1
|
Chenchula S, Ghanta MK, Alhammadi M, Mohammed A, Anitha K, Nuthalapati P, Raju GSR, Huh YS, Bhaskar L. Phytochemical compounds for treating hyperuricemia associated with gout: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4779-4801. [PMID: 39636406 DOI: 10.1007/s00210-024-03686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Gout is a prevalent metabolic disorder characterized by increased uric acid (UA) synthesis or decreased UA clearance from the bloodstream, leading to the formation of urate crystals in joints and surrounding tissues. Hyperuricemia (HUA), the underlying cause of gout, poses a growing challenge for healthcare systems in developed and developing countries. Currently, the most common therapeutic approaches for gouty HUA primarily involve the use of allopathic or modern medicine. However, these treatments are often accompanied by adverse effects and may not be universally effective for all patients. Therefore, this systematic review aims to provide a comprehensive outline of phytochemical compounds that have emerged as alternative treatments for HUA associated with gout and to examine their specific mechanisms of action. A systematic search was conducted to identify phytochemicals that have previously been evaluated for their effectiveness in reducing HUA. From a review of > 800 published articles, 100 studies reporting on 50 phytochemicals associated with the management of HUA and gout were selected for analysis. Experimental models were used to investigate the effects of these phytochemicals, many of which exhibited multiple mechanisms beneficial for managing HUA. This review offers valuable insights for identifying and developing novel compounds that are safer and more effective for treating HUA associated with gout.
Collapse
Affiliation(s)
- Santenna Chenchula
- Department of Pharmacology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| | - Mohan Krishna Ghanta
- Department of Pharmacology, MVJ Medical College and Research Hospital, Bangalore, 562114, Karnataka, India
| | - Munirah Alhammadi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Arifullah Mohammed
- Department of Agriculture Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, 17600, Jeli, Kelantan, Malaysia
- College of Agriculture, KL University, Vaddeswaram Campus, Guntur, Andhra Pradesh, 522302, India
| | - Kuttiappan Anitha
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Poojith Nuthalapati
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, India.
| |
Collapse
|
2
|
Verma PK, Tukra S, Singh B, Sharma P, Abdi G, Bhat ZF. Unveiling the ethnomedicinal potential of Alstonia scholaris (L.) R. Br.: A comprehensive review on phytochemistry, pharmacology and its applications. FOOD CHEMISTRY ADVANCES 2025; 6:100866. [DOI: 10.1016/j.focha.2024.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
3
|
Yu HF, Ding CF, Zhang LC, Mohamed KH, Dai Z, Wei X, Li XN, Liu YP, Zhang RP, Luo XD. Alstoscholarisine L, a novel caged monoterpenoid indole alkaloid with antifungal activity from Alstonia scholaris. Fitoterapia 2025; 180:106341. [PMID: 39667675 DOI: 10.1016/j.fitote.2024.106341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Alstoscholarisine L is an architecturally complex monoterpenoid indole alkaloid with a unique ring fusion pattern, isolated from the leaves of Alstonia scholaris. The 6/5/5/6/6/6-membered rings contain two lactonic rings and one aminal carbon and possess seven contiguous aligned stereocenters, three of which are quaternary. Its structure was elucidated by extensive spectroscopic data analyses, quantum chemical computations, and single-crystal X-ray diffraction. The unusual highly fused, cage-like skeleton is possibly derived from picrinine. The fascinating compound exhibited potential antifungal activity against Candida albicans, and its activity was roughly comparable to the first line antifungal drug fluconazole and significantly more effective than the plant-derived antibacterial drug berberine.
Collapse
Affiliation(s)
- Hao-Fei Yu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; School of Pharmaceutical Sciences, Yunnan College of Modern Biomedical Industry, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Cai-Feng Ding
- School of Pharmaceutical Sciences, Yunnan College of Modern Biomedical Industry, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Lan-Chun Zhang
- School of Pharmaceutical Sciences, Yunnan College of Modern Biomedical Industry, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Khalid-Hassan Mohamed
- School of Pharmaceutical Sciences, Yunnan College of Modern Biomedical Industry, Department of Zoology & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, PR China
| | - Zhi Dai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Xin Wei
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Xiao-Nian Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Ya-Ping Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
| | - Rong-Ping Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resources, Yunnan University of Traditional Chinese Medicine, Kunming 650500, PR China.
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China.
| |
Collapse
|
4
|
Guo Y, Peng X, Liu F, Zhang Q, Ding L, Li G, Qiu F. Potential of natural products in inflammation: biological activities, structure-activity relationships, and mechanistic targets. Arch Pharm Res 2024; 47:377-409. [PMID: 38739203 DOI: 10.1007/s12272-024-01496-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
A balance between the development and suppression of inflammation can always be found in the body. When this balance is disturbed, a strong inflammatory response can damage the body. It sometimes is necessary to use drugs with a significant anti-inflammatory effect, such as nonsteroidal anti-inflammatory drugs and steroid hormones, to control inflammation in the body. However, the existing anti-inflammatory drugs have many adverse effects, which can be deadly in severe cases, making research into new safer and more effective anti-inflammatory drugs necessary. Currently, numerous types of natural products with anti-inflammatory activity and distinct structural features are available, and these natural products have great potential for the development of novel anti-inflammatory drugs. This review summarizes 260 natural products and their derivatives with anti-inflammatory activities in the last two decades, classified by their active ingredients, and focuses on their structure-activity relationships in anti-inflammation to lay the foundation for subsequent new drug development. We also elucidate the mechanisms and pathways of natural products that exert anti-inflammatory effects via network pharmacology predictions, providing direction for identifying subsequent targets of anti-inflammatory natural products.
Collapse
Affiliation(s)
- Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Xuling Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Fanfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Qi Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Liqin Ding
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
5
|
Wu PQ, Li Y, Ren YH, Zhou JS, Liu QF, Wu Y, Yu JH, Zhou B, Yue JM. Anti-Inflammatory Salicin Derivatives from the Barks of Salix tetrasperma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38602386 DOI: 10.1021/acs.jafc.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The genus Salix L. is traditionally used in folk medicine to alleviate pain caused by various kinds of inflammation. In the present study, 10 undescribed salicin derivatives along with 5 known congeners were isolated from the barks of Salix tetrasperma, and their structures were elucidated by spectroscopic analyses, single-crystal X-ray diffraction, electronic circular dichroism (ECD) calculations, and chemical conversions. Compounds 4-6 significantly inhibited NO production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages, and the most active 4 obviously suppressed the production of IL-1β and IL-6 and decreased iNOS and COX-2 expression in a dose-dependent manner. Further Western blotting analysis revealed that the anti-inflammatory mechanism of 4 is possibly mediated through the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Pei-Qian Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, People's Republic of China
| | - Yu-Hao Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Yan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Jin-Hai Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, People's Republic of China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, People's Republic of China
| |
Collapse
|
6
|
Wu PQ, Liu ZD, Ren YH, Zhou JS, Liu QF, Wu Y, Zhang JL, Zhou B, Yue JM. Monoterpenoid indole alkaloids from Alstonia scholaris and their Toxoplasma gondii inhibitory activity. PHYTOCHEMISTRY 2024; 220:113993. [PMID: 38266954 DOI: 10.1016/j.phytochem.2024.113993] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Nine previously unreported various types of monoterpenoid indole alkaloids, together with seven known analogues were isolated from the stem barks of Alstonia scholaris through a silica gel free methodology. The structures of 1-9 were elucidated by spectroscopic data analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction. Compound 1 is a modified echitamine-type alkaloid with a novel 6/5/5/7/6/6 hetero hexacyclic bridged ring system, and 8 and 9 exist as a zwitterion and trifluoroacetate salt, respectively. The anti-Toxoplasma activity of all isolates on infected Vero cells were evaluated, which revealed that compound 14 at 0.24 μM displayed potent activity. This study expanded the structural diversity of alkaloids of A. scholaris, and presented their potential application in anti-Toxoplasma drug development.
Collapse
Affiliation(s)
- Pei-Qian Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Zhen-Di Liu
- Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yu-Hao Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Qun-Fang Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Yan Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Ji-Li Zhang
- Health Science Center, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China.
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, People's Republic of China.
| |
Collapse
|
7
|
Mohammed AE, Abdul-Hameed ZH, Alotaibi MO, Bawakid NO, Sobahi TR, Abdel-Lateff A, Alarif WM. Chemical Diversity and Bioactivities of Monoterpene Indole Alkaloids (MIAs) from Six Apocynaceae Genera. Molecules 2021; 26:488. [PMID: 33477682 PMCID: PMC7831967 DOI: 10.3390/molecules26020488] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/06/2023] Open
Abstract
By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Zainab H. Abdul-Hameed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Modhi O. Alotaibi
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Nahed O. Bawakid
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Tariq R. Sobahi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (Z.H.A.-H.); (N.O.B.); (T.R.S.)
| | - Ahmed Abdel-Lateff
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Walied M. Alarif
- Department of Marine Chemistry, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Discovery of natural anti-inflammatory alkaloids: Potential leads for the drug discovery for the treatment of inflammation. Eur J Med Chem 2021; 213:113165. [PMID: 33454546 DOI: 10.1016/j.ejmech.2021.113165] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Inflammation is an adaptive response of the immune system to tissue malfunction or homeostatic imbalance. Corticosteroids and non-steroidal anti-inflammatory drugs (NSAIDs) are frequently applied to treat varieties of inflammatory diseases but are associated with gastrointestinal, cardiovascular, and kidney side effects. Developing more effective and less toxic agents remain a challenge for pharmaceutical chemist due to the complexity of the different inflammatory processes. Alkaloids are widely distributed in plants with diverse anti-inflammatory activities, providing various potential lead compounds or candidates for the design and discovery of new anti-inflammatory drug candidates. Therefore, re-examining the anti-inflammatory alkaloid natural products is advisable, bringing more opportunities. In this review, we summarized and described the recent advances of natural alkaloids with anti-inflammatory activities and possible mechanisms in the period from 2009 to 2020. It is hoped that this review of anti-inflammatory alkaloids can provide new ideas for researchers engaged in the related fields and potential lead compounds for the discovery of anti-inflammatory drugs.
Collapse
|
9
|
Zhang YY, Zhang QQ, Zhang J, Song JL, Li JC, Han K, Huang JT, Jiang CS, Zhang H. Synthesis and evaluation of 1,2,4-oxadiazole derivatives as potential anti-inflammatory agents by inhibiting NF-κB signaling pathway in LPS-stimulated RAW 264.7 cells. Bioorg Med Chem Lett 2020; 30:127373. [DOI: 10.1016/j.bmcl.2020.127373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/27/2020] [Indexed: 12/21/2022]
|
10
|
Huo ZQ, Zhao Q, Liu JW, Zhu WT, Hao XJ, Zhang Y. Bousangine A, a novel C-17-nor aspidosperma-type monoterpenoid indole alkaloid from Bousigonia angustifolia. Fitoterapia 2020; 142:104491. [DOI: 10.1016/j.fitote.2020.104491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
|
11
|
Rosales PF, Bordin GS, Gower AE, Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia 2020; 143:104558. [PMID: 32198108 DOI: 10.1016/j.fitote.2020.104558] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/11/2023]
Abstract
Indole alkaloids have attracted attention because of their therapeutic properties, being anti-inflammatory, antinociceptive, antitumoural, antioxidant and antimicrobial. These compounds present a wide structural diversity, which is directly related to the genera of the producing plants, as well as the biological activities. Indole alkaloids have attracted attention over the last decade because of this combination of bioactivity and structural diversity. Therefore, this review presented recent (2012-2018) advances in alkaloids, focusing on new compounds, extraction methods and biological activities. As such, approximately 70 articles were identified, which showed 261 new compounds produced by plants of the families Apocynaceae, Rubiaceae, Annonaceae and Loganiaceae. In addition, different extraction methods were identified, and the structures of the new compounds were analysed. In addition to indole molecules, there were mono-indole-, di-indole-, vinblastine-, vimblastine-, gelsedine-, geissospermidine-, koumine-, geissospermidine-, iboga-, perakine-, corynanthe-, vincamine-, ajmaline-, aspidorpema-, strychnos-type, β-carboline alkaloids and indole alkaloid glucosides. The reported biological activities are mainly anticancer, antibacterial, antimalarial, antifungal, antiparasitic, and antiviral, as well as anti-acetylcholinesterase and anti-butyrylcolinesterase properties. This review serves as a guide for those wishing to find the most recently identified alkaloid structures and their associated activities.
Collapse
Affiliation(s)
- Pauline Fagundes Rosales
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil; IFRS -Federal Institute of Education, Science and Technology of Rio Grande do Sul, Campus Bento Gonçalves, Brazil
| | - Gabriela Sandri Bordin
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Adriana Escalona Gower
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Sidnei Moura
- LBIOP - Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Biotechnology Institute, University of Caxias do Sul, Caxias do Sul, Brazil.
| |
Collapse
|
12
|
Bankeu JJK, Sattar H, Fongang YSF, Muhammadi SW, Simoben CV, Ntie-Kang F, Feuya GRT, Tchuenmogne MAT, Lateef M, Lenta BN, Ali MS, Ngouela AS. Synthesis, Urease Inhibition and Molecular Modelling Studies of Novel Derivatives of the Naturally Occurring β-Amyrenone. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:49-59. [PMID: 30488317 PMCID: PMC6328428 DOI: 10.1007/s13659-018-0193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Urease enzyme (UE) has been reported to be a potent virulence factor for Helicobacter pylori (HP) bacteria indicated to be responsible for various gastrointestinal diseases. Therefore, the spread of HP, currently regarded by the World Health Organization as a class 1 carcinogen, could be better controlled by targeting UE. It is in this line that we have synthesized three new derivatives (2-4) of the naturally occurring olean-12-en-3-one (1), which was previously isolated from the figs of Ficus vallis-choudae Delile (Moraceae). Among the synthesized compounds, 3 and 4 contain an indole moiety. Their structures were unambiguously assigned by spectroscopic and spectrometric techniques (1D-NMR, 2D-NMR and MS). The starting material and the synthesized compounds were screened for UE inhibition activity, and showed significant activities with IC50 values ranging from 14.5 to 24.6 μM, with compound (1) being the most potent as compared to the positive control thiourea (IC50 = 21.6 μM). Amongst the synthetic derivatives, compound 4 was the most potent (IC50 = 17.9 μM), while the others showed activities close to that of the control. In addition, molecular docking study of target compounds 2-4 was performed in an attempt to explore their binding mode for the design of more potent UE inhibitors.
Collapse
Affiliation(s)
- Jean J K Bankeu
- Department of Chemistry, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, Cameroon.
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Hira Sattar
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Yannick S F Fongang
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
- Department of Chemistry, Higher Teacher Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
| | - Syeda W Muhammadi
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Conrad V Simoben
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany
| | - Fidele Ntie-Kang
- Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120, Halle (Saale), Germany.
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon.
| | - Guy R T Feuya
- Department of Chemistry, Faculty of Science, Scientific and Technical University of Masuku, Box 943, Franceville, Gabon
| | - Marthe A T Tchuenmogne
- Department of Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Mehreen Lateef
- Multi-Disciplinary Research Laboratory (MDRL), Bahria University Medical and Dental College, Bahria University, Karachi, Pakistan
| | - Bruno N Lenta
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon.
| | - Muhammad S Ali
- International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Augustin S Ngouela
- Department of Chemistry, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|