274-019-2630-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Filamentous fungi are important microorganisms used in industrial production of proteins and enzymes. Among these organisms, Trichoderma reesei, Aspergilli, and more recently Myceliophthora thermophile are the most widely used and promising ones which have powerful protein secretion capability. In recent years, there have been tremendous achievements in understanding the molecular mechanisms of the secretory pathways in filamentous fungi. The acquired pieces of knowledge can be harnessed to enhance protein production in filamentous fungi with assistance of state-of-the-art genetic engineering techniques.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
12
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
13
|
Kois-Ostrowska A, Strzałka A, Lipietta N, Tilley E, Zakrzewska-Czerwińska J, Herron P, Jakimowicz D. Unique Function of the Bacterial Chromosome Segregation Machinery in Apically Growing Streptomyces - Targeting the Chromosome to New Hyphal Tubes and its Anchorage at the Tips. PLoS Genet 2016; 12:e1006488. [PMID: 27977672 PMCID: PMC5157956 DOI: 10.1371/journal.pgen.1006488] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023] Open
Abstract
The coordination of chromosome segregation with cell growth is fundamental to the proliferation of any organism. In most unicellular bacteria, chromosome segregation is strictly coordinated with cell division and involves ParA that moves the ParB nucleoprotein complexes bi- or unidirectionally toward the cell pole(s). However, the chromosome organization in multiploid, apically extending and branching Streptomyces hyphae challenges the known mechanisms of bacterial chromosome segregation. The complex Streptomyces life cycle involves two stages: vegetative growth and sporulation. In the latter stage, multiple cell divisions accompanied by chromosome compaction and ParAB assisted segregation turn multigenomic hyphal cell into a chain of unigenomic spores. However, the requirement for active chromosome segregation is unclear in the absence of canonical cell division during vegetative growth except in the process of branch formation. The mechanism by which chromosomes are targeted to new hyphae in streptomycete vegetative growth has remained unknown until now. Here, we address the question of whether active chromosome segregation occurs at this stage. Applied for the first time in Streptomyces, labelling of the chromosomal replication initiation region (oriC) and time-lapse microscopy, revealed that in vegetative hyphae every copy of the chromosome is complexed with ParB, whereas ParA, through interaction with the apical protein complex (polarisome), tightly anchors only one chromosome at the hyphal tip. The anchor is maintained during replication, when ParA captures one of the daughter oriCs. During spore germination and branching, ParA targets one of the multiple chromosomal copies to the new hyphal tip, enabling efficient elongation of hyphal tube. Thus, our studies reveal a novel role for ParAB proteins during hyphal tip establishment and extension. To proliferate, cells synchronize growth and division with chromosome segregation. In unicellular bacteria, chromosomes segregate during replication by active movement of nucleoprotein complexes toward the cell pole(s). Here, we asked the question how active chromosome segregation occurs in the absence of cell division, during hyphal growth and branching of the filamentous bacterium, Streptomyces coelicolor. We show that in multigenomic Streptomyces hyphae, the bacterial segregation machinery anchors a single chromosome at the hyphal tip. Through chromosomal anchorage, segregation proteins facilitate chromosome targeting to the newly formed germ tubes or branches. Thus, being adapted for apical growth, in Streptomyces hyphae the bacterial segregation machinery imposes a chromosome distribution that is reminiscent of nuclear distribution in apically growing eukaryotic cells such as filamentous fungi.
Collapse
Affiliation(s)
| | | | | | - Emma Tilley
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wroclaw, Poland
- Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| | - Paul Herron
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wroclaw, Poland
- Institute of Immunology and Experimental Therapy, Wroclaw, Poland
- * E-mail:
| |
Collapse
|
14
|
Abstract
Filamentous fungi have proven to be a better-suited model system than unicellular yeasts in analyses of cellular processes such as polarized growth, exocytosis, endocytosis, and cytoskeleton-based organelle traffic. For example, the filamentous fungus
Neurospora crassa develops a variety of cellular forms. Studying the molecular basis of these forms has led to a better, yet incipient, understanding of polarized growth. Polarity factors as well as Rho GTPases, septins, and a localized delivery of vesicles are the central elements described so far that participate in the shift from isotropic to polarized growth. The growth of the cell wall by apical biosynthesis and remodeling of polysaccharide components is a key process in hyphal morphogenesis. The coordinated action of motor proteins and Rab GTPases mediates the vesicular journey along the hyphae toward the apex, where the exocyst mediates vesicle fusion with the plasma membrane. Cytoplasmic microtubules and actin microfilaments serve as tracks for the transport of vesicular carriers as well as organelles in the tubular cell, contributing to polarization. In addition to exocytosis, endocytosis is required to set and maintain the apical polarity of the cell. Here, we summarize some of the most recent breakthroughs in hyphal morphogenesis and apical growth in
N. crassa and the emerging questions that we believe should be addressed.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico
| | - Leonora Martínez-Núñez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico
| |
Collapse
|
15
|
Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The Exocyst Complex in Health and Disease. Front Cell Dev Biol 2016; 4:24. [PMID: 27148529 PMCID: PMC4828438 DOI: 10.3389/fcell.2016.00024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/11/2016] [Indexed: 01/23/2023] Open
Abstract
Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease.
Collapse
Affiliation(s)
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Connor G Horton
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Isabelle Jourdain
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
16
|
Guo M, Kilaru S, Schuster M, Latz M, Steinberg G. Fluorescent markers for the Spitzenkörper and exocytosis in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:158-65. [PMID: 26092802 PMCID: PMC4502456 DOI: 10.1016/j.fgb.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/25/2022]
Abstract
We establish Z. tritici polarity markers ZtSec4, ZtMlc1, ZtRab11, ZtExo70 and ZtSpa2. All markers localize correctly, labeling the Spitzenkörper and sites of polar exocytosis. We provide 5 carboxin-resistance conveying vectors for integration of all markers into the sdi1 locus. We provide 5 hygromycin B-resistance conveying vectors for random integration of all markers.
Fungal hyphae are highly polarized cells that invade their substrate by tip growth. In plant pathogenic fungi, hyphal growth is essential for host invasion. This makes polarity factors and secretion regulators potential new targets for novel fungicides. Polarization requires delivery of secretory vesicles to the apical Spitzenkörper, followed by polarized exocytosis at the expanding cell tip. Here, we introduce fluorescent markers to visualize the apical Spitzenkörper and the apical site of exocytosis in hyphae of the wheat pathogen Zymoseptoria tritici. We fused green fluorescent protein to the small GTPase ZtSec4, the myosin light chain ZtMlc1 and the small GTPase ZtRab11 and co-localize the fusion proteins with the dye FM4-64 in the hyphal apex, suggesting that the markers label the hyphal Spitzenkörper in Z. tritici. In addition, we localize GFP-fusions to the exocyst protein ZtExo70, the polarisome protein ZtSpa2. Consistent with results in the ascomycete Neurospora crassa, these markers did localize near the plasma membrane at the hyphal tip and only partially co-localize with FM4-64. Thus, these fluorescent markers are useful molecular tools that allow phenotypic analysis of mutants in Z. tritici. These tools will help develop new avenues of research in our quest to control STB infection in wheat.
Collapse
Affiliation(s)
- M Guo
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - S Kilaru
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Latz
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - G Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
17
|
Martínez-Núñez L, Riquelme M. Role of BGT-1 and BGT-2, two predicted GPI-anchored glycoside hydrolases/glycosyltransferases, in cell wall remodeling in Neurospora crassa. Fungal Genet Biol 2015; 85:58-70. [PMID: 26541633 DOI: 10.1016/j.fgb.2015.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/25/2015] [Accepted: 11/01/2015] [Indexed: 02/07/2023]
Abstract
Neurospora crassa BGT-1 (NCU06381) and BGT-2 (NCU09175) are two putative glycoside hydrolases (GHs) with additional predicted glycosyltransferase activity and binding sites for a glycosyl phosphatidyl inositol (GPI) anchor that would facilitate their attachment to the plasma membrane (PM). To discern their role in key morphogenetic events during vegetative development of N. crassa, BGT-1 and BGT-2 were labeled with the green fluorescent protein (GFP). The gfp was inserted immediately after the signal peptide sequence, within the bgt-1 encoding sequence, or directly before the GPI-binding site in the case of bgt-2. Both BGT-1-GFP and BGT-2-GFP were observed at the PM of the hyphal apical dome, excluding the foremost apical region and the Spitzenkörper (Spk), where chitin and β-1,3-glucan synthases have been previously found. These and previous studies suggest a division of labor of the cell wall synthesizing machinery at the hyphal dome: at the very tip, glucans are synthesized by enzymes that accumulate at the Spk, before getting incorporated into the PM, whereas at the subtending zone below the apex, glucans are presumably hydrolyzed, producing amenable ends for further branching and crosslinking with other cell wall polymers. Additionally, BGT-1-GFP and BGT-2-GFP were observed at the leading edge of new developing septa, at unreleased interconidial junctions, at conidial poles, at germling and hyphal fusion sites, and at sites of branch emergence, all of them processes that seemingly involve cell wall remodeling. Even though single and double mutant strains for the corresponding genes did not show a drastic reduction of growth rate, bgt-2Δ and bgt-1Δ::bgt-2Δ strains exhibited an increased resistance to the cell wall stressors calcofluor white (CW) and congo red (CR) than the reference strain, which suggests they present significant architectural changes in their cell wall. Furthermore, the conidiation defects observed in the mutants indicate a significant role of BGT-1 and BGT-2 on the re-arrangement of glucans needed at the conidiophore cell wall to allow conidial separation.
Collapse
Affiliation(s)
- Leonora Martínez-Núñez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada-CICESE, Ensenada, Baja California 22860, Mexico
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada-CICESE, Ensenada, Baja California 22860, Mexico.
| |
Collapse
|
18
|
Ren L, Willet AH, Roberts-Galbraith RH, McDonald NA, Feoktistova A, Chen JS, Huang H, Guillen R, Boone C, Sidhu SS, Beckley JR, Gould KL. The Cdc15 and Imp2 SH3 domains cooperatively scaffold a network of proteins that redundantly ensure efficient cell division in fission yeast. Mol Biol Cell 2014; 26:256-69. [PMID: 25428987 PMCID: PMC4294673 DOI: 10.1091/mbc.e14-10-1451] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The fission yeast F-BAR proteins Cdc15 and Imp2 and their combined SH3-domain partners appear to act as “molecular glue” to stabilize the interaction between the plasma membrane and a complex network of proteins at the division site that mediates cell division. Schizosaccharomyces pombe cdc15 homology (PCH) family members participate in numerous biological processes, including cytokinesis, typically by bridging the plasma membrane via their F-BAR domains to the actin cytoskeleton. Two SH3 domain–containing PCH family members, Cdc15 and Imp2, play critical roles in S. pombe cytokinesis. Although both proteins localize to the contractile ring, with Cdc15 preceding Imp2, only cdc15 is an essential gene. Despite these distinct roles, the SH3 domains of Cdc15 and Imp2 cooperate in the essential process of recruiting other proteins to stabilize the contractile ring. To better understand the connectivity of this SH3 domain–based protein network at the CR and its function, we used a biochemical approach coupled to proteomics to identify additional proteins (Rgf3, Art1, Spa2, and Pos1) that are integrated into this network. Cell biological and genetic analyses of these SH3 partners implicate them in a range of activities that ensure the fidelity of cell division, including promoting cell wall metabolism and influencing cell morphogenesis.
Collapse
Affiliation(s)
- Liping Ren
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alaina H Willet
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rachel H Roberts-Galbraith
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Anna Feoktistova
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Haiming Huang
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Rodrigo Guillen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Charles Boone
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Sachdev S Sidhu
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Janel R Beckley
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
19
|
Riquelme M, Sánchez-León E. The Spitzenkörper: a choreographer of fungal growth and morphogenesis. Curr Opin Microbiol 2014; 20:27-33. [DOI: 10.1016/j.mib.2014.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/07/2023]
|
20
|
Riquelme M, Bredeweg EL, Callejas-Negrete O, Roberson RW, Ludwig S, Beltrán-Aguilar A, Seiler S, Novick P, Freitag M. The Neurospora crassa exocyst complex tethers Spitzenkörper vesicles to the apical plasma membrane during polarized growth. Mol Biol Cell 2014; 25:1312-26. [PMID: 24523289 PMCID: PMC3982996 DOI: 10.1091/mbc.e13-06-0299] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Fungal hyphae are among the most highly polarized cells. Hyphal polarized growth is supported by tip-directed transport of secretory vesicles, which accumulate temporarily in a stratified manner in an apical vesicle cluster, the Spitzenkörper. The exocyst complex is required for tethering of secretory vesicles to the apical plasma membrane. We determined that the presence of an octameric exocyst complex is required for the formation of a functional Spitzenkörper and maintenance of regular hyphal growth in Neurospora crassa. Two distinct localization patterns of exocyst subunits at the hyphal tip suggest the dynamic formation of two assemblies. The EXO-70/EXO-84 subunits are found at the peripheral part of the Spitzenkörper, which partially coincides with the outer macrovesicular layer, whereas exocyst components SEC-5, -6, -8, and -15 form a delimited crescent at the apical plasma membrane. Localization of SEC-6 and EXO-70 to the plasma membrane and the Spitzenkörper, respectively, depends on actin and microtubule cytoskeletons. The apical region of exocyst-mediated vesicle fusion, elucidated by the plasma membrane-associated exocyst subunits, indicates the presence of an exocytotic gradient with a tip-high maximum that dissipates gradually toward the subapex, confirming the earlier predictions of the vesicle supply center model for hyphal morphogenesis.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, Ensenada, BC 22860, Mexico Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331 School of Life Sciences, Arizona State University, Tempe, AZ 85287 Department of Molecular Plant Physiology, Institute for Biologie II, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stephenson KS, Gow NAR, Davidson FA, Gadd GM. Regulation of vectorial supply of vesicles to the hyphal tip determines thigmotropism in Neurospora crassa. Fungal Biol 2014; 118:287-94. [PMID: 24607352 DOI: 10.1016/j.funbio.2013.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/19/2013] [Accepted: 12/22/2013] [Indexed: 01/03/2023]
Abstract
Thigmotropism is the ability of an organism to respond to a topographical stimulus by altering its axis of growth. The thigmotropic response of the model fungus Neurospora crassa was quantified using microfabricated glass slides with ridges of defined height. We show that the polarity machinery at the hyphal tip plays a role in the thigmotropic response of N. crassa. Deletion of N. crassa genes encoding the formin, BNI-1, and the Rho-GTPase, CDC-42, an activator of BNI-1 in yeast, CDC-24, its guanine nucleotide exchange factor (GEF), and BEM-1, a scaffold protein in the same pathway, were all shown to significantly decrease the thigmotropic response. In contrast, deletion of genes encoding the cell end-marker protein, TEA-1, and KIP-1, the kinesin responsible for the localisation of TEA-1, significantly increased the thigmotropic response. These results suggest a mechanism of thigmotropism involving vesicle delivery to the hyphal tip via the actin cytoskeleton and microtubules. Neurospora crassa thigmotropic response differed subtly from that of Candida albicans where the stretch-activated calcium channel, Mid1, has been linked with thigmotropic behaviour. The MID-1 deficient mutant of N. crassa (Δmid-1) and the effects of calcium depletion were examined here but no change in the thigmotropic response was observed. However, SPRAY, a putative calcium channel protein, was shown to be required for N. crassa thigmotropism. We propose that the thigmotropic response is a result of changes in the polarity machinery at the hyphal tip which are thought to be downstream effects of calcium signalling pathways triggered by mechanical stress at the tip.
Collapse
Affiliation(s)
- Karen S Stephenson
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland, United Kingdom
| | - Neil A R Gow
- The Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical, Sciences, University of Aberdeen, Aberdeen, AB25 2ZD Scotland, United Kingdom
| | - Fordyce A Davidson
- Division of Mathematics, University of Dundee, Dundee, DD14HN Scotland, United Kingdom
| | - Geoffrey M Gadd
- Geomicrobiology Group, College of Life Sciences, University of Dundee, Dundee, DD1 5EH Scotland, United Kingdom.
| |
Collapse
|
22
|
Affiliation(s)
- Meritxell Riquelme
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, Mexico 22860;
| |
Collapse
|
23
|
Flärdh K, Richards DM, Hempel AM, Howard M, Buttner MJ. Regulation of apical growth and hyphal branching in Streptomyces. Curr Opin Microbiol 2012; 15:737-43. [PMID: 23153774 DOI: 10.1016/j.mib.2012.10.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 01/19/2023]
Abstract
The filamentous bacteria Streptomyces grow by tip extension and through the initiation of new branches, and this apical growth is directed by a polarisome-like complex involving the essential polarity protein DivIVA. New branch sites must be marked de novo and, until recently, there was no understanding of how these new sites are selected. Equally, hyphal branching patterns are affected by environmental conditions, but there was no insight into how polar growth and hyphal branching might be regulated in response to external or internal cues. This review focuses on recent discoveries that reveal the principal mechanism of branch site selection in Streptomyces, and the first mechanism to be identified that regulates polarisome behaviour to modulate polar growth and hyphal branching.
Collapse
Affiliation(s)
- Klas Flärdh
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|
24
|
The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc Natl Acad Sci U S A 2012; 109:E2371-9. [PMID: 22869733 DOI: 10.1073/pnas.1207409109] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In cells that exhibit apical growth, mechanisms that regulate cell polarity are crucial for determination of cellular shape and for the adaptation of growth to intrinsic and extrinsic cues. Broadly conserved pathways control cell polarity in eukaryotes, but less is known about polarly growing prokaryotes. An evolutionarily ancient form of apical growth is found in the filamentous bacteria Streptomyces, and is directed by a polarisome-like complex involving the essential protein DivIVA. We report here that this bacterial polarization machinery is regulated by a eukaryotic-type Ser/Thr protein kinase, AfsK, which localizes to hyphal tips and phosphorylates DivIVA. During normal growth, AfsK regulates hyphal branching by modulating branch-site selection and some aspect of the underlying polarisome-splitting mechanism that controls branching of Streptomyces hyphae. Further, AfsK is activated by signals generated by the arrest of cell wall synthesis and directly communicates this to the polarisome by hyperphosphorylating DivIVA. Induction of high levels of DivIVA phosphorylation by using a constitutively active mutant AfsK causes disassembly of apical polarisomes, followed by establishment of multiple hyphal branches elsewhere in the cell, revealing a profound impact of this kinase on growth polarity. The function of AfsK is reminiscent of the phoshorylation of polarity proteins and polarisome components by Ser/Thr protein kinases in eukaryotes.
Collapse
|
25
|
Richards DM, Hempel AM, Flärdh K, Buttner MJ, Howard M. Mechanistic basis of branch-site selection in filamentous bacteria. PLoS Comput Biol 2012; 8:e1002423. [PMID: 22423220 PMCID: PMC3297577 DOI: 10.1371/journal.pcbi.1002423] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/26/2012] [Indexed: 11/18/2022] Open
Abstract
Many filamentous organisms, such as fungi, grow by tip-extension and by forming new branches behind the tips. A similar growth mode occurs in filamentous bacteria, including the genus Streptomyces, although here our mechanistic understanding has been very limited. The Streptomyces protein DivIVA is a critical determinant of hyphal growth and localizes in foci at hyphal tips and sites of future branch development. However, how such foci form was previously unknown. Here, we show experimentally that DivIVA focus-formation involves a novel mechanism in which new DivIVA foci break off from existing tip-foci, bypassing the need for initial nucleation or de novo branch-site selection. We develop a mathematical model for DivIVA-dependent growth and branching, involving DivIVA focus-formation by tip-focus splitting, focus growth, and the initiation of new branches at a critical focus size. We quantitatively fit our model to the experimentally-measured tip-to-branch and branch-to-branch length distributions. The model predicts a particular bimodal tip-to-branch distribution results from tip-focus splitting, a prediction we confirm experimentally. Our work provides mechanistic understanding of a novel mode of hyphal growth regulation that may be widely employed.
Collapse
Affiliation(s)
| | - Antje M. Hempel
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Biology, Lund University, Lund, Sweden
| | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
- * E-mail: (KF); (MH)
| | - Mark J. Buttner
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Martin Howard
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (KF); (MH)
| |
Collapse
|
26
|
Lichius A, Yáñez-Gutiérrez ME, Read ND, Castro-Longoria E. Comparative live-cell imaging analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa reveal novel features of the filamentous fungal polarisome. PLoS One 2012; 7:e30372. [PMID: 22291944 PMCID: PMC3265482 DOI: 10.1371/journal.pone.0030372] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture.
Collapse
Affiliation(s)
- Alexander Lichius
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mario E. Yáñez-Gutiérrez
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
| | - Nick D. Read
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada, Baja California, Mexico
- * E-mail:
| |
Collapse
|
27
|
Richard F, Glass NL, Pringle A. Cooperation among germinating spores facilitates the growth of the fungus, Neurospora crassa. Biol Lett 2012; 8:419-22. [PMID: 22258449 DOI: 10.1098/rsbl.2011.1141] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fusions between individuals are a common feature of organisms with modular, indeterminate life forms, including plants, marine invertebrates and fungi. The consequences of fusion for an individual fungus are poorly understood. We used wild-type and fusion mutant strains of the genetic model Neurospora crassa to chronicle the fitness in two different laboratory habitats, and in each experiment started colonies from multiple different densities of asexual spores. On round Petri dishes, fusion enabled wild-type colonies to grow larger than mutant (soft) colonies; but in linear 'race tubes', the soft mutant always grew more quickly than the wild-type. Starting a colony with more spores always provided an advantage to a wild-type colony, but was more often neutral or a cost to the soft mutant. The ability to fuse does not provide a consistent advantage to wild-type colonies; net benefits are shaped by both habitat and initial spore densities.
Collapse
Affiliation(s)
- F Richard
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
28
|
Berepiki A, Lichius A, Read ND. Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 2011; 9:876-87. [PMID: 22048737 DOI: 10.1038/nrmicro2666] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Growth and morphogenesis of filamentous fungi is underpinned by dynamic reorganization and polarization of the actin cytoskeleton. Actin has crucial roles in exocytosis, endocytosis, organelle movement and cytokinesis in fungi, and these processes are coupled to the production of distinct higher-order structures (actin patches, cables and rings) that generate forces or serve as tracks for intracellular transport. New approaches for imaging actin in living cells are revealing important similarities and differences in actin architecture and organization within the fungal kingdom, and have yielded key insights into cell polarity, tip growth and long-distance intracellular transport. In this Review, we discuss the contribution that recent live-cell imaging and mutational studies have made to our understanding of the dynamics and regulation of actin in filamentous fungi.
Collapse
Affiliation(s)
- Adokiye Berepiki
- Fungal Cell Biology Group, Institute of Cell Biology, Rutherford Building, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
29
|
Lichius A, Berepiki A, Read ND. Form follows function – The versatile fungal cytoskeleton. Fungal Biol 2011; 115:518-40. [DOI: 10.1016/j.funbio.2011.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 02/15/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
|
30
|
Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biol 2011; 115:446-74. [PMID: 21640311 DOI: 10.1016/j.funbio.2011.02.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/20/2022]
|
31
|
Sudbery P. Fluorescent proteins illuminate the structure and function of the hyphal tip apparatus. Fungal Genet Biol 2011; 48:849-57. [PMID: 21362491 DOI: 10.1016/j.fgb.2011.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/25/2011] [Accepted: 02/18/2011] [Indexed: 12/15/2022]
Abstract
Fungal hyphae show extreme polarized growth at the tip. Electron microscope studies have revealed a apical body called the Spitzenkörper that is thought to drive polarized growth. Studies of polarized growth in S. cerevisiae have identified the protein components of the polarized growth machinery, that are conserved in other fungi. Fusion of these proteins to GFP and its variants has for the first time allowed the localization of these proteins in real time to the hyphal tip without the need for drastic fixation procedures. Such studies showed that vesicle-associated proteins localize to the Spitzenkörper and identified a second compartment located at the tip surface composed of exocyst and other proteins that mediate the fusion of secretory vesicles with the plasma membrane.
Collapse
Affiliation(s)
- Peter Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield, UK.
| |
Collapse
|
32
|
Flexible metabolism in Metarhizium anisopliae and Beauveria bassiana: role of the glyoxylate cycle during insect pathogenesis. Microbiology (Reading) 2011; 157:199-208. [DOI: 10.1099/mic.0.042697-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insect pathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have an increasing role in the control of agricultural insect pests and vectors of human diseases. Many of the virulence factors are well studied but less is known of the metabolism of these fungi during the course of insect infection or saprobic growth. Here, we assessed enzyme activity and gene expression in the central carbon metabolic pathway, including isocitrate dehydrogenase, aconitase, citrate synthase, malate synthase (MLS) and isocitrate lyase (ICL), with particular attention to the glyoxylate cycle when M. anisopliae and B. bassiana were grown under various conditions. We observed that ICL and MLS, glyoxylate cycle intermediates, were upregulated during growth on 2-carbon compounds (acetate and ethanol) as well as in insect haemolymph. We fused the promoter of the M. anisopliae ICL gene (Ma-icl) to a marker gene (mCherry) and showed that Ma-icl was upregulated when M. anisopliae was grown in the presence of acetate. Furthermore, Ma-icl was upregulated when fungi were engulfed by insect haemocytes as well as during appressorium formation. Addition of the ICL inhibitor 3-nitroproprionate delayed conidial germination and inhibited appressorium formation. These results show that these insect pathogenic fungi have a flexible metabolism that includes the glyoxylate cycle as an integral part of germination, pathogenesis and saprobic growth.
Collapse
|
33
|
Visualization of F-actin localization and dynamics with live cell markers in Neurospora crassa. Fungal Genet Biol 2010; 47:573-86. [PMID: 20302965 DOI: 10.1016/j.fgb.2010.03.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/14/2023]
Abstract
Filamentous actin (F-actin) plays essential roles in filamentous fungi, as in all other eukaryotes, in a wide variety of cellular processes including cell growth, intracellular motility, and cytokinesis. We visualized F-actin organization and dynamics in living Neurospora crassa cells via confocal microscopy of growing hyphae expressing GFP fusions with homologues of the actin-binding proteins fimbrin (FIM) and tropomyosin (TPM-1), a subunit of the Arp2/3 complex (ARP-3) and a recently developed live cell F-actin marker, Lifeact (ABP140 of Saccharomyces cerevisiae). FIM-GFP, ARP-3-GFP, and Lifeact-GFP associated with small patches in the cortical cytoplasm that were concentrated in a subapical ring, which appeared similar for all three markers but was broadest in hyphae expressing Lifeact-GFP. These cortical patches were short-lived, and a subset was mobile throughout the hypha, exhibiting both anterograde and retrograde motility. TPM-1-GFP and Lifeact-GFP co-localized within the Spitzenkörper (Spk) core at the hyphal apex, and were also observed in actin cables throughout the hypha. All GFP fusion proteins studied were also transiently localized at septa: Lifeact-GFP first appeared as a broad ring during early stages of contractile ring formation and later coalesced into a sharper ring, TPM-1-GFP was observed in maturing septa, and FIM-GFP/ARP3-GFP-labeled cortical patches formed a double ring flanking the septa. Our observations suggest that each of the N. crassa F-actin-binding proteins analyzed associates with a different subset of F-actin structures, presumably reflecting distinct roles in F-actin organization and dynamics. Moreover, Lifeact-GFP marked the broadest spectrum of F-actin structures; it may serve as a global live cell marker for F-actin in filamentous fungi.
Collapse
|