1
|
Chaisit S, Jianmongkol S. Apoptosis Inducing Activity of Rhinacanthin-C in Doxorubicin-Resistant Breast Cancer MCF-7 Cells. Biol Pharm Bull 2021; 44:1239-1246. [PMID: 34471052 DOI: 10.1248/bpb.b21-00015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rhinacanthin-C is a natural bioactive naphthoquinone ester with potential chemotherapeutic value in cancer treatment. In this study, we investigated its apoptotic induction ability and the involved mechanisms through the mitogen-activated protein kinases (MAPK) and protein kinase B/glycogen synthase kinase-3β/nuclear factor erythroid 2-related factor 2 (Akt/GSK-3β/Nrf2) signaling pathways in doxorubicin-resistant breast cancer MCF-7 (MCF-7/DOX) cells. Our 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that rhinacanthin-C (3-28 µM) significantly decreased the viability of MCF-7/DOX cells and potentiated hydrogen peroxide cytotoxicity. This naphthoquinone was able to increase intracellular reactive oxygen species (ROS), as measured by the 2',7'-dichlorofluorescein diacetate (DCFH-DA) assay. This compound increased the number of apoptotic cells by elevating the ratio of apoptotic checkpoint proteins Bax/Bcl-2 and by decreasing the expression of poly(ADP-ribose) polymerase (PARP) protein. Furthermore, Western blotting analyses showed that treatment with rhinacanthin-C (3-28 µM) for 24 h significantly decreased the expression levels of the phosphorylated forms of MAPK proteins (i.e., extracellular signal regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK) and p38), Akt, GSK-3β and Nrf2 proteins in MCF-7/DOX cells. Inhibition of the Akt/GSK-3β/Nrf2 pathway led to a significant reduction in heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate (NADP)(H): quinone oxidoreductase 1 (NQO1) proteins. These findings suggested that rhinacanthin-C was able to induce apoptosis in MCF-7/DOX cells through increased ROS production and suppression of the cell survival systems mediated by the MAPKs and Akt/GSK-3β/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Suwichak Chaisit
- Inter-Department Program of Pharmacology, Graduate School, Chulalongkorn University
| | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Science, Chulalongkorn University
| |
Collapse
|
2
|
Ahmadi ES, Tajbakhsh A, Iranshahy M, Asili J, Kretschmer N, Shakeri A, Sahebkar A. Naphthoquinone Derivatives Isolated from Plants: Recent Advances in Biological Activity. Mini Rev Med Chem 2020; 20:2019-2035. [PMID: 32811411 DOI: 10.2174/1389557520666200818212020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 11/22/2022]
Abstract
Naturally occurring naphthoquinones (NQs) comprising highly reactive small molecules are the subject of increasing attention due to their promising biological activities such as antioxidant, antimicrobial, apoptosis-inducing activities, and especially anticancer activity. Lapachol, lapachone, and napabucasin belong to the NQs and are in phase II clinical trials for the treatment of many cancers. This review aims to provide a comprehensive and updated overview on the biological activities of several new NQs isolated from different species of plants reported from January 2013 to January 2020, their potential therapeutic applications and their clinical significance.
Collapse
Affiliation(s)
- Esmaeil Sheikh Ahmadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Asili
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nadine Kretschmer
- Department of Pharmacognosy, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Dunkoksung W, Vardhanabhuti N, Siripong P, Jianmongkol S. Rhinacanthin-C Mediated Herb-Drug Interactions with Drug Transporters and Phase I Drug-Metabolizing Enzymes. Drug Metab Dispos 2019; 47:1040-1049. [PMID: 31399508 DOI: 10.1124/dmd.118.085647] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/15/2019] [Indexed: 11/22/2022] Open
Abstract
Rhinacanthin-C is a major active constituent in Rhinacanthus nasutus (L.) Kurz, a plant widely used in herbal remedies. Its potential for pharmacokinetic herb-drug interaction may exist with drug transporters and drug metabolizing enzymes. This study assessed the possibility for rhinacanthin-C-mediated drug interaction by determining its inhibitory effects against major human efflux and influx drug transporters as well as various human cytochrome P450(CYP) isoforms. Rhinacanthin-C demonstrated a moderate permeability through the Caco-2 monolayers [Papp (AP-to-BL) = 1.26 × 10-6 cm/s]. It significantly inhibited transport mediated by both P-glycoprotein (P-gp) (IC50 = 5.20 µM) and breast cancer resistance protein (BCRP) (IC50 = 0.83 µM) across Caco-2 and BCRP-overexpressing Madin-Darby canine kidney II cells (MDCKII) cells. This compound also strongly inhibited uptake mediated by organic anion-transporting polypeptide 1B1 (OATP1B1) (IC50 = 0.70 µM) and OATP1B3 (IC50 = 3.95 µM) in OATP1B-overexpressing HEK cells. In addition to its inhibitory effect on these drug transporters, rhinacanthin-C significantly inhibited multiple human CYP isoforms including CYP2C8 (IC50 = 4.56 µM), 2C9 (IC50 = 1.52 µM), 2C19 (IC50 = 28.40 µM), and 3A4/5 (IC50 = 53 µM for midazolam and IC50 = 81.20 µM for testosterone), but not CYP1A2, 2A6, 2B6, 2D6, and 2E1. These results strongly support a high propensity for rhinacanthin-C as a perpetrator of clinical herb-drug interaction via inhibiting various influx and efflux drug transporters (i.e., P-gp, BCRP, OATP1B1, and OATP1B3) and CYP isoforms (i.e., CYP2C8, CYP2C9, and CYP2C19). Thus, the potential for significant pharmacokinetic herb-drug interaction should be addressed when herbal products containing rhinacanthin-C are to be used in conjunction with other prescription drugs.
Collapse
Affiliation(s)
- Wilasinee Dunkoksung
- Departments of Pharmacology and Physiology (W.D., S.J.) and Pharmaceutics and Industrial Pharmacy (N.V.), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and National Cancer Institute, Bangkok, Thailand (P.S.)
| | - Nontima Vardhanabhuti
- Departments of Pharmacology and Physiology (W.D., S.J.) and Pharmaceutics and Industrial Pharmacy (N.V.), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and National Cancer Institute, Bangkok, Thailand (P.S.)
| | - Pongpun Siripong
- Departments of Pharmacology and Physiology (W.D., S.J.) and Pharmaceutics and Industrial Pharmacy (N.V.), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and National Cancer Institute, Bangkok, Thailand (P.S.)
| | - Suree Jianmongkol
- Departments of Pharmacology and Physiology (W.D., S.J.) and Pharmaceutics and Industrial Pharmacy (N.V.), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand; and National Cancer Institute, Bangkok, Thailand (P.S.)
| |
Collapse
|
4
|
Villanueva S, Zhang W, Zecchinati F, Mottino A, Vore M. ABC Transporters in Extrahepatic Tissues: Pharmacological Regulation in Heart and Intestine. Curr Med Chem 2019; 26:1155-1184. [PMID: 29589524 DOI: 10.2174/0929867325666180327092639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
Abstract
ATP binding cassette (ABC) transporters are transmembrane proteins expressed in secretory epithelia like the liver, kidneys and intestine, in the epithelia exhibiting barrier function such as the blood-brain barrier and placenta, and to a much lesser extent, in tissues like reproductive organs, lungs, heart and pancreas, among others. They regulate internal distribution of endogenous metabolites and xenobiotics including drugs of therapeutic use and also participate in their elimination from the body. We here describe the function and regulation of ABC transporters in the heart and small intestine, as examples of extrahepatic tissues, in which ABC proteins play clearly different roles. In the heart, they are involved in tissue pathogenesis as well as in protecting this organ against toxic compounds and druginduced oxidative stress. The small intestine is highly exposed to therapeutic drugs taken orally and, consequently, ABC transporters localized on its surface strongly influence drug absorption and pharmacokinetics. Examples of the ABC proteins currently described are Multidrug Resistance-associated Proteins 1 and 2 (MRP1 and 2) for heart and small intestine, respectively, and P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) for both organs.
Collapse
Affiliation(s)
- Silvina Villanueva
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Wei Zhang
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| | - Felipe Zecchinati
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Aldo Mottino
- Instituto de Fisiologia Experimental, Facultad de Ciencias Bioquimicas y Farmaceuticas, CONICET-UNR. 2000 Rosario, Argentina
| | - Mary Vore
- Department of Toxicology & Cancer Biology, University of Kentucky, Lexington, KY 40536-0305, United States
| |
Collapse
|
5
|
Martins E, Silva V, Lemos A, Palmeira A, Puthongking P, Sousa E, Rocha-Pereira C, Ghanem CI, Carmo H, Remião F, Silva R. Newly Synthesized Oxygenated Xanthones as Potential P-Glycoprotein Activators: In Vitro, Ex Vivo, and In Silico Studies. Molecules 2019; 24:molecules24040707. [PMID: 30781374 PMCID: PMC6412186 DOI: 10.3390/molecules24040707] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/01/2019] [Accepted: 02/09/2019] [Indexed: 12/03/2022] Open
Abstract
P-glycoprotein (P-gp) plays a crucial role in the protection of susceptible organs, by significantly decreasing the absorption/distribution of harmful xenobiotics and, consequently, their toxicity. Therefore, P-gp has been proposed as a potential antidotal pathway, when activated and/or induced. Knowing that xanthones are known to interact with P-gp, the main goal was to study P-gp induction or/and activation by six new oxygenated xanthones (OX 1-6). Furthermore, the potential protection of Caco-2 cells against paraquat cytotoxicity was also assessed. The most promising compound was further tested for its ability to increase P-gp activity ex vivo, using everted intestinal sacs from adult Wistar-Han rats. The oxygenated xanthones interacted with P-gp in vitro, increasing P-gp expression and/or activity 24 h after exposure. Additionally, after a short-incubation period, several xanthones were identified as P-gp activators, as they immediately increased P-gp activity. Moreover, some xanthones decreased PQ cytotoxicity towards Caco-2 cells, an effect prevented under P-gp inhibition. Ex vivo, a significant increase in P-gp activity was observed in the presence of OX6, which was selectively blocked by a model P-gp inhibitor, zosuquidar, confirming the in vitro results. Docking simulations between a validated P-gp model and the tested xanthones predicted these interactions, and these compounds also fitted onto previously described P-gp induction and activation pharmacophores. In conclusion, the in vitro, ex vivo, and in silico results suggest the potential of some of the oxygenated xanthones in the modulation of P-gp, disclosing new perspectives in the therapeutics of intoxications by P-gp substrates.
Collapse
Affiliation(s)
- Eva Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Agostinho Lemos
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Andreia Palmeira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Ploenthip Puthongking
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - Carolina Rocha-Pereira
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Carolina I Ghanem
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires C1053, Argentina.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Drennen C, Gorse E, Stratford RE. Cellular Pharmacokinetic Model-Based Analysis of Genistein, Glyceollin, and MK-571 Effects on 5 (and 6)-Carboxy-2',7'-Dichloroflourescein Disposition in Caco-2 Cells. J Pharm Sci 2018; 107:1194-1203. [PMID: 29247742 PMCID: PMC5856607 DOI: 10.1016/j.xphs.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 12/16/2022]
Abstract
Pharmacokinetic modeling was used to describe 5 (and 6)-carboxy-2',7'-dichloroflourescein (CDF) disposition in Caco-2 cells following CDF or CDFDA (CDF diacetate) dosing. CDF transcellular flux was modeled by simple passive diffusion. CDFDA dosing models were based on simultaneous fitting of CDF levels in apical, basolateral, and intracellular compartments. Predicted CDF efflux was 50% higher across the apical versus the basolateral membrane. This difference was similar following apical and basolateral CDFDA dosing, despite intracellular levels being 3-fold higher following basolateral dosing, thus supporting nonsaturable CDF efflux kinetics. A 3-compartment catenary model with intracellular CDFDA hydrolysis described CDF disposition. This model predicted that apical CDF efflux was not altered in the presence of MK-571, and that basolateral membrane clearance was enhanced to account for reduced intracellular CDF in the presence of this multidrug resistance-associated protein (MRP) inhibitor. Similar effects were predicted for glyceollin, while genistein exposure had no predicted effects on CDF efflux. These modulator effects are discussed in the context of model predicted intracellular CDF concentrations relative to reports of CDF affinity (measured by Km) for MRP2 and MRP3. This model-based analysis confirms the complexity of efflux kinetics and suggests that other transporters may have contributed to CDF efflux.
Collapse
Affiliation(s)
- Callie Drennen
- Duquesne University School of Pharmacy, Graduate School of Pharmacetical Sciences, 600 Forbes Road, Pittsburgh, Pennsylvania 15282
| | - Erin Gorse
- Duquesne University School of Pharmacy, Graduate School of Pharmacetical Sciences, 600 Forbes Road, Pittsburgh, Pennsylvania 15282
| | - Robert E Stratford
- Duquesne University School of Pharmacy, Graduate School of Pharmacetical Sciences, 600 Forbes Road, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
7
|
Hanna I, Alexander N, Crouthamel MH, Davis J, Natrillo A, Tran P, Vapurcuyan A, Zhu B. Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition. Xenobiotica 2017; 48:300-313. [PMID: 28281384 DOI: 10.1080/00498254.2017.1295171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The potential for drug-drug interactions of LCZ696 (a novel, crystalline complex comprising sacubitril and valsartan) was investigated in vitro. 2. Sacubitril was shown to be a highly permeable P-glycoprotein (P-gp) substrate and was hydrolyzed to the active anionic metabolite LBQ657 by human carboxylesterase 1 (CES1b and 1c). The multidrug resistance-associated protein 2 (MRP2) was shown to be capable of LBQ657 and valsartan transport that contributes to the elimination of either compound. 3. LBQ657 and valsartan were transported by OAT1, OAT3, OATP1B1 and OATP1B3, whereas no OAT- or OATP-mediated sacubitril transport was observed. 4. The contribution of OATP1B3 to valsartan transport (73%) was appreciably higher than that by OATP1B1 (27%), Alternatively, OATP1B1 contribution to the hepatic uptake of LBQ657 (∼70%) was higher than that by OATP1B3 (∼30%). 5. None of the compounds inhibited OCT1/OCT2, MATE1/MATE2-K, P-gp, or BCRP. Sacubitril and LBQ657 inhibited OAT3 but not OAT1, and valsartan inhibited the activity of both OAT1 and OAT3. Sacubitril and valsartan inhibited OATP1B1 and OATP1B3, whereas LBQ657 weakly inhibited OATP1B1 but not OATP1B3. 6. Drug interactions due to the inhibition of transporters are unlikely due to the redundancy of the available transport pathways (LBQ657: OATP1B1/OAT1/3 and valsartan: OATP1B3/OAT1/3) and the low therapeutic concentration of the LCZ696 analytes.
Collapse
Affiliation(s)
- Imad Hanna
- a Novartis Institutes for BioMedical Research East Hanover, Drug Metabolism and Pharmacokinetics , East Hanover , NJ , United States
| | - Natalya Alexander
- a Novartis Institutes for BioMedical Research East Hanover, Drug Metabolism and Pharmacokinetics , East Hanover , NJ , United States
| | - Matthew H Crouthamel
- a Novartis Institutes for BioMedical Research East Hanover, Drug Metabolism and Pharmacokinetics , East Hanover , NJ , United States
| | - John Davis
- a Novartis Institutes for BioMedical Research East Hanover, Drug Metabolism and Pharmacokinetics , East Hanover , NJ , United States
| | - Adrienne Natrillo
- a Novartis Institutes for BioMedical Research East Hanover, Drug Metabolism and Pharmacokinetics , East Hanover , NJ , United States
| | - Phi Tran
- a Novartis Institutes for BioMedical Research East Hanover, Drug Metabolism and Pharmacokinetics , East Hanover , NJ , United States
| | - Arpine Vapurcuyan
- a Novartis Institutes for BioMedical Research East Hanover, Drug Metabolism and Pharmacokinetics , East Hanover , NJ , United States
| | - Bing Zhu
- a Novartis Institutes for BioMedical Research East Hanover, Drug Metabolism and Pharmacokinetics , East Hanover , NJ , United States
| |
Collapse
|
8
|
Rhinacanthin-C enhances doxorubicin cytotoxicity via inhibiting the functions of P-glycoprotein and MRP2 in breast cancer cells. Eur J Pharmacol 2017; 795:50-57. [DOI: 10.1016/j.ejphar.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/23/2022]
|
9
|
Myint K, Li Y, Paxton J, McKeage M. Multidrug Resistance-Associated Protein 2 (MRP2) Mediated Transport of Oxaliplatin-Derived Platinum in Membrane Vesicles. PLoS One 2015; 10:e0130727. [PMID: 26131551 PMCID: PMC4488857 DOI: 10.1371/journal.pone.0130727] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/24/2015] [Indexed: 12/15/2022] Open
Abstract
The platinum-based anticancer drug oxaliplatin is important clinically in cancer treatment. However, the role of multidrug resistance-associated protein 2 (MRP2) in controlling oxaliplatin membrane transport, in vivo handling, toxicity and therapeutic responses is unclear. In the current study, preparations of MRP2-expressing and control membrane vesicles, containing inside-out orientated vesicles, were used to directly characterise the membrane transport of oxaliplatin-derived platinum measured by inductively coupled plasma mass spectrometry. Oxaliplatin inhibited the ATP-dependent accumulation of the model MRP2 fluorescent probe, 5(6)-carboxy-2,'7'-dichlorofluorescein, in MRP2-expressing membrane vesicles. MRP2-expressing membrane vesicles accumulated up to 19-fold more platinum during their incubation with oxaliplatin and ATP as compared to control membrane vesicles and in the absence of ATP. The rate of ATP-dependent MRP2-mediated active transport of oxaliplatin-derived platinum increased non-linearly with increasing oxaliplatin exposure concentration, approaching a plateau value (Vmax) of 2680 pmol Pt/mg protein/10 minutes (95%CI, 2010 to 3360 pmol Pt/mg protein/10 minutes), with the half-maximal platinum accumulation rate (Km) at an oxaliplatin exposure concentration of 301 μM (95% CI, 163 to 438 μM), in accordance with Michaelis-Menten kinetics (r2 = 0.954). MRP2 inhibitors (myricetin and MK571) reduced the ATP-dependent accumulation of oxaliplatin-derived platinum in MRP2-expressing membrane vesicles in a concentration-dependent manner. To identify whether oxaliplatin, or perhaps a degradation product, was the likely substrate for this active transport, HPLC studies were undertaken showing that oxaliplatin degraded slowly in membrane vesicle incubation buffer containing chloride ions and glutathione, with approximately 95% remaining intact after a 10 minute incubation time and a degradation half-life of 2.24 hours (95%CI, 2.08 to 2.43 hours). In conclusion, MRP2 mediates the ATP-dependent active membrane transport of oxaliplatin-derived platinum. Intact oxaliplatin and its anionic monochloro oxalate ring-opened intermediate appear likely candidates as substrates for MRP2-mediated transport.
Collapse
Affiliation(s)
- Khine Myint
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Yan Li
- School of Applied Sciences, Auckland University of Technology, Auckland, New Zealand
| | - James Paxton
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Mark McKeage
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
10
|
Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: induction and activation as a therapeutic strategy. Pharmacol Ther 2015; 149:1-123. [PMID: 25435018 DOI: 10.1016/j.pharmthera.2014.11.013] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 01/03/2023]
Abstract
P-glycoprotein (P-gp) is an ATP-dependent efflux pump encoded by the MDR1 gene in humans, known to mediate multidrug resistance of neoplastic cells to cancer therapy. For several decades, P-gp inhibition has drawn many significant research efforts in an attempt to overcome this phenomenon. However, P-gp is also constitutively expressed in normal human epithelial tissues and, due to its broad substrate specificity, to its cellular polarized expression in many excretory and barrier tissues, and to its great efflux capacity, it can play a crucial role in limiting the absorption and distribution of harmful xenobiotics, by decreasing their intracellular accumulation. Such a defense mechanism can be of particular relevance at the intestinal level, by significantly reducing the intestinal absorption of the xenobiotic and, consequently, avoiding its access to the target organs. In this review, the current knowledge on this important efflux pump is summarized, and a new focus is brought on the therapeutic interest of inducing and/or activating P-gp for limiting the toxicity caused by its substrates. Several in vivo and in vitro studies validating the use of such a therapeutic strategy are discussed. An extensive literature search for reported P-gp inducers/activators and for the experimental models used in their characterization was conducted. Those studies demonstrate that effective antidotal pathways can be achieved by efficiently promoting the P-gp-mediated efflux of deleterious xenobiotics, resulting in a significant reduction in their intracellular levels and, consequently, in a significant reduction of their toxicity.
Collapse
Affiliation(s)
- Renata Silva
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Helena Carmo
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ricardo Jorge Dinis-Oliveira
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; INFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, Advanced Institute of Health Sciences - North (ISCS-N), CESPU, CRL, Gandra, Portugal; Department of Legal Medicine and Forensic Sciences, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
11
|
In vitro inhibitory effects of scutellarin on six human/rat cytochrome P450 enzymes and P-glycoprotein. Molecules 2014; 19:5748-60. [PMID: 24802986 PMCID: PMC6271944 DOI: 10.3390/molecules19055748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/25/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023] Open
Abstract
Inhibition of cytochrome P450 (CYP) and P-glycoprotein (P-gp) are regarded as the most frequent and clinically important pharmacokinetic causes among the various possible factors for drug-drug interactions. Scutellarin is a flavonoid which is widely used for the treatment of cardiovascular diseases. In this study, the in vitro inhibitory effects of scutellarin on six major human CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and six rat CYPs (CYP1A2, CYP2C7, CYP2C11, CYP2C79, CYP2D4, and CYP3A2) activities were examined by using liquid chromatography-tandem mass spectrometry. Meanwhile, the inhibitory effects of scutellarin on P-gp activity were examined on a human metastatic malignant melanoma cell line WM-266-4 by calcein-AM fluorometry screening assay. Results demonstrated that scutellarin showed negligible inhibitory effects on the six major CYP isoenzymes in human/rat liver microsomes with almost all of the IC50 values exceeding 100 μM, whereas it showed values of 63.8 μM for CYP2C19 in human liver microsomes, and 63.1 and 85.6 μM for CYP2C7 and CYP2C79 in rat liver microsomes, respectively. Scutellarin also showed weak inhibitory effect on P-gp. In conclusion, this study demonstrates that scutellarin is unlikely to cause any clinically significant herb-drug interactions in humans when co-administered with substrates of the six CYPs (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) and P-gp.
Collapse
|