1
|
Kato T, Azegami J, Kano M, El Enshasy HA, Park EY. Induction of Oxidative Stress in Sirtuin Gene-Disrupted Ashbya gossypii Mutants Overproducing Riboflavin. Mol Biotechnol 2024; 66:1144-1153. [PMID: 38184809 DOI: 10.1007/s12033-023-01012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
AgHST1 and AgHST3 genes encode sirtuins that are NAD+-dependent protein deacetylases. According to previous reports, their disruption leads to the overproduction of riboflavin in Ashbya gossypii. In this study, we investigated the potential causes of riboflavin overproduction in the AgHST1Δ and AgHST3Δ mutant strains of A. gossypii. The generation of reactive oxygen species was increasd in the mutants compared to in WT. Additionally, membrane potential was lower in the mutants than in WT. The NAD+/NADH ratio in AgHST1Δ mutant strain was lower than that in WT; however, the NAD+/NADH ratio in AgHST3Δ was slightly higher than that in WT. AgHST1Δ mutant strain was more sensitive to high temperatures and hydroxyurea treatment than WT or AgHST3Δ. Expression of the AgGLR1 gene, encoding glutathione reductase, was substantially decreased in AgHST1Δ and AgHST3Δ mutant strains. The addition of N-acetyl-L-cysteine, an antioxidant, suppressed the riboflavin production in the mutants, indicating that it was induced by oxidative stress. Therefore, high oxidative stress resulting from the disruption of sirtuin genes induces riboflavin overproduction in AgHST1Δ and AgHST3Δ mutant strains. This study established that oxidative stress is an important trigger for riboflavin overproduction in sirtuin gene-disrupted mutant strains of A. gossypii and helped to elucidate the mechanism of riboflavin production in A. gossypii.
Collapse
Affiliation(s)
- Tatsuya Kato
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Mai Kano
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia
- City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Molecular and Biological Function Research Core, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
2
|
Zhang Y, Zhang F, Shao W, Chen W, Zhang Z, Shi D, Chen C. Phenamacril and carbendazim regulate trichothecene mycotoxin synthesis by affecting ROS levels in F. asiaticum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105506. [PMID: 37532325 DOI: 10.1016/j.pestbp.2023.105506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
Fusarium head blight caused by Fusarium asiaticum is an important cereal crop disease, and the trichothecene mycotoxins produced by F. asiaticum can contaminate wheat grain, which is very harmful to humans and animals. To effectively control FHB in large areas, the application of fungicides is the major strategy; however, the application of different types of fungicides has varying influences on the accumulation of trichothecene mycotoxins in F. asiaticum. In this study, phenamacril inhibited trichothecene mycotoxin accumulation in F. asiaticum; however, carbendazim (N-1H-benzimidazol-2-yl-carbamic acid, methyl ester) induced trichothecene mycotoxin accumulation. Additionally, phenamacril led to a lower level of reactive oxygen species (ROS) by inducing gene expression of the catalase and superoxide dismutase (SOD) pathways in F. asiaticum, whereas carbendazim stimulated ROS accumulation by inhibiting gene expression of the catalase and SOD pathways. Based on these results, we conclude that phenamacril and carbendazim regulate trichothecene mycotoxin synthesis by affecting ROS levels in F. asiaticum.
Collapse
Affiliation(s)
- Yu Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Department of Plant Pathology, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Fuyu Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Department of Plant Pathology, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenyong Shao
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenchan Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongya Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Chen J, Zhai W, Li Y, Guo Y, Zhu Y, Lei G, Li J. Enhancing the biomass and riboflavin production of Ashbya gossypii by using low-intensity ultrasound stimulation: A mechanistic investigation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Kato T, Azegami J, Kano M, El Enshasy HA, Park EY. Effects of sirtuins on the riboflavin production in Ashbya gossypii. Appl Microbiol Biotechnol 2021; 105:7813-7823. [PMID: 34559286 DOI: 10.1007/s00253-021-11595-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 12/01/2022]
Abstract
This study focuses on sirtuins, which catalyze the reaction of NAD+-dependent protein deacetylase, for riboflavin production in A. gossypii. Nicotinamide, a known inhibitor of sirtuin, made the color of A. gossypii colonies appear a deeper yellow at 5 mM. A. gossypii has 4 sirtuin genes (AgHST1, AgHST2, AgHST3, AgHST4) and these were disrupted to investigate the role of sirtuins in riboflavin production in A. gossypii. AgHST1∆, AgHST3∆, and AgHST4∆ strains were obtained, but AgHST2∆ was not. The AgHST1∆ and AgHST3∆ strains produced approximately 4.3- and 2.9-fold higher amounts of riboflavin than the WT strain. The AgHST3∆ strain showed a lower human sirtuin 6 (SIRT6)-like activity than the WT strain and only in the AgHST3∆ strain was a higher amount of acetylation of histone H3 K9 and K56 (H3K9ac and H3K56ac) observed compared to the WT strain. These results indicate that AgHst3 is SIRT6-like sirtuin in A. gossypii and the activity has an influence on the riboflavin production in A. gossypii. In the presence of 5 mM hydroxyurea and 50 µM camptothecin, which causes DNA damage, especially double-strand DNA breaks, the color of the WT strain colonies turned a deeper yellow. Additionally, hydroxyurea significantly led to the production of approximately 1.5 higher amounts of riboflavin and camptothecin also enhanced the riboflavin production even through the significant difference was not detected. Camptothecin tended to increase the amount of H3K56ac, but the amount of H3K56ac was not increased by hydroxyurea treatment. This study revealed that AgHst1 and AgHst3 are involved in the riboflavin production in A. gossypii through NAD metabolism and the acetylation of H3, respectively. This new finding is a step toward clarifying the role of sirtuins in riboflavin over-production by A. gossypii.Key points• Nicotinamide enhanced the riboflavin production in Ashbya gossypii.• Disruption of AgHST1 or AgHST3 gene also enhanced the riboflavin production in Ashbya gossypii.• Acetylation of H3K56 led to the enhancement of the riboflavin production in Ashbya gossypii.
Collapse
Affiliation(s)
- Tatsuya Kato
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan. .,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan. .,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.
| | - Junya Azegami
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Mai Kano
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| | - Hesham A El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81310 UTM, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications, New Borg Al Arab, Alexandria, Egypt
| | - Enoch Y Park
- Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, Japan
| |
Collapse
|
5
|
You J, Pan X, Yang C, Du Y, Osire T, Yang T, Zhang X, Xu M, Xu G, Rao Z. Microbial production of riboflavin: Biotechnological advances and perspectives. Metab Eng 2021; 68:46-58. [PMID: 34481976 DOI: 10.1016/j.ymben.2021.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 10/24/2022]
Abstract
Riboflavin is an essential nutrient for humans and animals, and its derivatives flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) are cofactors in the cells. Therefore, riboflavin and its derivatives are widely used in the food, pharmaceutical, nutraceutical and cosmetic industries. Advances in biotechnology have led to a complete shift in the commercial production of riboflavin from chemical synthesis to microbial fermentation. In this review, we provide a comprehensive review of biotechnologies that enhance riboflavin production in microorganisms, as well as representative examples. Firstly, the synthesis pathways and metabolic regulatory processes of riboflavin in microorganisms; and the current strategies and methods of metabolic engineering for riboflavin production are systematically summarized and compared. Secondly, the using of systematic metabolic engineering strategies to enhance riboflavin production is discussed, including laboratory evolution, histological analysis and high-throughput screening. Finally, the challenges for efficient microbial production of riboflavin and the strategies to overcome these challenges are prospected.
Collapse
Affiliation(s)
- Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chen Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuxuan Du
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tolbert Osire
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Masten Rutar J, Cillero-Pastor B, Mohren R, Poklar Ulrih N, Ogrinc N, Jamnik P. Insight into the Antioxidant Effect of Fermented and Non-Fermented Spirulina Water and Ethanol Extracts at the Proteome Level Using a Yeast Cell Model. Antioxidants (Basel) 2021; 10:1366. [PMID: 34572998 PMCID: PMC8465041 DOI: 10.3390/antiox10091366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Spirulina is rich in various antioxidants and nutraceuticals and it has proven to be effective in the treatment of various pathological conditions. This study explores the antioxidant effect of fermented and non-fermented Spirulina extracts on the proteome level using the yeast Saccharomyces cerevisiae as a model organism. Yeast cells were treated with fermented Spirulina water extract (SV), non-fermented Spirulina water extract (NFV), fermented Spirulina ethanol extract (SE), and non-fermented Spirulina ethanol extract (NFE). Cell lysates were prepared, and label-free quantitative proteome analysis was performed. In SV, when compared to NFV samples, the levels of most differentially expressed proteins were upregulated. Alternatively, SE compared to NFE samples showed a significant downregulation for the majority of the analyzed proteins involved in different cellular processes. Additionally, a higher downregulation of stress response related proteins was observed in SE compared to NFE samples, while their abundance in SV samples increased compared to NFV. This study provided a global view, on a proteome level, of how cells cope with exogenous antioxidants and remodel their cellular processes to maintain metabolic and redox balance. Furthermore, it combined for the first time the analysis of different extract effect, including the contribution of lactic acid fermentation to the cell activity.
Collapse
Affiliation(s)
- Jasmina Masten Rutar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (J.M.R.); (N.O.)
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Berta Cillero-Pastor
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (B.C.-P.); (R.M.)
| | - Ronny Mohren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands; (B.C.-P.); (R.M.)
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia; (J.M.R.); (N.O.)
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| | - Polona Jamnik
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| |
Collapse
|
7
|
Abstract
This Special Issue is a continuation of the first, second, and third “Yeast Biotechnology” Special Issue series of the journal Fermentation (MDPI) [...]
Collapse
|
8
|
Hoff B, Plassmeier J, Blankschien M, Letzel AC, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power-Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2021; 60:2258-2278. [PMID: 33026132 DOI: 10.1002/anie.202004248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/08/2020] [Indexed: 01/03/2023]
Abstract
Fermentation as a production method for chemicals is especially attractive, as it is based on cheap renewable raw materials and often exhibits advantages in terms of costs and sustainability. The tremendous development of technology in bioscience has resulted in an exponentially increasing knowledge about biological systems and has become the main driver for innovations in the field of metabolic engineering. Progress in recombinant DNA technology, genomics, and computational methods open new, cheaper, and faster ways to metabolically engineer microorganisms. Existing biosynthetic pathways for natural products, such as vitamins, organic acids, amino acids, or secondary metabolites, can be discovered and optimized efficiently, thereby enabling competitive commercial production processes. Novel biosynthetic routes can now be designed by the rearrangement of nature's unlimited number of enzymes and metabolic pathways in microbial strains. This expands the range of chemicals accessible by biotechnology and has yielded the first commercial products, while new fermentation technologies targeting novel active ingredients, commodity chemicals, and CO2 -fixation methods are on the horizon.
Collapse
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Jens Plassmeier
- Biomaterials, Conagen, Inc., 15 DeAngelo Drive, 01730, Bedford, MA, USA
| | - Matthew Blankschien
- James R. Randall Research Center, ADM, 1001 North Brush College Road, 62521, Decatur, Il, USA
| | - Anne-Catrin Letzel
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Lauralynn Kourtz
- R&D, Allied Microbiota, 1345 Ave of Americas, 10105, New York, NY, USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Walter Koch
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research, BASF SE, building: A30, Carl-Bosch-Strasse 38, 67056, Ludwigshafen am Rhein, Germany
| |
Collapse
|
9
|
Averianova LA, Balabanova LA, Son OM, Podvolotskaya AB, Tekutyeva LA. Production of Vitamin B2 (Riboflavin) by Microorganisms: An Overview. Front Bioeng Biotechnol 2020; 8:570828. [PMID: 33304888 PMCID: PMC7693651 DOI: 10.3389/fbioe.2020.570828] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Riboflavin is a crucial micronutrient that is a precursor to coenzymes flavin mononucleotide and flavin adenine dinucleotide, and it is required for biochemical reactions in all living cells. For decades, one of the most important applications of riboflavin has been its global use as an animal and human nutritional supplement. Being well-informed of the latest research on riboflavin production via the fermentation process is necessary for the development of new and improved microbial strains using biotechnology and metabolic engineering techniques to increase vitamin B2 yield. In this review, we describe well-known industrial microbial producers, namely, Ashbya gossypii, Bacillus subtilis, and Candida spp. and summarize their biosynthetic pathway optimizations through genetic and metabolic engineering, combined with random chemical mutagenesis and rational medium components to increase riboflavin production.
Collapse
Affiliation(s)
- Liudmila A. Averianova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
| | - Larissa A. Balabanova
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- Laboratory of Marine Biochemistry, G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Oksana M. Son
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| | - Anna B. Podvolotskaya
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| | - Liudmila A. Tekutyeva
- Department of Bioeconomy and Food Security, School of Economics and Management, Far Eastern Federal University, Vladivostok, Russia
- ARNIKA, Territory of PDA Nadezhdinskaya, Primorsky Krai, Russia
| |
Collapse
|
10
|
Hoff B, Plassmeier J, Blankschien M, Letzel A, Kourtz L, Schröder H, Koch W, Zelder O. Unlocking Nature's Biosynthetic Power—Metabolic Engineering for the Fermentative Production of Chemicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Birgit Hoff
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Jens Plassmeier
- Biomaterials Conagen, Inc. 15 DeAngelo Drive 01730 Bedford, MA USA
| | - Matthew Blankschien
- James R. Randall Research Center ADM 1001 North Brush College Road 62521 Decatur, Il USA
| | - Anne‐Catrin Letzel
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Lauralynn Kourtz
- R&D Allied Microbiota 1345 Ave of Americas 10105 New York, NY USA
| | - Hartwig Schröder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Walter Koch
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| | - Oskar Zelder
- RBW, White Biotechnology Research BASF SE building: A30, Carl-Bosch-Strasse 38 67056 Ludwigshafen am Rhein Germany
| |
Collapse
|
11
|
Abstract
Yeasts are unicellular fungi that harbour a large biodiversity of thousands of species, of which particularly ascomycetous yeasts are instrumental to human food and beverage production. There is already a large body of evidence showing that insects play an important role for yeast ecology, for their dispersal to new habitats and for breeding and overwintering opportunities. Here, we sought to investigate a potential role of the terrestrial snails Cepaea hortensis and C. nemoralis, which in Europe are often found in association with human settlements and gardens, in yeast ecology. Surprisingly, even in a relatively limited culture-dependent sampling size of over 150 isolates, we found a variety of yeast genera, including species frequently isolated from grape must such as Hanseniaspora, Metschnikowia, Meyerozyma and Pichia in snail excrements. We typed the isolates using standard ITS-PCR-sequencing, sequenced the genomes of three non-conventional yeasts H. uvarum, Meyerozyma guilliermondii and P. kudriavzevii and characterized the fermentation performance of these three strains in grape must highlighting their potential to contribute to novel beverage fermentations. Aggravatingly, however, we also retrieved several human fungal pathogen isolates from snail excrements belonging to the Candida clade, namely Ca. glabrata and Ca. lusitaniae. Overall, our results indicate that diverse yeasts can utilise snails as taxis for dispersal. This courier service may be largely non-selective and thus depend on the diet available to the snails.
Collapse
|
12
|
Zhang MM, Wang ZQ, Xu X, Huang S, Yin WX, Luo C. MfOfd1 is crucial for stress responses and virulence in the peach brown rot fungus Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2020; 21:820-833. [PMID: 32319202 PMCID: PMC7214477 DOI: 10.1111/mpp.12933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 06/01/2023]
Abstract
Monilinia fructicola is the most widely distributed species among the Monilinia genus in the world, and causes blossom blight, twig canker, and fruit rot on Rosaceae fruits. To date, studies on genomics and pathogenicity are limited in M. fructicola. In this study, we identified a redox-related gene, MfOfd1, which was significantly up-regulated at 1 hr after inoculation of M. fructicola on peach fruits. We used the clustered regulatory inter-spaced short palindromic repeats (CRISPR)/Cas9 system combined with homologous recombination to determine the function of the MfOfd1 gene. The results showed that the sporulation of knockdown transformants was reduced by 53% to 83%. The knockdown transformants showed increased sensitivity to H2 O2 and decreased virulence on peach fruits compared to the wild-type isolate Bmpc7. It was found that H2 O2 could stimulate the expression of MfOfd1 in the wild-type isolate. The transformants were also more sensitive to exogenous osmotic stress, such as glycerol, d-sorbitol, and NaCl, and to dicarboximide fungicides (iprodione and dimethachlon). These results indicate that the MfOfd1 gene plays an important role in M. fructicola in sporulation, oxidative response, osmotic stress tolerance, and virulence.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil FertilizerHubei Academy of Agricultural ScienceWuhanChina
| | - Xiao Xu
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Song Huang
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Wei-Xiao Yin
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao‐Xi Luo
- The Key Lab of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
- Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
13
|
The bZIP Transcription Factor AflRsmA Regulates Aflatoxin B 1 Biosynthesis, Oxidative Stress Response and Sclerotium Formation in Aspergillus flavus. Toxins (Basel) 2020; 12:toxins12040271. [PMID: 32340099 PMCID: PMC7232220 DOI: 10.3390/toxins12040271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/04/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022] Open
Abstract
Fungal secondary metabolites play important roles not only in fungal ecology but also in humans living as beneficial medicine or harmful toxins. In filamentous fungi, bZIP-type transcription factors (TFs) are associated with the proteins involved in oxidative stress response and secondary metabolism. In this study, a connection between a bZIP TF and oxidative stress induction of secondary metabolism is uncovered in an opportunistic pathogen Aspergillus flavus, which produces carcinogenic and mutagenic aflatoxins. The bZIP transcription factor AflRsmA was identified by a homology research of A. flavus genome with the bZIP protein RsmA, involved in secondary metabolites production in Aspergillusnidulans. The AflrsmA deletion strain (ΔAflrsmA) displayed less sensitivity to the oxidative reagents tert-Butyl hydroperoxide (tBOOH) in comparison with wild type (WT) and AflrsmA overexpression strain (AflrsmAOE), while AflrsmAOE strain increased sensitivity to the oxidative reagents menadione sodium bisulfite (MSB) compared to WT and ΔAflrsmA strains. Without oxidative treatment, aflatoxin B1 (AFB1) production of ΔAflrsmA strains was consistent with that of WT, but AflrsmAOE strain produced more AFB1 than WT; tBOOH and MSB treatment decreased AFB1 production of ΔAflrsmA compared to WT. Besides, relative to WT, ΔAflrsmA strain decreased sclerotia, while AflrsmAOE strain increased sclerotia. The decrease of AFB1 by ΔAflrsmA but increase of AFB1 by AflrsmAOE was on corn. Our results suggest that AFB1 biosynthesis is regulated by AflRsmA by oxidative stress pathways and provide insights into a possible function of AflRsmA in mediating AFB1 biosynthesis response host defense in pathogen A. flavus.
Collapse
|
14
|
Hackley RK, Schmid AK. Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. J Mol Biol 2019; 431:4147-4166. [PMID: 31437442 PMCID: PMC7419163 DOI: 10.1016/j.jmb.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.
Collapse
Affiliation(s)
- Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
15
|
Silva R, Aguiar TQ, Oliveira C, Domingues L. Physiological characterization of a pyrimidine auxotroph exposes link between uracil phosphoribosyltransferase regulation and riboflavin production in Ashbya gossypii. N Biotechnol 2018; 50:1-8. [PMID: 30590201 DOI: 10.1016/j.nbt.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 01/13/2023]
Abstract
The blockage of the de novo pyrimidine biosynthetic pathway at the orotidine-5'-phosphate decarboxylase level was previously demonstrated to affect riboflavin production in the industrial producer fungus Ashbya gossypii. However, the molecular basis for the unusual sensitivity to uracil displayed by the pyrimidine auxotroph A. gossypii Agura3 was unknown. Here, uridine was shown to be the only intermediate of the pyrimidine salvage pathway able to fully restore this mutant's growth. Conversely, uracil, which is routinely used to rescue pyrimidine auxotrophs, had a dose-dependent growth-inhibitory effect. Uracil phosphoribosyltransferase (UPRT) is the pyrimidine salvage pathway enzyme responsible for converting uracil to uridine monophosphate in the presence of phosphoribosyl pyrophosphate (PRPP). Characterization of the A. gossypii UPRT, as produced and purified from Escherichia coli, revealed that uracil concentrations above 1 mM negatively affected its activity, thus explaining the hypersensitivity of the Agura3 mutant to uracil. Accordingly, overexpression of the AgUPRT encoding-gene in A. gossypii Agura3 led to similar growth on rich medium containing 5 mM uracil or uridine. Decreased UPRT activity ultimately favors the preservation of PRPP, which otherwise may be directed to other pathways. In A. gossypii, increased PRPP availability promotes overproduction of riboflavin. Thus, this UPRT modulation mechanism reveals a putative means of saving precursors essential for riboflavin overproduction by this fungus. A similar uracil-mediated regulation mechanism of the UPRT activity is reported only in two protozoan parasites, whose survival depends on the availability of PRPP. Physiological evidence here discussed indicate that it may be extended to other distantly related flavinogenic fungi.
Collapse
Affiliation(s)
- Rui Silva
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Carla Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
16
|
Cross Talk between Calcium and Reactive Oxygen Species Regulates Hyphal Branching and Ganoderic Acid Biosynthesis in Ganoderma lucidum under Copper Stress. Appl Environ Microbiol 2018; 84:AEM.00438-18. [PMID: 29678914 DOI: 10.1128/aem.00438-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Ganoderma lucidum is among the best known medicinal basidiomycetes due to its production of many pharmacologically active compounds. To study the regulatory networks involved in its growth and development, we analyzed the relationship between reactive oxygen species (ROS) and Ca2+ signaling in the regulation of hyphal branching and ganoderic acid (GA) biosynthesis after Cu2+ treatment. Our results revealed that Cu2+ treatment decreased the distance between hyphal branches and increased the GA content and the intracellular levels of ROS and Ca2+ Further research revealed that the Cu2+-induced changes in hyphal branch distance, GA content, and cytosolic Ca2+ level were dependent on increases in cytosolic ROS. Our results also showed that increased cytosolic Ca2+ could reduce cytosolic ROS by activating antioxidases and modulating Cu2+ accumulation, resulting in feedback to adjust hyphal growth and GA biosynthesis. These results indicated that cytosolic ROS and Ca2+ levels exert important cross talk in the regulation of hyphal growth and GA biosynthesis induced by Cu2+ Taken together, our results provide a reference for analyzing the interactions among different signal transduction pathways with regard to the regulation of growth and development in other filamentous fungi.IMPORTANCEGanoderma lucidum, which is known as an important medicinal basidiomycete, is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, we analyzed the relationship between reactive oxygen species (ROS) and Ca2+ signaling in the regulation of hyphal branching and ganoderic acid (GA) biosynthesis under Cu2+ stress. The results revealed that the Cu2+-induced changes in the hyphal branch distance, GA content, and cytosolic Ca2+ level were dependent on increases in cytosolic ROS. Furthermore, the results indicated that increased cytosolic Ca2+ could reduce cytosolic ROS levels by activating antioxidases and modulating Cu2+ accumulation. The results in this paper indicate that there was important cross talk between cytosolic ROS and Ca2+ levels in the regulation of hyphal growth and GA biosynthesis induced by Cu2.
Collapse
|
17
|
Wasserstrom L, Dünkler A, Walther A, Wendland J. The APSES protein Sok2 is a positive regulator of sporulation in Ashbya gossypii. Mol Microbiol 2017; 106:949-960. [PMID: 28985003 DOI: 10.1111/mmi.13859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/26/2023]
Abstract
Ashbya gossypii is a homothallic, flavinogenic, filamentous ascomycete that starts overproduction of riboflavin and fragments its mycelium quantitatively into spore producing sporangia at the end of a growth phase. Mating is not required for sporulation and the standard homothallic laboratory strain is a MATa strain. Here we show that ectopic expression of Saccharomyces cerevisiae MATα2 in A. gossypii completely suppresses sporulation, inhibits riboflavin overproduction and downregulates among others AgSOK2. AgSok2 belongs to a fungal-specific group of (APSES) transcription factors. Deletion of AgSOK2 strongly reduces riboflavin production and blocks sporulation. The initiator of meiosis, AgIME1, is a transcription factor essential for sporulation. We characterized the AgIME1 promoter region required for complementation of the Agime1 mutant. Reporter assays with AgIME1 promoter fragments fused to lacZ showed that AgSok2 does not control AgIME1 transcription. However, global transcriptome analysis identified two other essential regulators of sporulation, AgIME2 and AgNDT80, as potential targets of AgSok2. Our data suggest that sporulation and riboflavin production in A. gossypii are under mating type locus and nutritional control. Sok2, a target of the cAMP/protein kinase A pathway, serves as a central positive regulator to promote sporulation. This contrasts Saccharomyces cerevisiae where Sok2 is a repressor of IME1 transcription.
Collapse
Affiliation(s)
- Lisa Wasserstrom
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Alexander Dünkler
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Andrea Walther
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Yeast & Fermentation, DK-1799 Copenhagen V, Denmark.,Vrije Universiteit Brussel, Department of Bioengineering Sciences Research Group of Microbiology, Functional Yeast Genomics, BE-1050 Brussels, Belgium
| |
Collapse
|
18
|
Yu P, Wang C, Chen P, Lee M. YAP1 homologue-mediated redox sensing is crucial for a successful infection by Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2017; 18:783-797. [PMID: 27239957 PMCID: PMC6638302 DOI: 10.1111/mpp.12438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 05/20/2023]
Abstract
Monilinia fructicola (G. Winter) Honey is a devastating pathogen on Rosaceae which causes blossom blight and fruit rot. Only a few studies related to the plant-pathogen interaction have been published and there is limited knowledge on the relationship between oxidative stress and successful infection in M. fructicola. In this study, we cloned and characterized a redox-responsive transcription factor MFAP1, a YAP1 homologue. MfAP1-silenced strains were generated by polyethylene glycol-mediated protoplast transformation or Agrobacterium T-DNA-mediated transformation. Pathogenicity assay demonstrated that MfAP1-silenced strains caused smaller lesions on rose and peach petals. Transformants carrying extra copies of MfAP1, driven by the native promoter, were generated for MfAP1 overexpression. Interestingly, MfAP1-overexpressing strains also caused smaller lesions on rose petals. Strains carrying two copies of MfAP1 accumulated reactive oxygen species (ROS) at higher levels and exhibited delayed accumulation of MfAP1 transcripts compared with the wild-type during pathogenesis. By the analysis of ROS production and the expression patterns of redox- and virulence-related genes in the wild-type strain and an MfAP1-overexpressing strain, we found that the M. fructicola wild-type strain responded to oxidative stress at the infection site, activated the expression of MfAP1 and up-regulated the genes required for ROS detoxification and fungal virulence. In contrast, MfAP1 expression in the MfAP1-overexpressing strain was suppressed after the induction of a strong oxidative burst at the infection site, altering the expression of ROS detoxification and virulence-related genes. Our results highlight the importance of MfAP1 and ROS accumulation in the successful infection of M. fructicola.
Collapse
Affiliation(s)
- Pei‐Ling Yu
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Chih‐Li Wang
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Pei‐Yin Chen
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Miin‐Huey Lee
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| |
Collapse
|
19
|
Semenova EF, Shpichka AI, Presnyakova EV. Aromatic and monoterpene alcohol accumulation by Eremothecium ashbyi strains differing in riboflavinogenesis. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817030139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
21
|
Montibus M, Khosravi C, Zehraoui E, Verdal-Bonnin MN, Richard-Forget F, Barreau C. Is the Fgap1 mediated response to oxidative stress chemotype dependent in Fusarium graminearum? FEMS Microbiol Lett 2015; 363:fnv232. [PMID: 26656279 DOI: 10.1093/femsle/fnv232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
This study aims to compare the role of the transcription factor Fgap1 in oxidative stress response for two Fusarium graminearum strains belonging to the two chemotypes DON/ADON and NIV/FX. While the response to H2O2 was shown to be chemotype dependent, an opposite result was observed for diamide: whatever the chemotype, the global level of TCTB (i.e. trichothecene B) production was strongly increased by the treatment with diamide. Fgap1 was shown to be involved in this regulation for both chemotypes. Our data show that the response to diamide is mediated by Fgap1 whatever the chemotype of the F. graminearum strains. However, the NIV/FX chemotype has developed higher antioxidant capacities in response to oxidative stress. But when this capacity is overwhelmed by an increment in the H2O2 level, the NIV/FX strains also responds by an increase in toxin accumulation.
Collapse
Affiliation(s)
- Mathilde Montibus
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Claire Khosravi
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Enric Zehraoui
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | | | - Florence Richard-Forget
- INRA, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| | - Christian Barreau
- CNRS, UR1264 MycSA, 71, Avenue Edouard Bourlaux, CS20032, F-33882 Villenave d'Ornon Cedex, France
| |
Collapse
|
22
|
Aguiar TQ, Silva R, Domingues L. Ashbya gossypii beyond industrial riboflavin production: A historical perspective and emerging biotechnological applications. Biotechnol Adv 2015; 33:1774-86. [DOI: 10.1016/j.biotechadv.2015.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
23
|
Shi L, Gong L, Zhang X, Ren A, Gao T, Zhao M. The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase. Fungal Genet Biol 2015; 81:201-11. [DOI: 10.1016/j.fgb.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 12/26/2022]
|
24
|
Wang X, Wu F, Liu L, Liu X, Che Y, Keller NP, Guo L, Yin WB. The bZIP transcription factor PfZipA regulates secondary metabolism and oxidative stress response in the plant endophytic fungus Pestalotiopsis fici. Fungal Genet Biol 2015; 81:221-8. [DOI: 10.1016/j.fgb.2015.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/29/2015] [Accepted: 03/30/2015] [Indexed: 12/27/2022]
|
25
|
Blockage of the pyrimidine biosynthetic pathway affects riboflavin production in Ashbya gossypii. J Biotechnol 2014; 193:37-40. [PMID: 25444878 DOI: 10.1016/j.jbiotec.2014.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/29/2022]
Abstract
The Ashbya gossypii riboflavin biosynthetic pathway and its connection with the purine pathway have been well studied. However, the outcome of genetic alterations in the pyrimidine pathway on riboflavin production by A. gossypii had not yet been assessed. Here, we report that the blockage of the de novo pyrimidine biosynthetic pathway in the recently generated A. gossypii Agura3 uridine/uracil auxotrophic strain led to improved riboflavin production on standard agar-solidified complex medium. When extra uridine/uracil was supplied, the production of riboflavin by this auxotroph was repressed. High concentrations of uracil hampered this (and the parent) strain growth, whereas excess uridine favored the A. gossypii Agura3 growth. Considering that the riboflavin and the pyrimidine pathways share the same precursors and that riboflavin overproduction may be triggered by nutritional stress, we suggest that overproduction of riboflavin by the A. gossypii Agura3 may occur as an outcome of a nutritional stress response and/or of an increased availability in precursors for riboflavin biosynthesis, due to their reduced consumption by the pyrimidine pathway.
Collapse
|
26
|
Gomes D, Aguiar TQ, Dias O, Ferreira EC, Domingues L, Rocha I. Genome-wide metabolic re-annotation of Ashbya gossypii: new insights into its metabolism through a comparative analysis with Saccharomyces cerevisiae and Kluyveromyces lactis. BMC Genomics 2014; 15:810. [PMID: 25253284 PMCID: PMC4190384 DOI: 10.1186/1471-2164-15-810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ashbya gossypii is an industrially relevant microorganism traditionally used for riboflavin production. Despite the high gene homology and gene order conservation comparatively with Saccharomyces cerevisiae, it presents a lower level of genomic complexity. Its type of growth, placing it among filamentous fungi, questions how close it really is from the budding yeast, namely in terms of metabolism, therefore raising the need for an extensive and thorough study of its entire metabolism. This work reports the first manual enzymatic genome-wide re-annotation of A. gossypii as well as the first annotation of membrane transport proteins. RESULTS After applying a developed enzymatic re-annotation pipeline, 847 genes were assigned with metabolic functions. Comparatively to KEGG's annotation, these data corrected the function for 14% of the common genes and increased the information for 52 genes, either completing existing partial EC numbers or adding new ones. Furthermore, 22 unreported enzymatic functions were found, corresponding to a significant increase in the knowledge of the metabolism of this organism. The information retrieved from the metabolic re-annotation and transport annotation was used for a comprehensive analysis of A. gossypii's metabolism in comparison to the one of S. cerevisiae (post-WGD - whole genome duplication) and Kluyveromyces lactis (pre-WGD), suggesting some relevant differences in several parts of their metabolism, with the majority being found for the metabolism of purines, pyrimidines, nitrogen and lipids. A considerable number of enzymes were found exclusively in A. gossypii comparatively with K. lactis (90) and S. cerevisiae (13). In a similar way, 176 and 123 enzymatic functions were absent on A. gossypii comparatively to K. lactis and S. cerevisiae, respectively, confirming some of the well-known phenotypes of this organism. CONCLUSIONS This high quality metabolic re-annotation, together with the first membrane transporters annotation and the metabolic comparative analysis, represents a new important tool for the study and better understanding of A. gossypii's metabolism.
Collapse
Affiliation(s)
- Daniel Gomes
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eugénio C Ferreira
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Isabel Rocha
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
27
|
Kavitha S, Chandra TS. Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii. Appl Biochem Biotechnol 2014; 174:2307-25. [PMID: 25178419 DOI: 10.1007/s12010-014-1188-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 08/19/2014] [Indexed: 12/25/2022]
Abstract
Ashbya gossypii is a plant pathogen and a natural overproducer of riboflavin and is used for industrial riboflavin production. A few literature reports depict a link between riboflavin overproduction and stress in this fungus. However, the stress protection mechanisms and glutathione metabolism are not much explored in A. gossypii. In the present study, an increase in the activity of catalase and superoxide dismutase was observed in response to hydrogen peroxide and menadione. The lipid peroxide and membrane lipid peroxide levels were increased by H2O2 and menadione, indicating oxidative damage. The glutathione metabolism was altered with a significant increase in oxidized glutathione (GSSG), glutathione peroxidase (GPX), glutathione S transferase (GST), and glutathione reductase (GR) and a decrease in reduced glutathione (GSH) levels in the presence of H2O2 and menadione. Expression of the genes involved in stress mechanism was analyzed in response to the stressors by semiquantitative RT-PCR. The messenger RNA (mRNA) levels of CTT1, SOD1, GSH1, YAP1, and RIB3 were increased by H2O2 and menadione, indicating the effect of stress at the transcriptional level. A preliminary bioinformatics study for the presence of stress response elements (STRE)/Yap response elements (YRE) depicted that the glutathione metabolic genes, stress genes, and the RIB genes hosted either STRE/YRE, which may enable induction of these genes during stress.
Collapse
Affiliation(s)
- S Kavitha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | | |
Collapse
|
28
|
Perez-Nadales E, Nogueira MFA, Baldin C, Castanheira S, El Ghalid M, Grund E, Lengeler K, Marchegiani E, Mehrotra PV, Moretti M, Naik V, Oses-Ruiz M, Oskarsson T, Schäfer K, Wasserstrom L, Brakhage AA, Gow NAR, Kahmann R, Lebrun MH, Perez-Martin J, Di Pietro A, Talbot NJ, Toquin V, Walther A, Wendland J. Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genet Biol 2014; 70:42-67. [PMID: 25011008 PMCID: PMC4161391 DOI: 10.1016/j.fgb.2014.06.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 06/23/2014] [Accepted: 06/25/2014] [Indexed: 12/05/2022]
Abstract
Fungi have the capacity to cause devastating diseases of both plants and animals, causing significant harvest losses that threaten food security and human mycoses with high mortality rates. As a consequence, there is a critical need to promote development of new antifungal drugs, which requires a comprehensive molecular knowledge of fungal pathogenesis. In this review, we critically evaluate current knowledge of seven fungal organisms used as major research models for fungal pathogenesis. These include pathogens of both animals and plants; Ashbya gossypii, Aspergillus fumigatus, Candida albicans, Fusarium oxysporum, Magnaporthe oryzae, Ustilago maydis and Zymoseptoria tritici. We present key insights into the virulence mechanisms deployed by each species and a comparative overview of key insights obtained from genomic analysis. We then consider current trends and future challenges associated with the study of fungal pathogenicity.
Collapse
Affiliation(s)
- Elena Perez-Nadales
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain.
| | | | - Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutembergstr. 11a, 07745 Jena, Germany; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Sónia Castanheira
- Instituto de Biología Funcional y GenómicaCSIC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Mennat El Ghalid
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Elisabeth Grund
- Functional Genomics of Plant Pathogenic Fungi, UMR 5240 CNRS-UCB-INSA-Bayer SAS, Bayer CropScience, 69263 Lyon, France
| | - Klaus Lengeler
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Elisabetta Marchegiani
- Evolution and Genomics of Plant Pathogen Interactions, UR 1290 INRA, BIOGER-CPP, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - Pankaj Vinod Mehrotra
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Marino Moretti
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Vikram Naik
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Miriam Oses-Ruiz
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Therese Oskarsson
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Katja Schäfer
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Lisa Wasserstrom
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Beutembergstr. 11a, 07745 Jena, Germany; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Neil A R Gow
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Regine Kahmann
- Max-Planck-Institute for Terrestrial Microbiology, Department of Organismic Interactions, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany
| | - Marc-Henri Lebrun
- Evolution and Genomics of Plant Pathogen Interactions, UR 1290 INRA, BIOGER-CPP, Campus AgroParisTech, 78850 Thiverval-Grignon, France
| | - José Perez-Martin
- Instituto de Biología Funcional y GenómicaCSIC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Antonio Di Pietro
- Department of Genetics, Edificio Gregor Mendel, Planta 1. Campus de Rabanales, University of Cordoba, 14071 Cordoba, Spain
| | - Nicholas J Talbot
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter EX4 4QD, UK
| | - Valerie Toquin
- Biochemistry Department, Bayer SAS, Bayer CropScience, CRLD, 69263 Lyon, France
| | - Andrea Walther
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| | - Jürgen Wendland
- Carlsberg Laboratory, Department of Yeast Genetics, Gamle Carlsberg Vej 10, DK-1799, Copenhagen V, Denmark
| |
Collapse
|
29
|
Mu D, Li C, Zhang X, Li X, Shi L, Ren A, Zhao M. Functions of the nicotinamide adenine dinucleotide phosphate oxidase family inGanoderma lucidum: an essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance. Environ Microbiol 2013; 16:1709-28. [DOI: 10.1111/1462-2920.12326] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/01/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Dashuai Mu
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Chenyang Li
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Xuchen Zhang
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Xiongbiao Li
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Liang Shi
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Ang Ren
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Mingwen Zhao
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
30
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3449] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
A developmental stage of hyphal cells shows riboflavin overproduction instead of sporulation in Ashbya gossypii. Appl Microbiol Biotechnol 2013; 97:10143-53. [DOI: 10.1007/s00253-013-5266-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 12/11/2022]
|
32
|
Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit Rev Microbiol 2013; 41:295-308. [PMID: 24041414 DOI: 10.3109/1040841x.2013.829416] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To survive sudden and potentially lethal changes in their environment, filamentous fungi must sense and respond to a vast array of stresses, including oxidative stresses. The generation of reactive oxygen species, or ROS, is an inevitable aspect of existence under aerobic conditions. In addition, in the case of fungi with pathogenic lifestyles, ROS are produced by the infected hosts and serve as defense weapons via direct toxicity, as well as effectors in fungal cell death mechanisms. Filamentous fungi have thus developed complex and sophisticated responses to evade oxidative killing. Several steps are determinant in these responses, including the activation of transcriptional regulators involved in the control of the antioxidant machinery. Gathering and integrating the most recent advances in knowledge of oxidative stress responses in fungi are the main objectives of this review. Most of the knowledge coming from two models, the yeast Saccharomyces cerevisiae and fungi of the genus Aspergillus, is summarized. Nonetheless, recent information on various other fungi is delivered when available. Finally, special attention is given on the potential link between the functional interaction between oxidative stress and secondary metabolism that has been suggested in recent reports, including the production of mycotoxins.
Collapse
|
33
|
Analysis of the cell wall integrity pathway of Ashbya gossypii. Microbiol Res 2013; 168:607-14. [PMID: 23850207 DOI: 10.1016/j.micres.2013.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 12/24/2022]
Abstract
Fungal cells are exposed to rapidly changing environmental conditions, in particular with regard to the osmotic potential. This requires constant remodeling of the cell wall and, therefore, the cell wall integrity (CWI) MAP-kinase pathway plays a major role in shaping the fungal cell wall to protect from adverse external stresses. To provide a comprehensive functional analysis of the Ashbya gossypii CWI pathway we generated a set of ten deletion mutants in conserved components including the cell surface sensors AgWSC1 and AgMID2, a putative Rho1-guanine nucleotide exchange factor, AgTUS1, the protein kinase C, AgPKC1, the MAP-kinases AgBCK1, AgMKK1 and AgMPK1, and transcription factors known to be involved in CWI signaling AgRLM1, AgSWI4 and AgSWI6. Deletion of AgPKC1 shows a severe growth defect with frequent tip cell lysis. Deletion of components of the MAP-kinase module generates a pronounced colony lysis phenotype in older regions of the mycelium. Cytoplasmic leakage was assayed using alkaline phosphatase and β-galactosidase release assays. This indicated that the lysis phenotypes of CWI pathway mutants may be useful to facilitate the isolation of riboflavin from A. gossypii. Remarkably, the Agwsc1 mutant showed a strong (up to 8-fold) increase of riboflavin in the growth medium compared to the parental strain.
Collapse
|