1
|
Lai Y, Wang L, Zheng W, Wang S. Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens. J Fungi (Basel) 2022; 8:565. [PMID: 35736048 PMCID: PMC9224773 DOI: 10.3390/jof8060565] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation of fungal gene expression programs in response to the changing host environment and defenses. Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic regulation, has been shown to play an important role in the regulation of gene expressions, and is involved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses, biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and insights into regulatory mechanisms of histone methylation and acetylation in fungal development and pathogenicity, as well as their roles in modulating pathogenic fungi-host interactions.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Zheng
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
3
|
Souibgui E, Bruel C, Choquer M, de Vallée A, Dieryckx C, Dupuy JW, Latorse MP, Rascle C, Poussereau N. Clathrin Is Important for Virulence Factors Delivery in the Necrotrophic Fungus Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2021; 12:668937. [PMID: 34220891 PMCID: PMC8244658 DOI: 10.3389/fpls.2021.668937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Fungi are the most prevalent plant pathogens, causing annually important damages. To infect and colonize their hosts, they secrete effectors including hydrolytic enzymes able to kill and macerate plant tissues. These secreted proteins are transported from the Endoplasmic Reticulum and the Golgi apparatus to the extracellular space through intracellular vesicles. In pathogenic fungi, intracellular vesicles were described but their biogenesis and their role in virulence remain unclear. In this study, we report the essential role of clathrin heavy chain (CHC) in the pathogenicity of Botrytis cinerea, the agent of gray mold disease. To investigate the importance of this protein involved in coat vesicles formation in eukaryotic cells, a T-DNA insertional mutant reduced in the expression of the CHC-encoding gene, and a mutant expressing a dominant-negative form of CHC were studied. Both mutants were strongly affected in pathogenicity. Characterization of the mutants revealed altered infection cushions and an important defect in protein secretion. This study demonstrates the essential role of clathrin in the infectious process of a plant pathogenic fungus and more particularly its role in virulence factors delivery.
Collapse
Affiliation(s)
- Eytham Souibgui
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Christophe Bruel
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Mathias Choquer
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Amélie de Vallée
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Cindy Dieryckx
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Jean William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, Bordeaux, France
| | | | - Christine Rascle
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| | - Nathalie Poussereau
- UMR 5240, CNRS MAP, INSA Lyon, Bayer SAS, UCBL, University Lyon, Lyon, France
| |
Collapse
|
4
|
The Destructive Fungal Pathogen Botrytis cinerea-Insights from Genes Studied with Mutant Analysis. Pathogens 2020; 9:pathogens9110923. [PMID: 33171745 PMCID: PMC7695001 DOI: 10.3390/pathogens9110923] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/03/2022] Open
Abstract
Botrytis cinerea is one of the most destructive fungal pathogens affecting numerous plant hosts, including many important crop species. As a molecularly under-studied organism, its genome was only sequenced at the beginning of this century and it was recently updated with improved gene annotation and completeness. In this review, we summarize key molecular studies on B. cinerea developmental and pathogenesis processes, specifically on genes studied comprehensively with mutant analysis. Analyses of these studies have unveiled key genes in the biological processes of this pathogen, including hyphal growth, sclerotial formation, conidiation, pathogenicity and melanization. In addition, our synthesis has uncovered gaps in the present knowledge regarding development and virulence mechanisms. We hope this review will serve to enhance the knowledge of the biological mechanisms behind this notorious fungal pathogen.
Collapse
|
5
|
Schumacher J, Gorbushina AA. Light sensing in plant- and rock-associated black fungi. Fungal Biol 2020; 124:407-417. [DOI: 10.1016/j.funbio.2020.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/09/2020] [Accepted: 01/17/2020] [Indexed: 01/24/2023]
|
6
|
Hou J, Feng HQ, Chang HW, Liu Y, Li GH, Yang S, Sun CH, Zhang MZ, Yuan Y, Sun J, Zhu-Salzman K, Zhang H, Qin QM. The H3K4 demethylase Jar1 orchestrates ROS production and expression of pathogenesis-related genes to facilitate Botrytis cinerea virulence. THE NEW PHYTOLOGIST 2020; 225:930-947. [PMID: 31529514 DOI: 10.1111/nph.16200] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Histone 3 Lysine 4 (H3K4) demethylation is ubiquitous in organisms, however the roles of H3K4 demethylase JARID1(Jar1)/KDM5 in fungal development and pathogenesis remain largely unexplored. Here, we demonstrate that Jar1/KDM5 in Botrytis cinerea, the grey mould fungus, plays a crucial role in these processes. The BcJAR1 gene was deleted and its roles in fungal development and pathogenesis were investigated using approaches including genetics, molecular/cell biology, pathogenicity and transcriptomic profiling. BcJar1 regulates H3K4me3 and both H3K4me2 and H3K4me3 methylation levels during vegetative and pathogenic development, respectively. Loss of BcJAR1 impairs conidiation, appressorium formation and stress adaptation; abolishes infection cushion (IC) formation and virulence, but promotes sclerotium production in the ΔBcjar1 mutants. BcJar1 controls reactive oxygen species (ROS) production and proper assembly of Sep4, a core septin protein and virulence determinant, to initiate infection structure (IFS) formation and host penetration. Exogenous cAMP partially restored the mutant appressorium, but not IC, formation. BcJar1 orchestrates global expression of genes for ROS production, stress response, carbohydrate transmembrane transport, secondary metabolites, etc., which may be required for conidiation, IFS formation, host penetration and virulence of the pathogen. Our work systematically elucidates BcJar1 functions and provides novel insights into Jar1/KDM5-mediated H3K4 demethylation in regulating fungal development and pathogenesis.
Collapse
Affiliation(s)
- Jie Hou
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
- College of Forestry, BeiHua University, Jilin, 132013, China
| | - Hui-Qiang Feng
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Hao-Wu Chang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yue Liu
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Gui-Hua Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Song Yang
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Chen-Hao Sun
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ming-Zhe Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ye Yuan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jiao Sun
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Hao Zhang
- Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Qing-Ming Qin
- College of Plant Sciences, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
7
|
de Vallée A, Bally P, Bruel C, Chandat L, Choquer M, Dieryckx C, Dupuy JW, Kaiser S, Latorse MP, Loisel E, Mey G, Morgant G, Rascle C, Schumacher J, Simon A, Souibgui E, Viaud M, Villalba F, Poussereau N. A Similar Secretome Disturbance as a Hallmark of Non-pathogenic Botrytis cinerea ATMT-Mutants? Front Microbiol 2019; 10:2829. [PMID: 31866989 PMCID: PMC6908482 DOI: 10.3389/fmicb.2019.02829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/21/2019] [Indexed: 12/31/2022] Open
Abstract
The gray mold fungus Botrytis cinerea is a necrotrophic pathogen able to infect hundreds of host plants, including high-value crops such as grapevine, strawberry and tomato. In order to decipher its infectious strategy, a library of 2,144 mutants was generated by random insertional mutagenesis using Agrobacterium tumefaciens-mediated transformation (ATMT). Twelve mutants exhibiting total loss of virulence toward different host plants were chosen for detailed analyses. Their molecular characterization revealed a single T-DNA insertion in different loci. Using a proteomics approach, the secretome of four of these strains was compared to that of the parental strain and a common profile of reduced lytic enzymes was recorded. Significant variations in this profile, notably deficiencies in the secretion of proteases and hemicellulases, were observed and validated by biochemical tests. They were also a hallmark of the remaining eight non-pathogenic strains, suggesting the importance of these secreted proteins in the infection process. In the twelve non-pathogenic mutants, the differentiation of infection cushions was also impaired, suggesting a link between the penetration structures and the secretion of proteins involved in the virulence of the pathogen.
Collapse
Affiliation(s)
- Amélie de Vallée
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Pascal Bally
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christophe Bruel
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Lucie Chandat
- Centre de Recherche La Dargoire, Bayer SAS, Lyon, France
| | - Mathias Choquer
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Cindy Dieryckx
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Jean William Dupuy
- Plateforme Protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, Bordeaux, France
| | - Sophie Kaiser
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | | | - Elise Loisel
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Géraldine Mey
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Guillaume Morgant
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Christine Rascle
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Julia Schumacher
- Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Adeline Simon
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Eytham Souibgui
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| | - Muriel Viaud
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | | | - Nathalie Poussereau
- Microbiologie, Adaptation et Pathogénie, UMR 5240, Univ Lyon, Université Lyon 1, Bayer SAS, Lyon, France
| |
Collapse
|
8
|
Bachleitner S, Sørensen JL, Gacek-Matthews A, Sulyok M, Studt L, Strauss J. Evidence of a Demethylase-Independent Role for the H3K4-Specific Histone Demethylases in Aspergillus nidulans and Fusarium graminearum Secondary Metabolism. Front Microbiol 2019; 10:1759. [PMID: 31456754 PMCID: PMC6700381 DOI: 10.3389/fmicb.2019.01759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Fungi produce a plethora of secondary metabolites (SMs) involved in cellular protection, defense, and signaling. Like other metabolic processes, transcription of SM biosynthesis genes is tightly regulated to prevent an unnecessary use of resources. Genes involved in SM biosynthesis are usually physically linked, arranged in secondary metabolite gene clusters (SMGCs). Research over the last decades has shown that chromatin structure and posttranslational modifications (PTMs) of histones represent important layers of SMGC regulation. For instance, trimethylation of histone H3 lysine 4 (H3K4me3) is a PTM typically associated with promoter regions of actively transcribed genes. Previously, we have shown that the H3K4me3-specific, JmjC domain-containing histone demethylase KdmB functions not only in repression but also in activation of secondary metabolism in Aspergillus nidulans, suggesting that KdmB has additional functions apart from histone demethylation. In this study, we identified demethylase-independent functions of KdmB in transcriptional regulation of SM gene clusters. Furthermore, we show that this activating and demethylase-independent role of the H3K4 demethylase is also conserved in the phytopathogenic fungus Fusarium graminearum. Lack of FgKdm5 resulted in significant downregulation of five of seven analyzed SMs, whereby only one SMGC depends on a functional JmjC-domain. In A. nidulans strains deficient in H3K4 methylation, i.e., cclA∆, largely phenocopied kdmB∆, while this is not the case for most of the SMs analyzed in Fusarium spp. Notably, KdmB could not rescue the demethylase function in ∆fgkdm5 but restored all demethylase-independent phenotypes.
Collapse
Affiliation(s)
- Simone Bachleitner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Jens Laurids Sørensen
- Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Agnieszka Gacek-Matthews
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|
9
|
Liu Y, Liu J, Li G, Zhang M, Zhang Y, Wang Y, Hou J, Yang S, Sun J, Qin Q. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. MOLECULAR PLANT PATHOLOGY 2019; 20:731-747. [PMID: 31008573 PMCID: PMC6637910 DOI: 10.1111/mpp.12788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Botrytis cinerea is the causative agent of grey mould on over 1000 plant species and annually causes enormous economic losses worldwide. However, the fungal factors that mediate pathogenesis of the pathogen remain largely unknown. Here, we demonstrate that a novel B. cinerea-specific pathogenicity-associated factor BcHBF1 (hyphal branching-related factor 1), identified from virulence-attenuated mutant M8008 from a B. cinerea T-DNA insertion mutant library, plays an important role in hyphal branching, infection structure formation, sclerotial formation and full virulence of the pathogen. Deletion of BcHBF1 in B. cinerea did not impair radial growth of mycelia, conidiation, conidial germination, osmotic- and oxidative-stress adaptation, as well as cell wall integrity of the ∆Bchbf1 mutant strains. However, loss of BcHBF1 impaired the capability of hyphal branching, appressorium and infection cushion formation, appressorium host penetration and virulence of the pathogen. Moreover, disruption of BcHBF1 altered conidial morphology and dramatically impaired sclerotial formation of the mutant strains. Complementation of BcHBF1 completely rescued all the phenotypic defects of the ∆Bchbf1 mutants. During young hyphal branching, host penetration and early invasive growth of the pathogen, BcHBF1 expression was up-regulated, suggesting that BcHBF1 is required for these processes. Our findings provide novel insights into the fungal factor mediating pathogenesis of the grey mould fungus via regulation of its infection structure formation, host penetration and invasive hyphal branching and growth.
Collapse
Affiliation(s)
- Yue Liu
- College of Plant SciencesKey Laboratory of Zoonosis Research, Ministry of Education, Jilin UniversityChangchun130062China
| | - Jiane‐Kang Liu
- College of Plant SciencesKey Laboratory of Zoonosis Research, Ministry of Education, Jilin UniversityChangchun130062China
- Present address:
College of Life SciencesTsinghua UniversityBeijing100084China
| | - Gui‐Hua Li
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Ming‐Zhe Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Ying‐Ying Zhang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Yuan‐Yuan Wang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Jie Hou
- College of Plant SciencesJilin UniversityChangchun130062China
- Department of ForestForest College of Beihua UniversityJilin132013China
| | - Song Yang
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Jiao Sun
- College of Plant SciencesJilin UniversityChangchun130062China
| | - Qing‐Ming Qin
- College of Plant SciencesKey Laboratory of Zoonosis Research, Ministry of Education, Jilin UniversityChangchun130062China
| |
Collapse
|