1
|
Khadem S, Marles RJ. Biological activities of selected 1-Oxo-tetrahydroisoquinolinone alkaloids. Nat Prod Res 2025; 39:1658-1671. [PMID: 39028881 DOI: 10.1080/14786419.2024.2380008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Natural products continue to represent a compelling resource for uncovering chemical scaffolds characterised by significant structural variability and diverse biological activities. These compounds possess the potential to be directly utilised or to serve as initial templates for further refinement, ultimately leading to the development of innovative pharmaceutical agents. Among natural products, isoquinoline alkaloids stand out as one of the most extensively researched groups. 1-Oxo-tetrahydroisoquinolinones (1 O-THIQ), isolated from a variety of natural sources, exhibit valuable biological properties. This review investigates the bioactivities of specific 1 O-THIQ alkaloids, which have not been reviewed to the same depth in previous studies.
Collapse
Affiliation(s)
- Shahriar Khadem
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Ottawa, Health Canada, Canada
| | - Robin J Marles
- Retired Senior Scientific Advisor, Health Canada, Ottawa, Canada
| |
Collapse
|
2
|
Moussa AY, Siddiqui SA, Elhawary EA, Guo K, Anwar S, Xu B. Phytochemical constituents, bioactivities, and applications of custard apple (Annona squamosa L.): A narrative review. Food Chem 2024; 459:140363. [PMID: 39089196 DOI: 10.1016/j.foodchem.2024.140363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 08/03/2024]
Abstract
Annona squamosa L. (Annonaceae) is a versatile tree with an edible fruit showing abundant medicinal and industrial applications. The nutritional values of this plant are due to carbohydrates, proteins, amino acids, and vitamins. Ethnopharmacological uses referred to treatment of dysentery, headlice, cancer sores, purgative, and tonic effects. The main reported biological activities for A. squamosa L. were cytotoxic, antidiabetic, antimicrobial, antiparasitic, antioxidant, antimalarial, molluscidal, anthelmintic and insecticidal activities, and its chemical classes encompassed alkaloids, diterpenes, acetogenins, and cyclopeptides. The nutritional content of A. squamosa L. and their main chemical components, biological effects, and the different applications were discussed in this review. This comprehensive review strived to compile all the relevant data in the period between 1990 and 2023 covering databases PubMed, ScienceDirect, Web of Science, Googlescholar and Reaxys concerning A. squamosa L. different parts with their reported phytochemical constituents and biological activities to integrate a better understanding of the medicinal values.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | | | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
| | - Kai Guo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China
| | - Sidra Anwar
- Swinburne University of Technology, Melbourne, Australia
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, Guangdong, China.
| |
Collapse
|
3
|
Zhou Q, Zhang Q, Liao L, Li Q, Qu H, Wang X, Zhou Y, Zhang G, Sun M, Zhang K, Zhang B. Isocorydine Exerts Anticancer Activity by Disrupting the Energy Metabolism and Filamentous Actin Structures of Oral Squamous Carcinoma Cells. Curr Issues Mol Biol 2024; 46:650-662. [PMID: 38248344 PMCID: PMC10814041 DOI: 10.3390/cimb46010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Isocorydine (ICD) exhibits strong antitumor effects on numerous human cell lines. However, the anticancer activity of ICD against oral squamous cell carcinoma (OSCC) has not been reported. The anticancer activity, migration and invasion ability, and changes in the cytoskeleton morphology and mechanical properties of ICD in OSCC were determined. Changes in the contents of reactive oxygen species (ROS), the mitochondrial membrane potential (MMP), ATP, and mitochondrial respiratory chain complex enzymes Ⅰ-Ⅳ in cancer cells were studied. ICD significantly inhibited the proliferation of oral tongue squamous cells (Cal-27), with an IC50 of 0.61 mM after 24 h of treatment. The invasion, migration, and adhesion of cancer cells were decreased, and cytoskeletal actin was deformed and depolymerized. In comparison to an untreated group, the activities of mitochondrial respiratory chain complex enzymes I-IV were significantly decreased by 50.72%, 27.39%, 77.27%, and 73.89%, respectively. The ROS production increased, the MMP decreased by 43.65%, and the ATP content decreased to 17.1 ± 0.001 (mmol/mL); ultimately, the apoptosis rate of cancer cells increased up to 10.57% after 24 h of action. These findings suggest that ICD exerted an obvious anticancer activity against OSCC and may inhibit Cal-27 proliferation and growth by causing mitochondrial dysfunction and interrupting cellular energy.
Collapse
Affiliation(s)
- Qiaozhen Zhou
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Qianqian Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Lingzi Liao
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Qian Li
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Huidan Qu
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Xinyu Wang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Ying Zhou
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Guangzeng Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Mingliang Sun
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
| | - Kailiang Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
| | - Baoping Zhang
- Department (Hospital) of Stomatology, Lanzhou University, Lanzhou 730000, China; (Q.Z.); (Q.Z.); (L.L.); (Q.L.); (H.Q.); (X.W.); (Y.Z.); (G.Z.); (M.S.)
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Abstract
This study involves aporphine alkaloids identified through 13C Nuclear Magnetic Resonance (NMR) spectroscopic data. For the present publication, articles were selected from several databases on aporphine alkaloids from 1994 to 2021. In this class, more than 700 compounds have been registered, with 221 were included in this section, among which 122 were characterized for the first time in the investigated period. The study also addresses their biosynthetic pathways, classifying substances according to their structural characteristics based on established literature. Furthermore, pharmacological activities related to the aporphine alkaloids highlighted in this section are also presented, giving an overview of the various applications of these compounds.
Collapse
|
5
|
Wang D, Li M, Li J, Fang Y, Zhang Z. Synthesis of 3,4-dihydroisoquinolin-1(2 H)-one derivatives and their antioomycete activity against the phytopathogen Pythium recalcitrans†. RSC Adv 2023; 13:10523-10541. [PMID: 37021099 PMCID: PMC10068754 DOI: 10.1039/d3ra00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
In an effort to exploit the bioactive natural scaffold 3,4-dihydroisoquinolin-1(2H)-one for plant disease management, 59 derivatives of this scaffold were synthesized using the Castagnoli–Cushman reaction. The results of bioassay indicated that their antioomycete activity against Pythium recalcitrans was superior to the antifungal activity against the other 6 phytopathogens. Compound I23 showed the highest in vitro potency against P. recalcitrans with an EC50 value of 14 μM, which was higher than that of the commercial hymexazol (37.7 μM). Moreover, I23 exhibited in vivo preventive efficacy of 75.4% at the dose of 2.0 mg/pot, which did not show significant differences compared with those of hymexazol treatments (63.9%). When the dose was 5.0 mg per pot, I23 achieved a preventive efficacy of 96.5%. The results of the physiological and biochemical analysis, the ultrastructural observation and lipidomics analysis suggested that the mode of action of I23 might be the disruption of the biological membrane systems of P. recalcitrans. In addition, the established CoMFA and CoMSIA models with reasonable statistics in the three-dimensional quantitative structure–activity relationship (3D-QSAR) study revealed the necessity of the C4-carboxyl group and other structural requirements for activity. Overall, the above results would help us to better understand the mode of action and the SAR of these derivatives, and provide crucial information for further design and development of more potent 3,4-dihydroisoquinolin-1(2H)-one derivatives as antioomycete agents against P. recalcitrans. A collection of 3,4-dihydroisoquinolin-1(2H)-one derivatives were synthesized by Castagnoli–Cushman reaction to screen antioomycete agents against Pythium recalcitrans.![]()
Collapse
Affiliation(s)
- Delong Wang
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| | - Min Li
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| | - Jing Li
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| | - Yali Fang
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| | - Zhijia Zhang
- Department of Pharmaceutical Engineering, College of Plant Protection, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Shanxi Agricultural UniversityTaiyuan 030031China
| |
Collapse
|
6
|
A Review of Medicinal Plants of the Himalayas with Anti-Proliferative Activity for the Treatment of Various Cancers. Cancers (Basel) 2022; 14:cancers14163898. [PMID: 36010892 PMCID: PMC9406073 DOI: 10.3390/cancers14163898] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Drugs are used to treat cancer. Most drugs available in the market are chemosynthetic drugs and have side effects on the patient during and after the treatment, in addition to cancer itself. For instance, hair loss, loss of skin color and texture, loss of energy, nausea, infertility, etc. To overcome these side effects, naturally obtained drugs from medicinal plants are preferred. Our review paper aims to encourage the study of anticancer medicinal plants by giving detailed information on thirty-three medicinal plants and parts that constitute the phytochemicals responsible for the treatment of cancer. The development of plant-based drugs could be a game changer in treating cancer as well as boosting the immune system. Abstract Cancer is a serious and significantly progressive disease. Next to cardiovascular disease, cancer has become the most common cause of mortality in the entire world. Several factors, such as environmental factors, habitual activities, genetic factors, etc., are responsible for cancer. Many cancer patients seek alternative and/or complementary treatments because of the high death rate linked with cancer and the adverse side effects of chemotherapy and radiation therapy. Traditional medicine has a long history that begins with the hunt for botanicals to heal various diseases, including cancer. In the traditional medicinal system, several plants used to treat diseases have many bioactive compounds with curative capability, thereby also helping in disease prevention. Plants also significantly contributed to the modern pharmaceutical industry throughout the world. In the present review, we have listed 33 medicinal plants with active and significant anticancer activity, as well as their anticancer compounds. This article will provide a basic set of information for researchers interested in developing a safe and nontoxic active medicinal plant-based treatment for cancer. The research will give a scientific foundation for the traditional usage of these medicinal herbs to treat cancer.
Collapse
|
7
|
Mohammed MA, Hamed MA, El-Gengaihi SE, Enein AMA, Kachlicki P, Hassan EM. Profiling of secondary metabolites and DNA typing of three different Annona cultivars grown in Egypt. Metabolomics 2022; 18:49. [PMID: 35781851 PMCID: PMC9252975 DOI: 10.1007/s11306-022-01911-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Natural products are often efficacious and safe alternatives to synthetic drugs. This study explored secondary leaves and bark metabolites profiles in extracts of a new Egyptian hybrid, Annona cherimola × Annona squamosa, known as Abdel Razek. This hybrid exhibited 100% similarity with A. cherimola as evidenced by random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses. METHODS Primary constituents in methanol extracts of different plant organs were identified. Extracts richest in alkaloids and polyphenolics were assessed for in vitro antioxidant activity and the most potent were further studied in vivo for treating gastric ulcer in rats. The latter activity was assessed histopathologically. RESULTS Structural analysis with HPLC/ESI-MSn, and UPLC/HESI-MS/MS identified 63 metabolites, including seven amino acids, 20 alkaloids, 16 flavonoids, eight phenolics and other compounds. Severe stomach alteration was observed after ethanol induction in rats. Ulcer score, oxidative stress biomarkers, cell organelles biomarker enzymes, and gastrointestinal histological features improved to variable degrees after treatment with Annona Abdel Razek hybrid leaves and bark methanol extracts. CONCLUSION Extracts of Annona Abdel Razek had showed in vitro antioxidant effect and may be promising for the treatment of gastric ulcers.
Collapse
Affiliation(s)
- Mona Arafa Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12311, Egypt.
| | - Manal A Hamed
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12311, Egypt.
| | - Souad Eisawy El-Gengaihi
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12311, Egypt
| | | | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences (Metabolomics Group), Poznan, Poland
| | - Emad Mohamed Hassan
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, 12311, Egypt
| |
Collapse
|
8
|
Ao H, Lu L, Li M, Han M, Guo Y, Wang X. Enhanced Solubility and Antitumor Activity of Annona Squamosa Seed Oil via Nanoparticles Stabilized with TPGS: Preparation and In Vitro and In Vivo Evaluation. Pharmaceutics 2022; 14:1232. [PMID: 35745804 PMCID: PMC9230568 DOI: 10.3390/pharmaceutics14061232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 12/16/2022] Open
Abstract
Annona squamosa seed oil (ASSO), which is a waste product in the extraction of annonaceous acetogenins (ACGs), displays good antitumor activity against a variety of tumor cells. However, ASSO is insoluble and has low bioavailability. In order to improve the solubility and application value of ASSO, the seed oil nanoparticles (ASSO-NPs) were successfully prepared only using TPGS as a stabilizer. ASSO-NPs obtained were spherical with a uniform size (less than 200 nm). ASSO-NPs showed the good storage stability at 25 ± 2 °C and were suitable for both oral administration and intravenous injection. The antitumor study in vitro and in vivo demonstrated more enhanced antitumor efficacy of ASSO-NPs than free ASSO. The ASSO-NPs group (15 mg/kg) had the highest tumor inhibition rate (TIR) of 69.8%, greater than the ASSO solution (52.7%, 135 mg/kg, p < 0.05) in 4T1 tumor-bearing mice. The in vivo biodistribution data displayed that the fluorescence intensity of ASSO/DiR-NPs in tumor was similar to that in liver in the presence of the reticuloendothelial system. Besides, the relative tumor-targeting index (RTTI) of (ACGs + ASSO)-NPs was 1.47-fold that of ACGs delivered alone, and there is great potential in ASSO-NPs as tumor-targeted delivery vehicles. In this study, ASSO-NPs were firstly prepared by a very simple method with fewer excipients, which improved the solubility and antitumor activity of the ASSO, displaying a good prospect in the in vivo delivery of natural bioactive compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; (H.A.); (L.L.); (M.L.); (M.H.); (Y.G.)
| |
Collapse
|
9
|
Therapeutic Promises of Medicinal Plants in Bangladesh and Their Bioactive Compounds against Ulcers and Inflammatory Diseases. PLANTS 2021; 10:plants10071348. [PMID: 34371551 PMCID: PMC8309353 DOI: 10.3390/plants10071348] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022]
Abstract
When functioning properly, the stomach is the center of both physical and mental satisfaction. Gastrointestinal disorders, or malfunctioning of the stomach, due to infections caused by various biological entities and physiochemical abnormalities, are now widespread, with most of the diseases being inflammatory, which, depending on the position and degree of inflammation, have different names such as peptic or gastric ulcers, irritable bowel diseases, ulcerative colitis, and so on. While many synthetic drugs, such as non-steroidal anti-inflammatory drugs, are now extensively used to treat these diseases, their harmful and long-term side effects cannot be ignored. To treat these diseases safely and successfully, different potent medicinal plants and their active components are considered game-changers. In consideration of this, the present review aimed to reveal a general and comprehensive updated overview of the anti-ulcer and anti-inflammatory activities of medicinal plants. To emphasize the efficacy of the medicinal plants, various bioactive compounds from the plant extract, their experimental animal models, and clinical trials are depicted.
Collapse
|
10
|
Song L, Zhao F, Liu Y, Guo X, Wu C, Liu J. Effects of 8-Amino-Isocorydine, a Derivative of Isocorydine, on Gastric Carcinoma Cell Proliferation and Apoptosis. Curr Ther Res Clin Exp 2021; 94:100624. [PMID: 34306264 PMCID: PMC8296074 DOI: 10.1016/j.curtheres.2021.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 02/26/2021] [Indexed: 12/05/2022] Open
Abstract
Background Isocorydine (ICD) has anticancer effects; however, its suboptimal bioactivity has driven the production of ICD derivatives, including 8-amino-isocorydine (8-NICD). Objective This study explored the antitumor effects of 8-NICD on a variety of tumor cell lines to detect tumors sensitive to 8-NICD and investigated the mechanisms by which it suppresses tumor cell growth. Methods Human gastric carcinoma (GC) cells (MGC-803) were used to evaluate the effects of 8-NICD on cell proliferation and apoptosis. The in vivo action of 8-NICD in a nude mouse xenograft model was also investigated. The antioxidant activity of 8-NICD was evaluated using a 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay. Results 8-NICD exerted significant antitumor activity against several tumor cell lines with IC50 between 8.0 and 142.8 µM and was not toxic to healthy fibroblasts and epithelial cells at concentrations up to 100 µM. Moreover, 8-NICD strongly inhibited the proliferation of MGC803 cells without causing toxicity to human umbilical vein endothelial cells with a selectivity index of 19.2 and arrested MGC803 cells in the S phase. Further, the percentages of apoptotic MGC-803 and BGC823 cells increased in a concentration-dependent manner, and the expression of apoptosis regulator Bax increased, whereas that of Bcl-2 decreased in response to 8-NICD treatment. Further, 8-NICD significantly suppressed MGC-803 tumor growth in nude mice. In addition, 8-NICD was a potent scavenger of radicles in a 1,1-diphenyl-2-picrylhydrazyl (IC50 = 11.12 µM) antioxidant assay. Conclusions These results suggest that 8-NICD exerts significant antitumor effects on GC cells by inducing apoptosis and cell cycle arrest and is a promising candidate anti-GC drug. The particularly high sensitivity of MGC803 cells suggest that the potential of 8-NICD to treat GC should be further explored. (Curr Ther Res Clin Exp. 2021; 82:XXX–XXX)
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Gansu, China.,Department of Medicine, Northwest Minzu University, Gansu, China
| | - Fei Zhao
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Gansu, China.,Department of Medicine, Northwest Minzu University, Gansu, China
| | - Yong Liu
- Department of Medicine, Northwest Minzu University, Gansu, China
| | - Xiaonong Guo
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Gansu, China
| | - Chengli Wu
- Department of Medicine, Northwest Minzu University, Gansu, China
| | - Junxi Liu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Gansu, China
| |
Collapse
|
11
|
Anaya-Esparza LM, García-Magaña MDL, Abraham Domínguez-Ávila J, Yahia EM, Salazar-López NJ, González-Aguilar GA, Montalvo-González E. Annonas: Underutilized species as a potential source of bioactive compounds. Food Res Int 2020; 138:109775. [DOI: 10.1016/j.foodres.2020.109775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
|
12
|
Ardalani H, Hadipanah A, Sahebkar A. Medicinal Plants in the Treatment of Peptic Ulcer Disease: A Review. Mini Rev Med Chem 2020; 20:662-702. [PMID: 31880244 DOI: 10.2174/1389557520666191227151939] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/10/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023]
Abstract
Peptic Ulcer Disease (PUD) is the most common disorder of the stomach and duodenum, which is associated with Helicobacter pylori infection. PUD occurs due to an imbalance between offensive and defensive factors and Proton Pump Inhibitors (PPI), Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) and antibiotics are frequently used for the treatment. Recently, medicinal plants have emerged as efficacious, safe and widely available alternative therapies for PUD. The aim of this review was to study the medicinal plants and phytochemicals, which have been used for PUD treatment to evaluate the potential role of natural compounds to develop herbal remedies for PUD. Information was obtained using a literature search of electronic databases, such as Web of Science, Google Scholar, PubMed, Sci Finder, Reaxys and Cochrane. Common and scientific names of the plants and keywords such as 'peptic ulcer', 'gastric ulcer', 'stomach ulcer' and 'duodenal ulcer' were used for search. Eventually, 279 plants from 89 families were identified and information on the plant families, part of the plant used, chemical constituents, extracts, ulcer model used and dosage were abstracted. The results indicated that most of the anti-PUD plants were from Asteraceae (7.1%) and Fabaceae (6.8%) families while flavonoids (49%), tannins (13%), saponins (10%) and alkaloids (9%) were the most common natural compounds in plants with anti-PUD activity.
Collapse
Affiliation(s)
- Hamidreza Ardalani
- Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department Agroecology, Aarhus University, 4200 Slagelse, Denmark
| | - Amin Hadipanah
- Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Palshetkar A, Pathare N, Jadhav N, Pawar M, Wadhwani A, Kulkarni S, Singh KK. In vitro anti-HIV activity of some Indian medicinal plant extracts. BMC Complement Med Ther 2020; 20:69. [PMID: 32143607 PMCID: PMC7076815 DOI: 10.1186/s12906-020-2816-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human Immunodeficiency Virus (HIV) persists to be a significant public health issue worldwide. The current strategy for the treatment of HIV infection, Highly Active Antiretroviral Therapy (HAART), has reduced deaths from AIDS related disease, but it can be an expensive regime for the underdeveloped and developing countries where the supply of drugs is scarce and often not well tolerated, especially in persons undergoing long term treatment. The present therapy also has limitations of development of multidrug resistance, thus there is a need for the discovery of novel anti-HIV compounds from plants as a potential alternative in combating HIV disease. METHODS Ten Indian medicinal plants were tested for entry and replication inhibition against laboratory adapted strains HIV-1IIIB, HIV-1Ada5 and primary isolates HIV-1UG070, HIV-1VB59 in TZM-bl cell lines and primary isolates HIV-1UG070, HIV-1VB59 in PM1 cell lines. The plant extracts were further evaluated for toxicity in HEC-1A epithelial cell lines by transwell epithelial model. RESULTS The methanolic extracts of Achyranthes aspera, Rosa centifolia and aqueous extract of Ficus benghalensis inhibited laboratory adapted HIV-1 strains (IC80 3.6-118 μg/ml) and primary isolates (IC80 4.8-156 μg/ml) in TZM-bl cells. Methanolic extract of Strychnos potatorum, aqueous extract of Ficus infectoria and hydroalcoholic extract of Annona squamosa inhibited laboratory adapted HIV-1 strains (IC80 4.24-125 μg/ml) and primary isolates (IC80 18-156 μg/ml) in TZM-bl cells. Methanolic extracts of Achyranthes aspera and Rosa centifolia, (IC801-9 μg/ml) further significantly inhibited HIV-1 primary isolates in PM1cells. Methanolic extracts of Tridax procumbens, Mallotus philippinensis, Annona reticulate, aqueous extract of Ficus benghalensis and hydroalcoholic extract of Albizzia lebbeck did not exhibit anti-HIV activity in all the tested strains. Methanolic extract of Rosa centifolia also demonstrated to be non-toxic to HEC-1A epithelial cells and maintained epithelial integrity (at 500 μg/ml) when tested in transwell dual-chamber. CONCLUSION These active methanolic extracts of Achyranthes aspera and Rosa centifolia, could be further subjected to chemical analysis to investigate the active moiety responsible for the anti-HIV activity. Methanolic extract of Rosa centifolia was found to be well tolerated maintaining the epithelial integrity of HEC-1A cells in vitro and thus has potential for investigating it further as candidate microbicide.
Collapse
Affiliation(s)
- Aparna Palshetkar
- C. U Shah College of Pharmacy, S.N.D.T. Women's University, Santacruz West, Mumbai, 400049, India
| | - Navin Pathare
- National AIDS Research Institute, 73, 'G'-Block, MIDC, Bhosari, Pune, 411 026, India
| | - Nutan Jadhav
- National AIDS Research Institute, 73, 'G'-Block, MIDC, Bhosari, Pune, 411 026, India
| | - Megha Pawar
- National AIDS Research Institute, 73, 'G'-Block, MIDC, Bhosari, Pune, 411 026, India
| | - Ashish Wadhwani
- National AIDS Research Institute, 73, 'G'-Block, MIDC, Bhosari, Pune, 411 026, India
| | - Smita Kulkarni
- National AIDS Research Institute, 73, 'G'-Block, MIDC, Bhosari, Pune, 411 026, India.
| | - Kamalinder K Singh
- C. U Shah College of Pharmacy, S.N.D.T. Women's University, Santacruz West, Mumbai, 400049, India.
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
14
|
Paz WHP, de Oliveira RN, Heerdt G, Angolini CFF, S de Medeiros L, Silva VR, Santos LS, Soares MBP, Bezerra DP, Morgon NH, Almeida JRGS, da Silva FMA, Costa EV, Koolen HHF. Structure-Based Molecular Networking for the Target Discovery of Oxahomoaporphine and 8-Oxohomoaporphine Alkaloids from Duguetia surinamensis. JOURNAL OF NATURAL PRODUCTS 2019; 82:2220-2228. [PMID: 31403289 DOI: 10.1021/acs.jnatprod.9b00287] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In addition to seven known alkaloids (2, 6-11) and 1,2,4-trimethoxybenzene (1), three isoquinoline-derived alkaloids (3-5), namely, duguetinine (3), a compound based on an unprecedented oxahomoaporphine scaffold, and two new 8-oxohomoaporphine alkaloids, duguesuramine (4) and 11-methoxyduguesuramine (5), and a new asarone-derived phenylpropanoid (10) were isolated from the bark of Duguetia surinamensis. The isolation workflow was guided by HPLC-HRESIMS/MS and molecular networking-based analyses. Twenty-four known alkaloids were dereplicated from the D. surinamensis alkaloid-rich fraction network and were assigned by manual MS/MS interpretation. Their cytotoxic potential was evaluated.
Collapse
Affiliation(s)
- Weider H P Paz
- Metabolomics and Mass Spectrometry Research Group , Amazonas State University , Manaus 690065-130 , Brazil
- Department of Chemistry , Federal University of Amazonas , Manaus 69077-000 , Brazil
| | - Rodolfo N de Oliveira
- Department of Chemistry , Federal University of Amazonas , Manaus 69077-000 , Brazil
| | - Gabriel Heerdt
- Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte 31270-901 , Brazil
| | - Célio F F Angolini
- Center of Human and Natural Sciences , Federal University of ABC , 09210-580 Santo André , Brazil
| | - Lívia S de Medeiros
- Department of Chemistry , Federal University of São Paulo , 09920-540 Diadema , Brazil
| | - Valdenizia R Silva
- Gonçalo Moniz Institute , Oswaldo Cruz Foundation , Salvador 40296-710 , Brazil
| | - Luciano S Santos
- Gonçalo Moniz Institute , Oswaldo Cruz Foundation , Salvador 40296-710 , Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute , Oswaldo Cruz Foundation , Salvador 40296-710 , Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute , Oswaldo Cruz Foundation , Salvador 40296-710 , Brazil
| | - Nelson H Morgon
- Institute of Chemistry , University of Campinas , Campinas 13083-970 , Brazil
| | - Jackson R G S Almeida
- Center for Study and Research of Medicinal Plants , Federal University of Vale do São Francisco , Petrolina 56304-205 , Brazil
| | - Felipe M A da Silva
- Department of Chemistry , Federal University of Amazonas , Manaus 69077-000 , Brazil
| | - Emmanoel V Costa
- Department of Chemistry , Federal University of Amazonas , Manaus 69077-000 , Brazil
| | - Hector H F Koolen
- Metabolomics and Mass Spectrometry Research Group , Amazonas State University , Manaus 690065-130 , Brazil
| |
Collapse
|
15
|
Al-Ghazzawi AM. Anti-cancer activity of new benzyl isoquinoline alkaloid from Saudi plant Annona squamosa. BMC Chem 2019; 13:13. [PMID: 31384762 PMCID: PMC6661725 DOI: 10.1186/s13065-019-0536-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/16/2019] [Indexed: 11/10/2022] Open
Abstract
Two alkaloids, belonging to benzylisoquinoline alkaloids, were isolated from Annona squamosa. One of these alkaloids, 6, 7-dimethoxy-1-(α-hydroxy-4-methoxybenzyl)-2-methyl-1, 2, 3, 4-tetrahydroisoquinoline, was isolated for the first time from natural sources, while, the alkaloid, Coclaurine was known in Annona squamosa L. Moreover, the isolated alkaloids tested for the anti-cancer activities on various cell lines (HepG-2, MCF-7, and HCT-116).
Collapse
Affiliation(s)
- Adel M Al-Ghazzawi
- Department of Chemistry, King Khalid University, Abha, 61413 Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Quílez AM, Fernández-Arche MA, García-Giménez MD, De la Puerta R. Potential therapeutic applications of the genus Annona: Local and traditional uses and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:244-270. [PMID: 29933016 DOI: 10.1016/j.jep.2018.06.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/14/2018] [Indexed: 05/14/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Annona species (Annonaceae) have long been used as traditional herbal medicines by native peoples in tropical areas. In different countries they are used against a large variety of illnesses, such as parasitic and infectious diseases, cancer, diabetes, peptic ulcers, and mental disorders. AIM OF THE STUDY This review aims to achieve a comprehensive understanding of the research conducted so far on the local and traditional uses, pharmacological activities, mechanism of actions of active compounds, toxicity, and possible interactions with other drugs of the Annona species. Through analysis of these findings, evidences supporting their applications in ethno-medicines are described. We discuss the possible research opportunities and stand out the weak points in our knowledge that deserves further investigation. MATERIAL AND METHODS Information on ethno-medicinal uses and pharmacological activities of the Annona genus was collected. The main scientific biomedical literature databases (Cochrane, PubMed, Scopus, Lilacs, SeCiMed, Elsevier, SpringerLink, Google Scholar, SciFinder) were consulted. The search covered all the literature available until September 2017. National and regional databases of Herbal Medicine and Complementary and Alternative Medicine were also revised in order to explore further data. For a better understanding of the therapeutic importance of these species, we have classified the pharmacological activities within each group of disorders. The International Classification of Diseases (ICD), used from WHO Member States, was chosen as the reference classification. RESULTS From among the 27 species revised, four species are highlighted for their important pharmacological activities in most of the groups of illnesses: A. muricata, A. squamosa, A. senegalensis, and A. cherimola. Many investigations have been performed with extracts from the leaves, bark, fruit and seeds and have shown a wide range of pharmacological activities, such as antiprotozoal, antitumoural, antidiabetic, hepato-protective, anti-inflammatory and anxiolytic activities. The chemistry on the annonaceous acetogenins (ACGs) has been extensively investigated due to their potent antitumoural activity. Many of the assays were carried out with the isolated acetogenins in different lines of tumour culture cells and were found effective at very low doses even in multidrug-resistant tumours, and hence constitute promising compounds in the treatment of different types of cancers. No studies were found with extracts rich in acetogenins in the clinical field. CONCLUSIONS The experimental results from the pharmacological research enable the validation of their traditional uses in several of the groups of diseases in the countries of origin and reveal these plants to be a valuable source for therapeutic molecules. However, more toxicity assays and clinical trials would be necessary to establish optimal and safe doses of consumption on the application of these medicinal plants.
Collapse
Affiliation(s)
- A M Quílez
- Pharmacology Department, School of Pharmacy, Seville University, C/Profesor García González, 2; 41012 Sevilla, Spain
| | - M A Fernández-Arche
- Pharmacology Department, School of Pharmacy, Seville University, C/Profesor García González, 2; 41012 Sevilla, Spain
| | - M D García-Giménez
- Pharmacology Department, School of Pharmacy, Seville University, C/Profesor García González, 2; 41012 Sevilla, Spain
| | - R De la Puerta
- Pharmacology Department, School of Pharmacy, Seville University, C/Profesor García González, 2; 41012 Sevilla, Spain.
| |
Collapse
|
17
|
Zahid M, Arif M, Rahman MA, Mujahid M. Hepatoprotective and antioxidant activities of Annona squamosa seed extract against alcohol-induced liver injury in Sprague Dawley rats. Drug Chem Toxicol 2018; 43:588-594. [PMID: 30239227 DOI: 10.1080/01480545.2018.1517772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol is regarded as the third most common cause of death after hypertension and smoking. Its long-term excess exposure leads to alcoholic liver disease (ALD) and liver injury, a worldwide health problem without efficient therapy. As there is no reliable liver protective drugs in allopathic medical practices, herbs play a major role in the management of liver diseases. Thus, the present study was designed to evaluate hepatoprotective activity of Annona squamosa seed extract against alcohol-induced liver injury in Sprague Dawley rats. Liver toxicity was induced by 50% alcohol at dose level of 12 ml/kg po each, for 8 days. Ethanolic extract of A. squamosa seed (EEAS) at dose of 200 and 400 mg/kg po were administered once daily for 8 consecutive days. The hepatoprotective activity of EEAS was assessed in experimental rats using various biochemical parameters like ALT, AST, ALP, LDH, SBL, albumin, total cholesterol, and total protein; and antioxidant parameters like SOD, CAT, GSH, and TBARS. It demonstrated that the treatment with EEAS significantly (p < 0.05-p < 0.001) and dose-dependently prevented the alcohol-induced increase in serum levels of hepatic enzymes and significantly increased the levels of SOD, CAT, and GSH. It also significantly decreased the level of MDA. Histopathology of the liver tissues showed that EEAS attenuated the hepatocellular necrosis and led to regeneration and repair of cells toward normal. Results of this study strongly indicated the protective effect of A. squamosa against alcohol-induced liver injury which may be attributed to its hepatoprotective and antioxidant activities.
Collapse
Affiliation(s)
- Mohammad Zahid
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Muhammad Arif
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Azizur Rahman
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Md Mujahid
- Herbal Bioactive Research Laboratory, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
18
|
De Sales IRP, Formiga RDO, Machado FDF, Nascimento RF, Pessoa MMB, Barros MEFX, Vieira GC, Gadelha FAAF, Marinho AF, Barbosa Filho JM, Júnior RFDA, Antunes AA, Batista LM. Cytoprotective, antioxidant and anti-inflammatory mechanism related to antiulcer activity of Cissampelos sympodialis Eichl. in animal models. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:190-200. [PMID: 29704592 DOI: 10.1016/j.jep.2018.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/03/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves and roots of Cissampelos sympodialis (Menispermaceae) are used by indian tribes and in folk medicine to treat genitourinary infections, inflammation, asthma and gastrointestinal disorders. MATERIAL AND METHODS The standardized ethanolic extract (Cs-EtOHE) and alkaloids total fraction (Cs-TAF) obtained from aerial parts of C. sympodialis were evaluated in several models of acute gastric ulcers. The antisecretory and/or neutralizing mechanisms of the gastric acid secretion, cytoprotective, antioxidant and immunoregulatory mechanisms were also evaluated. RESULTS Cs-EtOHE and Cs-TAF presented a reduction in gastric mucosa lesions against ethanol, NSAIDs, hypothermic restraint-stress and gastric juice containment induced ulcer models. This activity is related to alkaloids present in the extract, and involves the participation of sulfhydryl compounds, nitric oxide, KATP channels, prostaglandins, decreased levels of IL-1β and TNF-α and increased levels of GSH and IL-10. CONCLUSION The data indicate gastroprotective activity, due to the participation of the cytoprotective, antioxidant and immunoregulatory mechanisms.
Collapse
Affiliation(s)
- Igor Rafael Praxedes De Sales
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - Rodrigo De Oliveira Formiga
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - Flávia Danniele Frota Machado
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - Raphaela Francelino Nascimento
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - Matheus Marley Bezerra Pessoa
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - Monique Emanuela Frutuoso Xavier Barros
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - Giciane Carvalho Vieira
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - Francisco Allysson Assis Ferreira Gadelha
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - Alexsandro Fernandes Marinho
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - José Maria Barbosa Filho
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| | - Raimundo Fernandes De Araújo Júnior
- Department of Biophysics and Pharmacology and Department of Morphology, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| | - Aurigena Araújo Antunes
- Department of Biophysics and Pharmacology and Department of Morphology, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| | - Leônia Maria Batista
- Postgraduate Program in Natural and Synthetic Bioactive Products, Health Sciences Center, Universidade Federal da Paraíba (UFPB), João Pessoa 58051-970, PB, Brazil.
| |
Collapse
|
19
|
Nithya M, Ragavendran C, Natarajan D. Antibacterial and free radical scavenging activity of a medicinal plant Solanum xanthocarpum. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2017.1409236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- M. Nithya
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India
| | - C. Ragavendran
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India
| | - D. Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India
| |
Collapse
|
20
|
Production of Nutritious Flour from Residue Custard Apple ( Annona squamosa L.) for the Development of New Products. J FOOD QUALITY 2018. [DOI: 10.1155/2018/5281035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, the fruit processing industry generates a high volume of waste in fruits that have not reached a quality standard for consumption or by-products generated throughout the production process. To reduce this waste, mitigating measures, such as reuse in food formulations, have been proposed. In this work the custard apple bagasse flour (Annona squamosa L.) (CAB) was produced and incorporated into cookie formulations in different proportions (5 to 50%) evaluating its acceptability. The CAB flour was characterized by physicochemical analysis, proximate composition, mineral analysis, determination of the phenolic content, and antioxidant capacity. The results of the physicochemical and proximate characterizations show that the processed flour presents values and specifications suitable for food formulations. The mineral composition of the CAB flour responds to more than 20% of the daily intake of nutrients, highlighting the Cu, Fe, Mn, Zn, Ca, and Mg. The composition of phenolic compounds for CAB flour and cookies formulations presented values ranging from 200 to 658 mg GAE/100 g, similar to flour and formulations prepared of residues tropical fruit, while DPPH• inhibition showed a variation of 9.68–10.75%. Cookies made from the CAB flour showed high acceptability making the flour promising in the nutritional incorporation in food formulations.
Collapse
|
21
|
Iron MA. Evaluation of the Factors Impacting the Accuracy of 13C NMR Chemical Shift Predictions using Density Functional Theory-The Advantage of Long-Range Corrected Functionals. J Chem Theory Comput 2017; 13:5798-5819. [PMID: 29016125 DOI: 10.1021/acs.jctc.7b00772] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The various factors influencing the accuracy of 13C NMR calculations using density functional theory (DFT), including the basis set, exchange-correlation (XC) functional, and isotropic shielding calculation method, are evaluated. A wide selection of XC functionals (over 70) were considered, and it was found that long-range corrected functionals offer a significant improvement over the other classes of functionals. Based on a thorough study, it is recommended that for calculating NMR chemical shifts (δ) one should use the CSGT method, the COSMO solvation model, and the LC-TPSSTPSS exchange-correlation functional in conjunction with the cc-pVTZ basis set. A selection of problems in natural product identification are considered in light of the newly recommended level of theory.
Collapse
Affiliation(s)
- Mark A Iron
- Computational Chemistry Unit, Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 7610001, Israel
| |
Collapse
|
22
|
Reddy YV, Biradar DO, Reddy BJM, Rathod A, Himabindu M, Reddya BVS. Asymmetric Synthesis of Tetrahydroisoquinoline Alkaloids Using Ellman's Chiral Auxiliary. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chiral t-butylsulfinamide has been successfully employed for the stereoselective synthesis of 1-benzyl tetrahydroisoquinoline alkaloids. This is the first report on the synthesis of chiral 1-benzyltetrahydroisoquinoline natural products using tert-butylsulfinamide through a haloamide cyclization.
Collapse
Affiliation(s)
- Y. Vikram Reddy
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Dhanraj O. Biradar
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | | | - Aravinda Rathod
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - M. Himabindu
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - B. V. Subba Reddya
- Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| |
Collapse
|
23
|
Ma C, Chen Y, Chen J, Li X, Chen Y. A Review on Annona squamosa L.: Phytochemicals and Biological Activities. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:933-964. [DOI: 10.1142/s0192415x17500501] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Annona squamosa L. (Annonaceae) is a fruit tree with a long history of traditional uses. A. squamosa is an evergreen plant mainly located in tropical and subtropical regions. Srikayas, the fruits of A. squamosa, are extensively used to prepare candies, ice creams and beverages. A wide range of ethno-medicinal uses has been related to different portions of A. squamosa, such as tonic, apophlegmatisant, cool medicine, abortient and heart sedative. Numerous research projects on A. squamosa have found that it has anticancer, anti-oxidant, antidiabetic, antihypertensive, hepatoprotective, antiparasitic, antimalarial, insecticidal, microbicidel and molluscicidal activities. Phytochemistry investigations on A. squamosa have considered annonaceous acetogenins (ACGs), diterpenes (DITs), alkaloids (ALKs) and cyclopeptides (CPs) as the main constituents. Until 2016, 33 DITs, 19 ALKs, 88 ACGs and 13 CPs from this species were reported. On the basis of the multiple researches on A. squamosa, this review strives to integrate available information on its phytochemicals, folklore uses and bioactivities, hoping to promote a better understanding of its medicinal values.
Collapse
Affiliation(s)
- Chengyao Ma
- Pharmaceutical Institute, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yayun Chen
- Pharmaceutical Institute, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Jianwei Chen
- Pharmaceutical Institute, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Xiang Li
- Pharmaceutical Institute, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Yong Chen
- Pharmaceutical Institute, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| |
Collapse
|
24
|
Harsha C, Banik K, Bordoloi D, Kunnumakkara AB. Antiulcer properties of fruits and vegetables: A mechanism based perspective. Food Chem Toxicol 2017; 108:104-119. [PMID: 28711545 DOI: 10.1016/j.fct.2017.07.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
Gastric ulcer is the damage caused to mucosal layer of the stomach under the action of various factors like high levels of acid and pepsin, invasion by Helicobacter pylori, etc. Although most cases have been controlled and the rate of ulcer occurrence has reduced over the last few decades, gastric ulcer still holds a prime concern today. A range of palliative medicines comprising proton pump inhibitors, H2 receptor antagonists, COX-2 inhibitors (coxibs) is widely in use and patients have also been administered with acid suppression therapies. But these remedies aggravate the condition of patients causing severe side effects, or rather impart temporary relief. Therefore, it is highly imperative to develop safe and effective therapies for the treatment of gastric ulcer. Nature provides us various fruits and vegetables that can combat gastric ulcer through multiple mechanisms; predominantly via antioxidant, anti-inflammatory, antisecretory, antimicrobial, anticholinergic and cytoprotective activity, inhibition of small intestinal propulsion etc. Various phytochemicals from fruits and vegetables such as phenolics, flavonoids, tannins and saponins play a vital role in the prevention and cure of gastric ulcer. This review is a compendium of all fruits and vegetables known for their profound antiulcer effect and their underlying mechanisms of action.
Collapse
Affiliation(s)
- Choudhary Harsha
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
25
|
Yamthe LRT, Fokou PVT, Mbouna CDJ, Keumoe R, Ndjakou BL, Djouonzo PT, Mfopa AN, Legac J, Tsabang N, Gut J, Rosenthal PJ, Boyom FF. Extracts from Annona Muricata L. and Annona Reticulata L. (Annonaceae) Potently and Selectively Inhibit Plasmodium Falciparum. MEDICINES 2015; 2:55-66. [PMID: 28930201 PMCID: PMC5533161 DOI: 10.3390/medicines2020055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 11/16/2022]
Abstract
The aim of this work was to screen extracts from Annona muricata and Annona reticulata in vitro against Plasmodium falciparum. Crude ethanolic extracts, methylene chloride fractions, aqueous fractions, subfractions and isolated compounds (stigmasterol-3-O-β-d-glucopyranoside, lichexanthone, gallic acid and β-sitosterol-3-O-β-d-glucopyranoside) were tested for cytotoxicity on erythrocytes and Human Foreskin Fibroblasts cells and against the W2 strain of P. falciparum in culture. Results indicated that none of the extracts was cytotoxic at concentrations up to 10 µg/mL. Most of the extracts, fractions and subfractions inhibited the growth of P. falciparum with IC50 values ranging from 0.07 to 3.46 µg/mL. The most potent was the subfraction 30 from A. muricata stem bark (IC50 = 0.07 µg/mL) with a selectivity index of ˃ 142. Subfraction 3 from A. muricata root also exhibited very good activity (IC50 = 0.09 µg/mL) with a high selectivity index (SI ˃ 111). Amongst the isolated compounds, only gallic acid showed activity with IC50 of 3.32 µg/mL and SI > 10. These results support traditional claims for A. muricata and A. reticulata in the treatment of malaria. Given their limited cytotoxicity profile, their extracts qualify as promising starting points for antimalarial drug discovery.
Collapse
Affiliation(s)
- Lauve Rachel Tchokouaha Yamthe
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
- Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 6163, Yaoundé, Cameroon.
| | - Patrick Valere Tsouh Fokou
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Cedric Derick Jiatsa Mbouna
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Rodrigue Keumoe
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Bruno Lenta Ndjakou
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé 1. P.O. Box 47, Yaoundé, Cameroon.
| | - Paul Toukam Djouonzo
- Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 6163, Yaoundé, Cameroon.
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Alvine Ngoutane Mfopa
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| | - Jennifer Legac
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94943, USA.
| | - Nole Tsabang
- Institute of Medical Research and Medicinal Plants Studies (IMPM), P.O. Box 6163, Yaoundé, Cameroon.
| | - Jiri Gut
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94943, USA.
| | - Philip J Rosenthal
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA 94943, USA.
| | - Fabrice Fekam Boyom
- Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
26
|
Abstract
Peptic ulcers are open sores or erosions in the lining of either the duodenum (duodenal ulcers) or the stomach (gastric ulcers). Peptic ulcer, which is mainly caused by bacterial attack or excess of acid secretion, can be cured effectively by these isolated plant compounds. In this present scenario, demand for herbal medicines are increasing due to easy availability in surrounding place at low cost. This review article is all about such isolated plant compounds such as alkaloids, flavonoids and terpenoids. Various plants have been used as folk medicine by the people of rural area, which shows significant effect against peptic ulcer. Further study should be conducted upon these herbal plants because there is possibility for minimising the adverse effect caused by the present antiulcer drugs.
Collapse
Affiliation(s)
- Parag Jain
- a Department of Pharmacology, Institute of Pharmaceutical Sciences , Guru Ghasidas Vishwavidyalaya , Koni, Bilaspur , Chhattisgarh 495009 , India
| |
Collapse
|
27
|
Abstract
Peptic ulcer is a common disease characterized by lesions that affect the mucosa of the esophagus, stomach and/or duodenum, and may extend into the muscular layer of the mucosa. Natural products have played an important role in the process of development and discovery of new drugs, due to their wide structural diversity and present, mostly specific and selective biological activities. Among natural products the alkaloids, biologically active secondary metabolites, that can be found in plants, animals or microorganisms stand out. The alkaloids are compounds consisting of a basic nitrogen atom that may or may not be part of a heterocyclic ring. This review will describe 15 alkaloids with antiulcer activity in animal models and in vitro studies.
Collapse
|
28
|
Nordin N, Salama SM, Golbabapour S, Hajrezaie M, Hassandarvish P, Kamalidehghan B, Majid NA, Hashim NM, Omar H, Fadaienasab M, Karimian H, Taha H, Ali HM, Abdulla MA. Anti-ulcerogenic effect of methanolic extracts from Enicosanthellum pulchrum (King) Heusden against ethanol-induced acute gastric lesion in animal models. PLoS One 2014; 9:e111925. [PMID: 25379712 PMCID: PMC4224391 DOI: 10.1371/journal.pone.0111925] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/09/2014] [Indexed: 12/22/2022] Open
Abstract
A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.
Collapse
Affiliation(s)
- Noraziah Nordin
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Suzy Munir Salama
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shahram Golbabapour
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Maryam Hajrezaie
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Pouya Hassandarvish
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hanita Omar
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Center of Foundation Studies in Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehran Fadaienasab
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hairin Taha
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Moghadamtousi SZ, Rouhollahi E, Karimian H, Fadaeinasab M, Abdulla MA, Kadir HA. Gastroprotective activity of Annona muricata leaves against ethanol-induced gastric injury in rats via Hsp70/Bax involvement. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2099-110. [PMID: 25378912 PMCID: PMC4218895 DOI: 10.2147/dddt.s70096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The popular fruit tree of Annona muricata L. (Annonaceae), known as soursop and graviola, is a widely distributed plant in Central and South America and tropical countries. Leaves of A. muricata have been reported to possess antioxidant and anti-inflammatory activities. In this study, the gastroprotective effects of ethyl acetate extract of A. muricata leaves (EEAM) were investigated against ethanol-induced gastric injury models in rats. The acute toxicity test of EEAM in rats, carried out in two doses of 1 g/kg and 2 g/kg, showed the safety of this plant, even at the highest dose of 2 g/kg. The antiulcer study in rats (five groups, n=6) was performed with two doses of EEAM (200 mg/kg and 400 mg/kg) and with omeprazole (20 mg/kg), as a standard antiulcer drug. Gross and histological features showed the antiulcerogenic characterizations of EEAM. There was significant suppression on the ulcer lesion index of rats pretreated with EEAM, which was comparable to the omeprazole effect in the omeprazole control group. Oral administration of EEAM to rats caused a significant increase in the level of nitric oxide and antioxidant activities, including catalase, glutathione, and superoxide dismutase associated with attenuation in gastric acidity, and compensatory effect on the loss of gastric wall mucus. In addition, pretreatment of rats with EEAM caused significant reduction in the level of malondialdehyde, as a marker for oxidative stress, associated with an increase in prostaglandin E2 activity. Immunohistochemical staining also demonstrated that EEAM induced the downregulation of Bax and upregulation of Hsp70 proteins after pretreatment. Collectively, the present results suggest that EEAM has a promising antiulcer potential, which could be attributed to its suppressive effect against oxidative damage and preservative effect toward gastric wall mucus.
Collapse
Affiliation(s)
- Soheil Zorofchian Moghadamtousi
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Elham Rouhollahi
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mehran Fadaeinasab
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Habsah Abdul Kadir
- Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Abood WN, Fahmi I, Abdulla MA, Ismail S. Immunomodulatory effect of an isolated fraction from Tinospora crispa on intracellular expression of INF-γ, IL-6 and IL-8. Altern Ther Health Med 2014; 14:205. [PMID: 24969238 PMCID: PMC4227069 DOI: 10.1186/1472-6882-14-205] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 06/23/2014] [Indexed: 12/18/2022]
Abstract
Background Immunomodulators are substances that modify immune system response to a threat. Immunomodulators modulate and potentiate the immune system, keeping it highly prepared for any threat. The immunomodulatory effect of the traditional medicine Tinospora crispa is investigated in this work. Methods T. crispa ethanol extract was fractionated by using different solvents. The ethanol extract and effective isolated fraction were used to investigate the potential immunomodulatory effect of different T. crispa doses ranging from 25 μg/mL to 1000 μg/mL on RAW 246.7 cells by detecting intracellular INF-γ, IL-6, and IL-8 expressions. The antioxidant activity of T. crispa was evaluated through FRAP and DPPH. The total phenolic and total flavonoid contents were also quantified. Results Results show that T. crispa extract has higher antioxidant potential than ascorbic acid. The FRAP value of T. crispa extract is 11011.11 ± 1145.42 μmol Fe+2/g, and its DPPH inhibition percentage is 55.79 ± 7.9, with 22 μg/mL IC50. The results also reveal that the total phenolic content of T. crispa extract is 213.16- ± 1.31 mg GAE/g dry stem weight, and the total flavonoid content is 62.07- ± 39.76 mg QE/g dry stem weight. T. crispa crude extract and its isolated fraction significantly stimulate RAW264.7 cell viability (P ≤ 0.05) and intracellular INF-γ, IL-6, and IL-8 expressions. The results of LC-MS show that four of the active compounds detected in the T. crispa isolated fraction are cordioside, quercetin, eicosenoic acid (paullinic acid), and boldine. Conclusions The results of this study obviously indicate that T. crispa has immunomodulatory effects through the stimulation of INF-γ, IL-6, and IL-8 expressions. LC-MS phytochemical analysis showed that the T. crispa fraction has cordioside, quercetin, eicosenoic acid (paullinic acid), and boldine, which may be responsible for the immunostimulator effect of T. crispa.
Collapse
|
31
|
Novelli S, Lorena C, Antonella C. Identification of Alkaloid’s Profile in Ficus benjamina L. Extracts with Higher Antioxidant Power. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.526421] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Zhou CX, Sun LR, Feng F, Mo JX, Zhu H, Yang B, He QJ, Gan LS. Cytotoxic Diterpenoids from the Stem Bark ofAnnona squamosaL. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Ponrasu T, Suguna L. Efficacy of Annona squamosa on wound healing in streptozotocin-induced diabetic rats. Int Wound J 2012; 9:613-23. [PMID: 22233431 DOI: 10.1111/j.1742-481x.2011.00924.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Annona squamosa L. (Annonaceae), commonly known as custard apple, mainly used for its edible fruit, is also recognised with numerous medicinal properties. As there is no report on the efficacy of this plant for wound healing, we examined the efficacy of ethanolic extract of A. squamosa leaves on wound repair in streptozotocin-nicotinamide-induced diabetic rats. Open excision wounds were made on the back of rats. The drug at a dosage of 100 mg/kg body wt was reconstituted in 200 µl of phosphate buffered saline and applied topically once daily for the treated wounds. The control wounds were left untreated. Wound tissues formed on days 4, 8, 12 and 16 (post-wound) were used to estimate DNA, total protein, total collagen, hexosamine and uronic acid. Levels of lipid peroxides were also evaluated along with tensile strength and period of epithelialisation. A. squamosa L. increased cellular proliferation and collagen synthesis at the wound site as evidenced by increase in DNA, protein and total collagen. The treated wounds were observed to heal much faster as proved by enhanced rates of epithelialisation and wound contraction, which was also confirmed by histopathological examinations. The results strongly substantiate the beneficial effects of the topical application of A. squamosa L. in the acceleration of normal and diabetic wound healing.
Collapse
Affiliation(s)
- Thangavel Ponrasu
- Department of Biochemistry, Central Leather Research Institute, Chennai 600020, Tamilnadu, India
| | | |
Collapse
|
34
|
Soni VK, Yadav DK, Bano N, Dixit P, Pathak M, Maurya R, Sahai M, Jain SK, Misra-Bhattacharya S. N-Methyl-6, 7-dimethoxyisoquinolone in Annona squamosa twigs is the major immune modifier to elicit polarized Th1 immune response in BALB/c mice. Fitoterapia 2011; 83:110-6. [PMID: 22004725 DOI: 10.1016/j.fitote.2011.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 01/05/2023]
Abstract
Annona squamosa (AS) has traditionally been used as ethnomedicine. We have earlier extracted and fractionated the twigs of AS based upon its bioactivity and observed its immune potentiating activity that was localized in its three fractions. Present communication deals with the phytochemical analysis and pharmacological investigation of the most active chloroform fraction that led to isolation and identification of a number of compounds whose structures were elucidated using 1D and 2D NMR spectroscopic analysis. Amongst the twelve pure compounds isolated, five compounds Lanuginosine (1), (+)-O-methylarmepavine (2), (+)-anomuricine (3), Isocorydine (4), and N-methyl-6, 7-dimethoxyisoquinolone (5) were evaluated in vivo for their immune modifier activities in BALB/c mice after oral administration at three log doses of 0.3, 1.0 and 3.0mg/kg for 14 consecutive days. Of these, three compounds (1, 2 and 5) showed dose dependent immune stimulating activity. However, the uppermost activity was noted in the compound N-methyl-6, 7-dimethoxyisoquinolone at the 3.0mg/kg oral dose. The activity was assessed in the form of increased splenic T and B cellular proliferation, up-regulated CD4+, CD8+ and CD19+ cell population and accentuation in the peritoneal macrophage function. The compound possibly acted modifying the expression of Th1- and Th2- cytokines via stimulation of pro-inflammatory Th1 cytokines IL-2 and IFN-γ. These results warrant the use of the above compounds as an efficient immune-stimulant or immune-adjuvant against diseases with immune suppression. The analogs of the compound may further be chemically synthesized to achieve desired immune modifying activity.
Collapse
Affiliation(s)
- Vishal Kumar Soni
- Division of Parasitology, Central Drug Research Institute, M.G. Marg, Lucknow (U.P.), India
| | | | | | | | | | | | | | | | | |
Collapse
|