1
|
Ku YS, Cheng SS, Luk CY, Leung HS, Chan TY, Lam HM. Deciphering metabolite signalling between plant roots and soil pathogens to design resistance. BMC PLANT BIOLOGY 2025; 25:308. [PMID: 40069627 PMCID: PMC11895165 DOI: 10.1186/s12870-025-06321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Metabolites are important signaling molecules mediating plant-microbe interaction in soil. Plant root exudates are composed of primary metabolites, secondary metabolites, and macro-molecules such as organic acids. Certain organic acids in root exudates can attract pathogenic microbes in soil and promote infection. Meanwhile, secretions from soil microbes can also alter the compositions of root exudates and enhance the pathogenicity towards the target host plant. Examples of toxins in microbial secretions include polyketides and thaxtomins. The pathogenicity of plant microbes is mediated by the dynamic exchange of metabolites between the pathogen and the host plant. By deciphering this metabolite-mediated infection process, targeted strategies can be developed to promote plant resistance to soil pathogens. Examples of the strategies include the manipulation of root exudate composition and the blocking of metabolite signals that promote microbial infection. Other possibilities include minimizing the harmfulness of pathogenic microbial secretions to plants by habituating the plants to the toxin, genetically engineering plants to enhance their pathogen resistance, and treating plants with beneficial hormones and microbes. In this review, we summarized the current understanding of root exudates and soil microbe secretions that promote infection. We also discussed the strategies for promoting pathogen resistance in plants by focusing on the metabolite signaling between plants and pathogenic soil microbes.
Collapse
Affiliation(s)
- Yee-Shan Ku
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China.
| | - Sau-Shan Cheng
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ching-Yee Luk
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi-Sze Leung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tsz-Yan Chan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, China.
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Witte TE, Hermans A, Sproule A, Hicks C, Talhouni T, Schneiderman D, Harris LJ, Eranthodi A, Foroud NA, Chatterton S, Overy DP. Identification and Confirmation of Virulence Factor Production from Fusarium avenaceum, a Causal Agent of Root Rot in Pulses. J Fungi (Basel) 2024; 10:821. [PMID: 39728317 DOI: 10.3390/jof10120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Fusarium avenaceum is an aggressive pathogen of pulse crops and a causal agent in root rot disease that negatively impacts Canadian agriculture. This study reports the results of a targeted metabolomics-based profiling of secondary metabolism in an 18-strain panel of Fusarium avenaceum cultured axenically in multiple media conditions, in addition to an in planta infection assay involving four strains inoculated on two pea cultivars. Multiple secondary metabolites with known roles as virulence factors were detected which have not been previously associated with F. avenaceum, including fungal decalin-containing diterpenoid pyrones (FDDPs), fusaoctaxins, sambutoxin and fusahexin, in addition to confirmation of previously reported secondary metabolites including enniatins, fusarins, chlamydosporols, JM-47 and others. Targeted genomic analysis of secondary metabolite biosynthetic gene clusters was used to confirm the presence/absence of the profiled secondary metabolites. The detection of secondary metabolites with diverse bioactivities is discussed in the context of virulence factor networks potentially coordinating the disruption of plant defenses during disease onset by this generalist plant pathogen.
Collapse
Affiliation(s)
- Thomas E Witte
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Anne Hermans
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Amanda Sproule
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Carmen Hicks
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Tala Talhouni
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Danielle Schneiderman
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Linda J Harris
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Anas Eranthodi
- Lethbridge Research & Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Nora A Foroud
- Lethbridge Research & Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Syama Chatterton
- Lethbridge Research & Development Centre, Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - David P Overy
- Ottawa Research & Development Centre, Agriculture & Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
3
|
Susca A, Villani A, Haidukowski M, Epifani F, Logrieco AF, Moretti A. Molecular Biodiversity in Fusarium subglutinans and F. temperatum: A Valuable Tool to Distinguish the Two Sister Species and Determine the Beauvericin Chemotype. J Fungi (Basel) 2024; 10:785. [PMID: 39590704 PMCID: PMC11595812 DOI: 10.3390/jof10110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Fusarium subglutinans and F. temperatum are widely distributed maize pathogens recognized as distinct species with a species-specific chemotype based on patterns of mycotoxins. Recent comparative genomic analysis revealed that genomes of both species carry a complete beauvericin (Bea) biosynthetic genes cluster, but the key gene Bea1 in F. subglutinans is not functional likely due to a large insertion (NRPS22ins) and multiple mutations (SNP298 and SNP528). We used the recently published genome sequences for these species to develop PCR markers for investigating the distribution of three main mutations in the Bea1 gene in a large collection of strains of both species from around the world. We also designed a PCR assay for a rapid and reliable discrimination of both species in the evaluation of crop exposure to mycotoxins. Overall, our results showed that SNP528 was the most common mutation, followed by NRPS22ins and SNP298. Moreover, phylogenetic analyses suggest that non-synonymous SNPs have occurred first, and that the resulting inactivation of BEA production has caused the accumulation of other polymorphisms, including the NRPS22ins, in the entire gene-coding region. The screening for genetic differences between these species could guide future crop management strategies.
Collapse
Affiliation(s)
- Antonia Susca
- Institute of Sciences of Food Production, National Council of Research (ISPA-CNR), 70126 Bari, Italy; (M.H.); (F.E.); (A.F.L.); (A.M.)
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Council of Research (ISPA-CNR), 70126 Bari, Italy; (M.H.); (F.E.); (A.F.L.); (A.M.)
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Council of Research (ISPA-CNR), 70126 Bari, Italy; (M.H.); (F.E.); (A.F.L.); (A.M.)
| | - Filomena Epifani
- Institute of Sciences of Food Production, National Council of Research (ISPA-CNR), 70126 Bari, Italy; (M.H.); (F.E.); (A.F.L.); (A.M.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Council of Research (ISPA-CNR), 70126 Bari, Italy; (M.H.); (F.E.); (A.F.L.); (A.M.)
- Institute of Biomanufactoring, Xianghu Laboratory, Hangzhou 310025, China
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Council of Research (ISPA-CNR), 70126 Bari, Italy; (M.H.); (F.E.); (A.F.L.); (A.M.)
| |
Collapse
|
4
|
Brown DW, Kim HS, Proctor RH, Wicklow DT. Low molecular weight acids differentially impact Fusarium verticillioides transcription. Fungal Biol 2024; 128:2094-2101. [PMID: 39384279 DOI: 10.1016/j.funbio.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 10/11/2024]
Abstract
Fusarium verticillioides is both an endophyte and pathogen of maize. During growth on maize, the fungus often synthesizes the mycotoxins fumonisins, which have been linked to a variety of diseases, including cancer in some animals. How F. verticillioides responds to other fungi, such as Fusarium proliferatum, Aspergillus flavus, Aspergillus niger, and Penicillium oxalicum, that coinfect maize, has potential to impact mycotoxin synthesis and disease. We hypothesize that low molecular weight acids produced by these fungi play a role in communication between the fungi in planta/nature. To address this hypothesis, we exposed 48-h maize kernel cultures of F. verticillioides to oxalic acid, citric acid, fusaric acid, or kojic acid and then compared transcriptomes after 30 min and 6 h. Transcription of some genes were affected by multiple chemicals and others were affected by only one chemical. The most significant positive response was observed after exposure to fusaric acid which resulted in >2-fold upregulation of 225 genes, including genes involved in fusaric acid synthesis. Exposure of cultures to the other three chemicals increased expression of only 3-15 genes. The predicted function and frequent co-localization of three sets of genes support a role in protecting the fungus from the chemical or a role in catabolism. These unique transcriptional responses support our hypothesis that these chemicals can act as signaling molecules. Studies with gene deletion mutants will further indicate if the initial transcriptional response to the chemicals benefit F. verticillioides.
Collapse
Affiliation(s)
- Daren W Brown
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL, 61604, USA.
| | - Hye-Seon Kim
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL, 61604, USA
| | - Robert H Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL, 61604, USA
| | - Donald T Wicklow
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Unit, 1815 N. University St., Peoria, IL, 61604, USA
| |
Collapse
|
5
|
Nielsen MR, Sørensen T, Pedersen TB, Westphal KR, Díaz Fernández De Quincoces L, Sondergaard TE, Wimmer R, Brown DW, Sørensen JL. Final piece to the Fusarium pigmentation puzzle - Unraveling of the phenalenone biosynthetic pathway responsible for perithecial pigmentation in the Fusarium solani species complex. Fungal Genet Biol 2024; 174:103912. [PMID: 39004163 DOI: 10.1016/j.fgb.2024.103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The Fusarium solani species complex (FSSC) is comprised of important pathogens of plants and humans. A distinctive feature of FSSC species is perithecial pigmentation. While the dark perithecial pigments of other Fusarium species are derived from fusarubins synthesized by polyketide synthase 3 (PKS3), the perithecial pigments of FSSC are derived from an unknown metabolite synthesized by PKS35. Here, we confirm in FSSC species Fusarium vanettenii that PKS35 (fsnI) is required for perithecial pigment synthesis by deletion analysis and that fsnI is closely related to phnA from Penicillium herquei, as well as duxI from Talaromyces stipentatus, which produce prephenalenone as an early intermediate in herqueinone and duclauxin synthesis respectively. The production of prephenalenone by expression of fsnI in Saccharomyces cerevisiae indicates that it is also an early intermediate in perithecial pigment synthesis. We next identified a conserved cluster of 10 genes flanking fsnI in F. vanettenii that when expressed in F. graminearum led to the production of a novel corymbiferan lactone F as a likely end product of the phenalenone biosynthetic pathway in FSSC.
Collapse
Affiliation(s)
- Mikkel Rank Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Tobias Bruun Pedersen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark
| | - Klaus Ringsborg Westphal
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | | | - Teis Esben Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Daren W Brown
- National Center for Agricultural Utilization Research, U.S. Department of Agriculture, 1815 N University St. Peoria IL 61604, United States of America
| | - Jens Laurids Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Niels Bohrs Vej 8A, 6700 Esbjerg, Denmark.
| |
Collapse
|
6
|
Severinsen MM, Westphal KR, Terp M, Sørensen T, Olsen A, Bachleitner S, Studt-Reinhold L, Wimmer R, Sondergaard TE, Sørensen JL. Filling out the gaps - identification of fugralins as products of the PKS2 cluster in Fusarium graminearum. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1264366. [PMID: 38025899 PMCID: PMC10667903 DOI: 10.3389/ffunb.2023.1264366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
As one of the grain crop pathogenic fungi with the greatest impacts on agricultural economical as well as human health, an elaborate understanding of the life cycle and subsequent metabolome of Fusarium graminearum is of great interest. Throughout the lifetime of the fungus, it is known to produce a wide array of secondary metabolites, including polyketides. One of the F. graminearum polyketides which has remained a mystery until now has been elucidated in this work. Previously, it was suggested that the biosynthetic product of the PKS2 gene cluster was involved in active mycelial growth, the exact mechanism, however, remained unclear. In our work, disruption and overexpression of the PKS2 gene in F. graminearum enabled structural elucidation of a linear and a cyclic tetraketide with a double methyl group, named fugralin A and B, respectively. Further functional characterization showed that the compounds are not produced during infection, and that deletion and overexpression did not affect pathogenicity or visual growth. The compounds were shown to be volatile, which could point to possible functions that can be investigated further in future studies.
Collapse
Affiliation(s)
- Manja Mølgaard Severinsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Mikael Terp
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Trine Sørensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anders Olsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Simone Bachleitner
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lena Studt-Reinhold
- Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
7
|
Pokhrel A, Coleman JJ. Inventory of the Secondary Metabolite Biosynthetic Potential of Members within the Terminal Clade of the Fusarium solani Species Complex. J Fungi (Basel) 2023; 9:799. [PMID: 37623570 PMCID: PMC10455376 DOI: 10.3390/jof9080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
The Fusarium solani species complex (FSSC) constitutes at least 77 phylogenetically distinct species including several agriculturally important and clinically relevant opportunistic pathogens. As with other Fusaria, they have been well documented to produce many secondary metabolites-compounds that are not required for the fungus to grow or develop but may be beneficial to the organism. An analysis of ten genomes from fungi within the terminal clade (clade 3) of the FSSC revealed each genome encoded 35 (F. cucurbitcola) to 48 (F. tenucristatum) secondary metabolite biosynthetic gene clusters (BGCs). A total of seventy-four different BGCs were identified from the ten FSSC genomes including seven polyketide synthases (PKS), thirteen nonribosomal peptide synthetases (NRPS), two terpene synthase BGCs, and a single dimethylallytryptophan synthase (DMATS) BGC conserved in all the genomes. Some of the clusters that were shared included those responsible for producing naphthoquinones such as fusarubins, a red pigmented compound, squalestatin, and the siderophores malonichrome, ferricrocin, and triacetylfusarinine. Eight novel NRPS and five novel PKS BGCs were identified, while BGCs predicted to produce radicicol, gibberellin, and fusaoctaxin were identified, which have not previously described in members of the FSSC. The diversity of the secondary metabolite repertoire of the FSSC may contribute to the expansive host range of these fungi and their ability to colonize broad habitats.
Collapse
Affiliation(s)
- Ambika Pokhrel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Jeffrey J. Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
8
|
Cardoza RE, McCormick SP, Izquierdo-Bueno I, Martínez-Reyes N, Lindo L, Brown DW, Collado IG, Proctor RH, Gutiérrez S. Identification of polyketide synthase genes required for aspinolide biosynthesis in Trichoderma arundinaceum. Appl Microbiol Biotechnol 2022; 106:7153-7171. [PMID: 36166052 PMCID: PMC9592644 DOI: 10.1007/s00253-022-12182-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
The fungus Trichoderma arundinaceum exhibits biological control activity against crop diseases caused by other fungi. Two mechanisms that likely contribute to this activity are upregulation of plant defenses and production of two types of antifungal secondary metabolites: the sesquiterpenoid harzianum A (HA) and the polyketide-derived aspinolides. The goal of the current study was to identify aspinolide biosynthetic genes as part of an effort to understand how these metabolites contribute to the biological control activity of T. arundinaceum. Comparative genomics identified two polyketide synthase genes (asp1 and asp2) that occur in T. arundinaceum and Aspergillus ochraceus, which also produces aspinolides. Gene deletion and biochemical analyses in T. arundinaceum indicated that both genes are required for aspinolide production: asp2 for formation of a 10-member lactone ring and asp1 for formation of a butenoyl subsituent at position 8 of the lactone ring. Gene expression and comparative genomics analyses indicated that asp1 and asp2 are located within a gene cluster that occurs in both T. arundinaceum and A. ochraceus. A survey of genome sequences representing 35 phylogenetically diverse Trichoderma species revealed that intact homologs of the cluster occurred in only two other species, which also produced aspinolides. An asp2 mutant inhibited fungal growth more than the wild type, but an asp1 mutant did not, and the greater inhibition by the asp2 mutant coincided with increased HA production. These findings indicate that asp1 and asp2 are aspinolide biosynthetic genes and that loss of either aspinolide or HA production in T. arundinaceum can be accompanied by increased production of the other metabolite(s). KEY POINTS: • Two polyketide synthase genes are required for aspinolide biosynthesis. • Blocking aspinolide production increases production of the terpenoid harzianum A. • Aspinolides and harzianum A act redundantly in antibiosis of T. arundinaceum.
Collapse
Affiliation(s)
- Rosa E Cardoza
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, 24400, Ponferrada, Spain
| | - Susan P McCormick
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St., Peoria, IL, 61604, USA
| | - Inmaculada Izquierdo-Bueno
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, Torre Sur, 4ª planta, 11510, Puerto Real, Cádiz, Spain
| | - Natalia Martínez-Reyes
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, 24400, Ponferrada, Spain
| | - Laura Lindo
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, 24400, Ponferrada, Spain
| | - Daren W Brown
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St., Peoria, IL, 61604, USA
| | - Isidro G Collado
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Universitario Río San Pedro s/n, Torre Sur, 4ª planta, 11510, Puerto Real, Cádiz, Spain
| | - Robert H Proctor
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N University St., Peoria, IL, 61604, USA.
| | - Santiago Gutiérrez
- University Group for Research in Engineering and Sustainable Agriculture (GUIIAS), Area of Microbiology, University of León, 24400, Ponferrada, Spain.
| |
Collapse
|