1
|
Oladokun S, Alizadeh M, Mallick AI, Fazel F, Doost JS, Blake K, Denis MS, Raj S, Sharif S. Influenza a virus subtype H9N2 infection induces respiratory microbiota dysbiosis in chickens via type-I interferon-mediated mechanisms. FEMS MICROBES 2025; 6:xtaf001. [PMID: 39991080 PMCID: PMC11843552 DOI: 10.1093/femsmc/xtaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/10/2024] [Accepted: 02/02/2025] [Indexed: 02/25/2025] Open
Abstract
Avian influenza virus (AIV) poses significant threats to poultry and human health. This study investigates the impact of H9N2 AIV infection on the respiratory microbiota of chickens using 16S rRNA gene sequencing. Total 48 one-day-old specific pathogen-free chickens were assigned to six groups: a control and five post-infection groups (days 1, 3, 5, 7, and 9). After a 15-day microbiota stabilization period, the infected chickens received a viral inoculum (107 TCID50/ml) via ocular, intra-nasal, and intra-tracheal routes. Tracheal and broncho-alveolar lavage samples were analyzed. Significant reductions in microbiota diversity were observed on days 5, 7, and 9 post-infection, compared to d0 controls. Permutational Multivariate Analysis of Variance confirmed significant beta diversity differences (P = 0.001) between infected and uninfected groups. The microbial shifts from d5 to d9 were marked by increased Proteobacteria, decreased Actinobacteria and Firmicutes, and a rise in Dickeya. Elevated type-I interferon (IFN-β) and viperin gene expression at d5 coincided with reduced microbiota diversity, highlighting the respiratory microbiota's role in modulating host responses to AIV H9N2 infection and suggesting potential biomarkers for respiratory dysbiosis.
Collapse
Affiliation(s)
- Samson Oladokun
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Amirul I Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, India
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Janan Shoja Doost
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Katherine Blake
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Myles St Denis
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Rattanaburi S, Sawaswong V, Chitcharoen S, Sivapornnukul P, Nimsamer P, Suntronwong N, Puenpa J, Poovorawan Y, Payungporn S. Bacterial microbiota in upper respiratory tract of COVID-19 and influenza patients. Exp Biol Med (Maywood) 2022; 247:409-415. [PMID: 34775842 PMCID: PMC8919321 DOI: 10.1177/15353702211057473] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/16/2021] [Indexed: 01/04/2023] Open
Abstract
The upper respiratory tract is inhabited by diverse range of commensal microbiota which plays a role in protecting the mucosal surface from pathogens. Alterations of the bacterial community from respiratory viral infections could increase the susceptibility to secondary infections and disease severities. We compared the upper respiratory bacterial profiles among Thai patients with influenza or COVID-19 by using 16S rDNA high-throughput sequencing based on MiSeq platform. The Chao1 richness was not significantly different among groups, whereas the Shannon diversity of Flu A and Flu B groups were significantly lower than Non-Flu & COVID-19 group. The beta diversity revealed that the microbial communities of influenza (Flu A and Flu B), COVID-19, and Non-Flu & COVID-19 were significantly different; however, the comparison of the community structure was similar between Flu A and Flu B groups. The bacterial classification revealed that Enterobacteriaceae was predominant in influenza patients, while Staphylococcus and Pseudomonas were significantly enriched in the COVID-19 patients. These implied that respiratory viral infections might be related to alteration of upper respiratory bacterial community and susceptibility to secondary bacterial infections. Moreover, the bacteria that observed in Non-Flu & COVID-19 patients had high abundance of Streptococcus, Prevotella, Veillonella, and Fusobacterium. This study provides the basic knowledge for further investigation of the relationship between upper respiratory microbiota and respiratory disease which might be useful for better understanding the mechanism of viral infectious diseases.
Collapse
Affiliation(s)
- Somruthai Rattanaburi
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suwalak Chitcharoen
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavaret Sivapornnukul
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Liu X, Fang Z, Deng Y, Lu W, Zhang P, Zhang H, Zhao J, Chen W. Oral administration of probiotics protected mice from influenza virus infection. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Iorio A, Biazzo M, Gardini S, Muda AO, Perno CF, Dallapiccola B, Putignani L. Cross-correlation of virome-bacteriome-host-metabolome to study respiratory health. Trends Microbiol 2021; 30:34-46. [PMID: 34052095 DOI: 10.1016/j.tim.2021.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
A comprehensive understanding of the microbiome-host relationship in respiratory diseases can be elucidated by exploring the landscape of virome-bacteriome-host metabolome data through unsupervised 'multi-omics' approaches. Here, we describe how the composition and function of airway and gut virome and bacteriome may contribute to pathogen establishment and propagation in airway districts and how the virome-bacteriome communities may react to respiratory diseases. A new systems medicine approach, including the characterization of respiratory and gut microbiome, may be crucial to demonstrate the likelihood and odds of respiratory disease pathophysiology, opening new avenues to the discovery of a chain of causation for key bacteria and viruses in disease severity.
Collapse
Affiliation(s)
- Andrea Iorio
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manuele Biazzo
- The BioArte Ltd, The Victoria Centre, Mosta, Malta; SienaBioActive, University of Siena, Siena, Italy
| | | | - Andrea Onetti Muda
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Unit of Microbiology and Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Scientific Directorate, Children's Hospital and Research Institute 'Bambino Gesù', IRCCS, Rome
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
5
|
Zhou Y, Zhang M, Liu Q, Feng J. The alterations of tracheal microbiota and inflammation caused by different levels of ammonia exposure in broiler chickens. Poult Sci 2021; 100:685-696. [PMID: 33518122 PMCID: PMC7858136 DOI: 10.1016/j.psj.2020.11.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ammonia (NH3) is a known harmful gas and exists in haze, forming secondary organic aerosols. Exposure to ambient ammonia correlates with the respiratory tract infection, and microbiota in the upper respiratory tract is an emerging crucial player in the homeostatic regulation of respiratory tract infection, and microbiota perturbation is usually accompanied by the inflammatory reactions; however, the effects of different levels of ammonia exposure on tracheal microbiota and inflammation are unclear. A total of 288 22-day-old male Arbor Acres broilers were chosen and divided into 4 groups with 6 replicates of 12 chickens, and respectively exposed to ammonia at 0, 15, 25, and 35 ppm for 21-d trial period. Cytokines (interleukin (IL)-1β, IL-6, and IL-10) in the trachea were measured at the 21 d of exposure to NH3. Tracheal microbiota at the 21 d was analyzed by the 16S rRNA gene analysis. The results showed that an increase in ammonia levels, even in 15 ppm, significantly decreased the alpha diversity and changed the bacterial community structure. Six genera (Faecalibacterium, Ruminococcus]_torques_group, unclassified_f__Lachnospiraceae, Ruminococcaceae_UCG-014, Streptococcus, Blautia) significantly increased, whereas Lactobacillus significantly decreased under different levels of ammonia exposure. We also observed positive associations of Faecalibacterium, Blautia, g__Ruminococcaceae_UCG-014, unclassified_f__Lachnospiraceae and Ruminococcus]_torques_group abundances with tracheal IL-1β concentration. Moreover, an increase in ammonia levels, even in 15 ppm, caused respiratory tract inflammatory injury. The results indicated that 15 ppm ammonia exposure changed the composition of tracheal microbiota that caused the tracheal injury possibly through increasing the IL-1β, which might make the broiler more sensitive to the changes of environment and pathogenic micro-organisms in the poultry house, and may be also a critical value that needs high alertness. Herein, the present experiment also suggested that the standard limit of ammonia concentration in adult poultry house is 15 ppm. This research provides an insight into the relationship between the upper respiratory tract microbiota and inflammation under ammonia exposure.
Collapse
Affiliation(s)
- Ying Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| | - Minhong Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China.
| | - Qingxiu Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| | - Jinghai Feng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Beijing, China
| |
Collapse
|
6
|
Infusino F, Marazzato M, Mancone M, Fedele F, Mastroianni CM, Severino P, Ceccarelli G, Santinelli L, Cavarretta E, Marullo AGM, Miraldi F, Carnevale R, Nocella C, Biondi-Zoccai G, Pagnini C, Schiavon S, Pugliese F, Frati G, d’Ettorre G. Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review. Nutrients 2020; 12:1718. [PMID: 32521760 PMCID: PMC7352781 DOI: 10.3390/nu12061718] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) global pandemic is a devastating event that is causing thousands of victims every day around the world. One of the main reasons of the great impact of coronavirus disease 2019 (COVID-19) on society is its unexpected spread, which has not allowed an adequate preparation. The scientific community is fighting against time for the production of a vaccine, but it is difficult to place a safe and effective product on the market as fast as the virus is spreading. Similarly, for drugs that can directly interfere with viral pathways, their production times are long, despite the great efforts made. For these reasons, we analyzed the possible role of non-pharmacological substances such as supplements, probiotics, and nutraceuticals in reducing the risk of Sars-CoV-2 infection or mitigating the symptoms of COVID-19. These substances could have numerous advantages in the current circumstances, are generally easily available, and have negligible side effects if administered at the already used and tested dosages. Large scientific evidence supports the benefits that some bacterial and molecular products may exert on the immune response to respiratory viruses. These could also have a regulatory role in systemic inflammation or endothelial damage, which are two crucial aspects of COVID-19. However, there are no specific data available, and rigorous clinical trials should be conducted to confirm the putative benefits of diet supplementation, probiotics, and nutraceuticals in the current pandemic.
Collapse
Affiliation(s)
- Fabio Infusino
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Massimo Mancone
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Francesco Fedele
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Paolo Severino
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- Mediterranea Cardiocentro, 80133 Naples, Italy
| | - Antonino G. M. Marullo
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
| | - Fabio Miraldi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- Mediterranea Cardiocentro, 80133 Naples, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.I.); (M.M.); (F.F.); (P.S.); (F.M.); (C.N.)
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- Mediterranea Cardiocentro, 80133 Naples, Italy
| | - Cristiano Pagnini
- Department of Gastroenterology and Digestive Endoscopy, Azienda Ospedaliera San Giovanni Addolorata, 00184 Rome, Italy;
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
| | - Francesco Pugliese
- Department of General Surgery and Surgical Specialities “Paride Stefanini”, Sapienza, University of Rome, 00185 Rome, Italy;
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (A.G.M.M.); (R.C.); (G.B.-Z.); (S.S.); (G.F.)
- IRCCS NeuroMed, 86077 Pozzilli (IS), Italy
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza, University of Rome, 00185 Rome, Italy; (M.M.); (C.M.M.); (G.C.); (L.S.)
| |
Collapse
|
7
|
Li N, Ma WT, Pang M, Fan QL, Hua JL. The Commensal Microbiota and Viral Infection: A Comprehensive Review. Front Immunol 2019; 10:1551. [PMID: 31333675 PMCID: PMC6620863 DOI: 10.3389/fimmu.2019.01551] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The human body is inhabited by a diverse microbial community that is collectively coined as commensal microbiota. Recent research has greatly advanced our understanding of how the commensal microbiota affects host health. Among the various kinds of pathogenic infections of the host, viral infections constitute one of the most serious public health problems worldwide. During the infection process, viruses may have substantial and intimate interactions with the commensal microbiota. A plethora of evidence suggests that the commensal microbiota regulates and is in turn regulated by invading viruses through diverse mechanisms, thereby having stimulatory or suppressive roles in viral infections. Furthermore, the integrity of the commensal microbiota can be disturbed by invading viruses, causing dysbiosis in the host and further influencing virus infectivity. In the present article, we discuss current insights into the regulation of viral infection by the commensal microbiota. We also draw attention to the disruption of microbiota homeostasis by several viruses.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Wen-Tao Ma
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Ming Pang
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Qin-Lei Fan
- Animal Health and Epidemiology Center, Qingdao, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| |
Collapse
|
8
|
Britton AP, Trapp M, Sabaiduc S, Hsiao W, Joseph T, Schwantje H. Probable reverse zoonosis of influenza A(H1N1)pdm 09 in a striped skunk (
Mephitis mephitis
). Zoonoses Public Health 2018; 66:422-427. [DOI: 10.1111/zph.12553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Ann P. Britton
- Animal Health Centre BC Ministry of Agriculture Abbotsford British Columbia Canada
| | - Melissa Trapp
- Animal Health Centre BC Ministry of Agriculture Abbotsford British Columbia Canada
| | - Suzana Sabaiduc
- British Columbia Centre for Disease Control Public Health Laboratory Vancouver British Columbia Canada
| | - William Hsiao
- British Columbia Centre for Disease Control Public Health Laboratory Vancouver British Columbia Canada
| | - Tomy Joseph
- Animal Health Centre BC Ministry of Agriculture Abbotsford British Columbia Canada
| | - Helen Schwantje
- Wildlife and Habitat Branch BC Ministry of Forests, Lands, Natural Resource Operations and Rural Development Nanaimo British Columbia Canada
| |
Collapse
|