1
|
Bigey F, Menatong Tene X, Wessner M, Devillers H, Pradal M, Cruaud C, Aury JM, Neuvéglise C. Insights into the genomic and phenotypic diversity of Monosporozyma unispora strains isolated from anthropic environments. FEMS Yeast Res 2025; 25:foaf016. [PMID: 40121180 PMCID: PMC11974382 DOI: 10.1093/femsyr/foaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Food microorganisms have been employed for centuries for the processing of fermented foods, leading to adapted populations with phenotypic traits of interest. The yeast Monosporozyma unispora (formerly Kazachstania unispora) has been identified in a wide range of fermented foods and beverages. Here, we studied the genetic and phenotypic diversity of a collection of 53 strains primarily derived from cheese, kefir, and sourdough. The 12.7-Mb genome of the type strain CLIB 234T was sequenced and assembled into near-complete chromosomes and annotated at the structural and functional levels, with 5639 coding sequences predicted. Comparison of the pangenome and core genome revealed minimal differences. From the complete yeast collection, we gathered genetic data (diversity, phylogeny, and population structure) and phenotypic data (growth capacity on solid media). Population genomic analyses revealed a low level of nucleotide diversity and strong population structure, with the presence of two major clades corresponding to ecological origins (cheese and kefir vs. plant derivatives). A high prevalence of extensive loss of heterozygosity and a slow linkage disequilibrium decay suggested a predominantly clonal mode of reproduction. Phenotypic analyses revealed growth variation under stress conditions, including high salinity and low pH, but no definitive link between phenotypic traits and environmental adaptation was established.
Collapse
Affiliation(s)
- Frédéric Bigey
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | | | - Marc Wessner
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Hugo Devillers
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry 91057, France
| | - Cécile Neuvéglise
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier 34060, France
| |
Collapse
|
2
|
Mukherjee A, Breselge S, Dimidi E, Marco ML, Cotter PD. Fermented foods and gastrointestinal health: underlying mechanisms. Nat Rev Gastroenterol Hepatol 2024; 21:248-266. [PMID: 38081933 DOI: 10.1038/s41575-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/20/2023]
Abstract
Although fermentation probably originally developed as a means of preserving food substrates, many fermented foods (FFs), and components therein, are thought to have a beneficial effect on various aspects of human health, and gastrointestinal health in particular. It is important that any such perceived benefits are underpinned by rigorous scientific research to understand the associated mechanisms of action. Here, we review in vitro, ex vivo and in vivo studies that have provided insights into the ways in which the specific food components, including FF microorganisms and a variety of bioactives, can contribute to health-promoting activities. More specifically, we draw on representative examples of FFs to discuss the mechanisms through which functional components are produced or enriched during fermentation (such as bioactive peptides and exopolysaccharides), potentially toxic or harmful compounds (such as phytic acid, mycotoxins and lactose) are removed from the food substrate, and how the introduction of fermentation-associated live or dead microorganisms, or components thereof, to the gut can convey health benefits. These studies, combined with a deeper understanding of the microbial composition of a wider variety of modern and traditional FFs, can facilitate the future optimization of FFs, and associated microorganisms, to retain and maximize beneficial effects in the gut.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, London, UK
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Cork, Ireland.
- APC Microbiome Ireland, Cork, Ireland.
- VistaMilk, Cork, Ireland.
| |
Collapse
|
3
|
Wróblewska B, Kuliga A, Wnorowska K. Bioactive Dairy-Fermented Products and Phenolic Compounds: Together or Apart. Molecules 2023; 28:8081. [PMID: 38138571 PMCID: PMC10746084 DOI: 10.3390/molecules28248081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Fermented dairy products (e.g., yogurt, kefir, and buttermilk) are significant in the dairy industry. They are less immunoreactive than the raw materials from which they are derived. The attractiveness of these products is based on their bioactivity and properties that induce immune or anti-inflammatory processes. In the search for new solutions, plant raw materials with beneficial effects have been combined to multiply their effects or obtain new properties. Polyphenols (e.g., flavonoids, phenolic acids, lignans, and stilbenes) are present in fruit and vegetables, but also in coffee, tea, or wine. They reduce the risk of chronic diseases, such as cancer, diabetes, or inflammation. Hence, it is becoming valuable to combine dairy proteins with polyphenols, of which epigallocatechin-3-gallate (EGCG) and chlorogenic acid (CGA) show a particular predisposition to bind to milk proteins (e.g., α-lactalbumin β-lactoglobulin, αs1-casein, and κ-casein). Reducing the allergenicity of milk proteins by combining them with polyphenols is an essential issue. As potential 'metabolic prebiotics', they also contribute to stimulating the growth of beneficial bacteria and inhibiting pathogenic bacteria in the human gastrointestinal tract. In silico methods, mainly docking, assess the new structures of conjugates and the consequences of the interactions that are formed between proteins and polyphenols, as well as to predict their action in the body.
Collapse
Affiliation(s)
- Barbara Wróblewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Science, 10-748 Olsztyn, Poland; (A.K.); (K.W.)
| | | | | |
Collapse
|
4
|
Côco LZ, Aires R, Carvalho GR, Belisário EDS, Yap MKK, Amorim FG, Conde-Aranda J, Nogueira BV, Vasquez EC, Pereira TDMC, Campagnaro BP. Unravelling the Gastroprotective Potential of Kefir: Exploring Antioxidant Effects in Preventing Gastric Ulcers. Cells 2023; 12:2799. [PMID: 38132119 PMCID: PMC10742242 DOI: 10.3390/cells12242799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The present study was conducted to evaluate the protective effect of milk kefir against NSAID-induced gastric ulcers. Male Swiss mice were divided into three groups: control (Vehicle; UHT milk at a dose of 0.3 mL/100 g), proton pump inhibitor (PPI; lansoprazole 30 mg/kg), and 4% milk kefir (Kefir; 0.3 mL/100 g). After 14 days of treatment, gastric ulcer was induced by oral administration of indomethacin (40 mg/kg). Reactive oxygen species (ROS), nitric oxide (NO), DNA content, cellular apoptosis, IL-10 and TNF-α levels, and myeloperoxidase (MPO) enzyme activity were determined. The interaction networks between NADPH oxidase 2 and kefir peptides 1-35 were determined using the Residue Interaction Network Generator (RING) webserver. Pretreatment with kefir for 14 days prevented gastric lesions. In addition, kefir administration reduced ROS production, DNA fragmentation, apoptosis, and TNF-α systemic levels. Simultaneously, kefir increased NO bioavailability in gastric cells and IL-10 systemic levels. A total of 35 kefir peptides showed affinity with NADPH oxidase 2. These findings suggest that the gastroprotective effect of kefir is due to its antioxidant and anti-inflammatory properties. Kefir could be a promising natural therapy for gastric ulcers, opening new perspectives for future research.
Collapse
Affiliation(s)
- Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Rafaela Aires
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Glaucimeire Rocha Carvalho
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Eduarda de Souza Belisário
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | | | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, 4000 Liège, Belgium;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Breno Valentim Nogueira
- Department of Morphology, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil;
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Thiago de Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| |
Collapse
|
5
|
Arrieta-Echeverri MC, Fernandez GJ, Duarte-Riveros A, Correa-Álvarez J, Bardales JA, Villanueva-Mejía DF, Sierra-Zapata L. Multi-omics characterization of the microbial populations and chemical space composition of a water kefir fermentation. Front Mol Biosci 2023; 10:1223863. [PMID: 37849822 PMCID: PMC10577418 DOI: 10.3389/fmolb.2023.1223863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics. These methods were applied in two types of samples: fermentation grains (inoculum) and fermentation samples collected at different time points. A strains culture collection of ∼90 strains was established by means of culture-dependent methods, mainly consisting of individuals of Pichia membranifaciens, Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii, Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania exigua, which can be further studied for their use in synthetic consortia formulation. In addition, metabarcoding of each fermentation time was done by 16S and ITS sequencing for bacteria and yeast, respectively. The results show strong population shifts of the microbial community during the fermentation time course, with an enrichment of microbial groups after 72 h of fermentation. Metataxonomics results revealed Lactobacillus and Acetobacter as the dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P. membranifaciens was the dominant species. In addition, correlation and systematic analyses of microbial growth patterns and metabolite richness allowed the recognition of metabolic enrichment points between 72 and 96 h and correlation between microbial groups and metabolite abundance (e.g., Bile acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced the production of bioactive compounds in this fermented matrix, which have been associated with biological activities, including antimicrobial and antioxidant. Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was also found, representing an important finding since this compound, with hepatoprotective and anti-inflammatory activity, had not been previously reported in this matrix. We conclude that the integration of microbial biodiversity, cultured species, and chemical data enables the identification of relevant microbial population patterns and the detection of specific points of enrichment during the fermentation process of a food matrix, which enables the future design of synthetic microbial consortia, which can be used as targeted probiotics for digestive and metabolic health.
Collapse
Affiliation(s)
| | - Geysson Javier Fernandez
- Infectious Diseases Biology and Control Group (BCEI), Universidad de Antioquia UdeA, Medellín, Colombia
| | | | - Javier Correa-Álvarez
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| | | | | | - Laura Sierra-Zapata
- Research Group CIBIOP, School of Applied Sciences and Engineering, Universidad EAFIT, Medellín, Antioquia, Colombia
| |
Collapse
|
6
|
Moreno-León GR, Avila-Reyes SV, Villalobos-Espinosa JC, Camacho-Díaz BH, Tapia-Maruri D, Jiménez-Aparicio AR, Arenas-Ocampo ML, Solorza-Feria J. Effect of Agave Fructans on Changes in Chemistry, Morphology and Composition in the Biomass Growth of Milk Kefir Grains. Microorganisms 2023; 11:1570. [PMID: 37375072 DOI: 10.3390/microorganisms11061570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prebiotic effects have been attributed to agave fructans through bacterial and yeast fermentations, but there are few reports on their use as raw materials of a carbon source. Kefir milk is a fermented drink with lactic acid bacteria and yeast that coexist in a symbiotic association. During fermentation, these microorganisms mainly consume lactose and produce a polymeric matrix called kefiran, which is an exopolysaccharide composed mainly of water-soluble glucogalactan, suitable for the development of bio-degradable films. Using the biomass of microorganisms and proteins together can be a sustainable and innovative source of biopolymers. In this investigation, the effects of lactose-free milk as a culture medium and the addition of other carbon sources (dextrose, fructose, galactose, lactose, inulin and fructans) in concentrations of 2, 4 and 6% w/w, coupled with initial parameters such as temperature (20, 25 and 30 °C), % of starter inoculum (2, 5 and 10% w/w) was evaluated. The method of response surface analysis was performed to determine the optimum biomass production conditions at the start of the experiment. The response surface method showed that a 2% inoculum and a temperature of 25 °C were the best parameters for fermentation. The addition of 6% w/w agave fructans in the culture medium favored the growth of biomass (75.94%) with respect to the lactose-free culture medium. An increase in fat (3.76%), ash (5.57%) and protein (7.12%) content was observed when adding agave fructans. There was an important change in the diversity of microorganisms with an absence of lactose. These compounds have the potential to be used as a carbon source in a medium culture to increase kefir granule biomass. There was an important change in the diversity of microorganisms with an absence of lactose, where the applied image digital analysis led to the identification of the morphological changes in the kefir granules through modification of the profile of such microorganisms.
Collapse
Affiliation(s)
- Germán R Moreno-León
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Sandra V Avila-Reyes
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
- CONAHCyT- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Julieta C Villalobos-Espinosa
- Tecnológico Nacional de México/Campus ITS Teziutlán, Ingeniería en Industrias Alimentarias, Fracción I y II Aire Libre S/N, Teziutlán C.P. 73960, Puebla, Mexico
| | - Brenda H Camacho-Díaz
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Daniel Tapia-Maruri
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Antonio R Jiménez-Aparicio
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Martha L Arenas-Ocampo
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Javier Solorza-Feria
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| |
Collapse
|
7
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
8
|
Youn HY, Kim DH, Kim HJ, Jang YS, Song KY, Bae D, Kim H, Seo KH. A Combined In Vitro and In Vivo Assessment of the Safety of the Yeast Strains Kluyveromyces marxianus A4 and A5 Isolated from Korean Kefir. Probiotics Antimicrob Proteins 2023; 15:129-138. [PMID: 35034322 DOI: 10.1007/s12602-021-09872-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/18/2023]
Abstract
Kefir is a traditional fermented milk containing beneficial bacteria and yeasts. Despite Kluyveromyces marxianus, isolated from kefir, gaining increasing attention as a potential probiotic yeast owing to its biological function, Saccharomyces boulardii is the only species considered as a probiotic yeast. We evaluated the safety of K. marxianus strains A4 and A5, isolated from Korean kefir, in comparison with that of S. boulardii. Virulence attributes were preliminarily assessed in vitro including their ability of gelatin hydrolysis, pseudohyphae formation, and hemolysis. To evaluate in vivo safety, the strains were challenged in a healthy animal model, four-week-old female BALB/c mice. Mice were orally administered 0.2 mL of 0.9% sterilized saline (NC_S; n = 6), S. boulardii ATCC MYA-796 (high concentration, S.b_H; low concentration, S.b_L; n = 6 for each), K. marxianus A4 (high concentration, A4_H; low concentration, A4_L; n = 6 for each), or K. marxianus A5 (high concentration, A5_H; low concentration, A5_L; n = 6 for each) for 2 weeks. At study end, body weight, spleen and liver weights, and blood parameters were assessed. K. marxianus A4 and A5 were tested negative for gelatinase and hemolysis. Overall, hematological, plasma biochemical, and cytokine (interleukin-1β and tumor necrosis factor-α) parameters were comparable between the experimental and negative control (NC) groups. Notably, the interleukin-6 level of the A5_H group was significantly lower than that of the NC group (p < 0.05), suggesting anti-inflammatory potential of K. marxianus A5.
Collapse
Affiliation(s)
- Hye-Young Youn
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Dong-Hyeon Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyeon-Jin Kim
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Yong-Seok Jang
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Kwang-Young Song
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Dongryeoul Bae
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Hyunsook Kim
- Department of Food & Nutrition, College of Human Ecology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, South Korea
| | - Kun-Ho Seo
- Center for One Health, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
9
|
Nascimento da Silva K, Fávero AG, Ribeiro W, Ferreira CM, Sartorelli P, Cardili L, Bogsan CS, Bertaglia Pereira JN, de Cássia Sinigaglia R, Cristina de Moraes Malinverni A, Ribeiro Paiotti AP, Miszputen SJ, Ambrogini-Júnior O. Effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Heliyon 2022; 9:e12707. [PMID: 36685418 PMCID: PMC9852935 DOI: 10.1016/j.heliyon.2022.e12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Background and aim The etiopathogenesis of inflammatory bowel disease (IBD) is associated with different factors such as genetic, infectious, immunological, and environmental, including modification of the gut microbiota. IBD's conventional pharmacological therapeutic approaches have become a challenge due to side effects, complications from prolonged use, and higher costs. Kefir fermented milk beverage is a functional food that has demonstrated multiple beneficial effects including anti-inflammatory and antioxidant activity. Alternative therapeutic strategies have been used for IBD as more natural products with low-cost and easy acquisition. The aim of this study is to evaluate the anti-inflammatory effects of kefir fermented milk beverage on sodium dextran sulfate (DSS)-induced colitis in rats. Methods We used 4 groups to perform this study: baseline control (BC), kefir control (KC), 5% untreated DSS-induced colitis (DSS), and 5% DSS-induced colitis treated with kefir (DSSK). The animals received fermented kefir milk beverage ad libitum for six days and the disease activity index was recorded daily. Colon samples were processed for Transmission Electron Microscopy and histopathological evaluation. We analyzed short fatty chain acids through the fecal sample using gas chromatography. Results Kefir supplementation was able to reduce the clinical activity index and inflammatory process evidenced by decreased neutrophil accumulation, decreased reticulum edema, and increased autophagosomes. Also, showed a trend to increase the levels of acetate and propionate. Conclusions Our results suggest that kefir fermented milk beverage may have an anti-inflammatory effect minimizing the intestinal damage of DSS-induced colitis.
Collapse
Affiliation(s)
- Karina Nascimento da Silva
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Aline Garnevi Fávero
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - William Ribeiro
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Caroline Marcantonio Ferreira
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Patrícia Sartorelli
- Institute of Environmental, Chemistry and Pharmaceutical Sciences, Department of Pharmaceutics Sciences - Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Leonardo Cardili
- Laboratory of Experimental and Molecular Pathology, Department of Pathology - Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristina Stewart Bogsan
- Laboratory of Fermented Foods of the Faculty of Pharmaceutical Sciences – University of São Paulo
| | | | | | | | - Ana Paula Ribeiro Paiotti
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil,Corresponding author.
| | - Sender Jankiel Miszputen
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| | - Orlando Ambrogini-Júnior
- Division of Gastroenterology, Universidade Federal de São Paulo – Escola Paulista de Medicina, UNIFESP, SP, Brazil
| |
Collapse
|
10
|
Microbial Diversity of Six Commercially Available Kefir Grains. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
Natural kefir grains are rich in beneficial bacteria, and analysis of their microbial diversity is a necessary condition for developing and applying kefir grains. In this study, six commercially available natural kefir grains were used as raw materials to explore their microbial diversity by metagenomics. The results showed that there were 14794 genes in 6 kinds of natural kefir grains, and the number of unique genes of X1, X2, X3, X4, X5, X6 were 111, 11, 0, 1899, 552, 1, respectively. From the relative abundance table of boundary, phylum, class, order, family, genus and species, the microbial diversity at each level was analyzed.The two dominant genera at the genus level are Lactobacillus and Lactococcus, and the dominant species at the species level are Lactococcus lactis and Lactococcus kefiranofaciens, Lactococcus crispatus, and Lactococcus helveticus, etc. Species distribution and species diversity of each sample were analyzed by species heat map, principal component analysis and non-metric multidimensional calibration methods. The results showed that the microbial diversity of natural kefir grains from 6 different sources were different. The research can provide reference for the development and application of natural kefir grains in the field of dairy products.
Collapse
|
11
|
Konuspayeva G, Baubekova A, Akhmetsadykova S, Faye B. Traditional dairy fermented products in Central Asia. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Stoyanova LG, Netrusov AI. Microbiome and Metabiotic Properties of Kefir Grains and Kefirs Based on Them. Microbiology (Reading) 2022; 91:339-355. [PMID: 35967129 PMCID: PMC9358099 DOI: 10.1134/s0026261722100885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
The analysis of the literature on the microbiome composition and metabolic properties of kefir available at the RSCI and Web of Science was carried out. Kefir has been used by humans for centuries. It is a useful product of mixed lactic and alcoholic fermentation, produced using evolutionally established associative cultures, collected in an aggregated state termed kefir grains. General characterization of kefir grains from the territorial zones of different continents (Russia, Europe, Asia, and America) is provided. The methods for differentiation and identification of individual species are described, as well as their interactions within the community. The diversity of microbial composition of kefir grains depending on local cultivation conditions and storage processes is shown. The microorganisms present in kefir have a number of properties that determine their metabolism, interaction in the community, beneficial effects on human health and immune system, which is important for the prevention and control of bacterial and viral infections, especially during the COVID-19 pandemic.
Collapse
Affiliation(s)
- L. G. Stoyanova
- Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - A. I. Netrusov
- Biological Faculty, Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 101000 Moscow, Russia
| |
Collapse
|
13
|
Sarwar A, Al-Dalali S, Aziz T, Yang Z, Ud Din J, Khan AA, Daudzai Z, Syed Q, Nelofer R, Qazi NU, Jian Z, Dablool AS. Effect of Chilled Storage on Antioxidant Capacities and Volatile Flavors of Synbiotic Yogurt Made with Probiotic Yeast Saccharomyces boulardii CNCM I-745 in Combination with Inulin. J Fungi (Basel) 2022; 8:jof8070713. [PMID: 35887468 PMCID: PMC9317841 DOI: 10.3390/jof8070713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 01/12/2023] Open
Abstract
Fermentation of available sugars in milk by yogurt starter culture initially and later by Saccharomyces boulardii (Probiotic yeast) improves the bioavailability of nutrients and produces bioactive substances and volatile compounds that enhance consumer acceptability. The combination of S. boulardii, a unique species of probiotic yeast, and inulin, an exopolysaccharide used as a prebiotic, showed remarkable probiotic and hydrocolloid properties in dairy products. The present study was designed to study the effect of fermentation and storage on antioxidant and volatile capacities of probiotic and synbiotic yogurt by incorporation of S. boulardii and inulin at 1%, 1.5%, and 2% (w/v), compared with the probiotic and control plain yogurt. All samples were stored at 4 °C, and during these four weeks, they were analyzed in terms of their antioxidant and volatile compounds. The synbiotic yogurt samples having inulin and S. boulardii displayed significantly higher DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical activity values and more values of TPC (total phenol contents) than control plain yogurt. A total of 16 volatile compounds were identified in S5-syn2 and S4-syn1.5, while S3-syn1 and S2-P had 14, compared with the control S1-C plain yogurt samples, which had only 6. The number of volatile compounds increased with the increasing concentration of inulin throughout the storage period. Therefore, this novel synbiotic yogurt with higher antioxidant and volatile compounds, even with chilling storage conditions, will be a good choice for consumer acceptability.
Collapse
Affiliation(s)
- Abid Sarwar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
- Food & Biotechnology Research Center (FBRC), Pakistan Council of Scientific Industrial Research (PCSIR), Lahore 54600, Pakistan; (Q.S.); (R.N.)
| | - Sam Al-Dalali
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China;
| | - Tariq Aziz
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
- Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Haripur 22621, Pakistan
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
- Correspondence: ; Tel.: +86-10-6898-4870
| | - Jalal Ud Din
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan;
| | - Zubaida Daudzai
- Department of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand;
| | - Quratulain Syed
- Food & Biotechnology Research Center (FBRC), Pakistan Council of Scientific Industrial Research (PCSIR), Lahore 54600, Pakistan; (Q.S.); (R.N.)
| | - Rubina Nelofer
- Food & Biotechnology Research Center (FBRC), Pakistan Council of Scientific Industrial Research (PCSIR), Lahore 54600, Pakistan; (Q.S.); (R.N.)
| | - Nazif Ullah Qazi
- Department of Microbiology, University of Swabi, Ambar 94640, Pakistan;
| | - Zhang Jian
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 102401, China; (A.S.); (T.A.); (J.U.D.); (Z.J.)
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University, Makkah al-Mukarramah 24382, Saudi Arabia;
| |
Collapse
|
14
|
Gökırmaklı Ç, Guzel-Seydim ZB. Water Kefir Grains vs. Milk Kefir Grains: Physical, Microbial and Chemical Comparison. J Appl Microbiol 2022; 132:4349-4358. [PMID: 35301787 DOI: 10.1111/jam.15532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
AIMS Even though kefir has been known for centuries, there is confusion between the two types of kefir grains, e.g., milk kefir grain and water kefir grain. This study aimed to unravel the differences and similarities between water kefir grain and milk kefir grain. METHODS AND RESULTS Microbiological analyses, identification of grains microbiota and enumeration of microbiological content of the grains as well as Scanning Electron Microscope (SEM) imaging, dry matter, protein, ash, and mineral content, and color analyses were carried out for the two types of grains. As a result, significant differences were found in microbiological content, chemical properties, and colors (p<0.05). Additionally, SEM images revealed the different intrinsic structures for the microbiota and the structure of the two types of grains. CONCLUSIONS MK grain has more nutritional content compared to WK grain. Despite not as widely known and used as MK grain, WK grain is a good source for minerals and health-friendly microorganisms like lactic acid bacteria (LAB) and yeasts. WK grain is possibly suitable for vegans and allergic individuals to fulfill nutritional requirements. Moreover, in this study, the variety of WK grain microbial consortia was wider than that of MK grains, and this significantly affected the resultant WK products. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first study that comprehensively compares two different kefir grains in microbial, chemical, and physical properties.
Collapse
Affiliation(s)
- Çağlar Gökırmaklı
- Department of Ffood Engineering, Süleyman Demirel University, Isparta 32260, Turkey
| | | |
Collapse
|
15
|
Chen MY, Wu HT, Chen FF, Wang YT, Chou DL, Wang GH, Chen YP. Characterization of Tibetan kefir grain-fermented milk whey and its suppression of melanin synthesis. J Biosci Bioeng 2022; 133:547-554. [DOI: 10.1016/j.jbiosc.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 12/19/2022]
|
16
|
WATER KEFIR, A FERMENTED BEVERAGE CONTAINING PROBIOTIC MICROORGANISMS: FROM ANCIENT AND ARTISANAL MANUFACTURE TO INDUSTRIALIZED AND REGULATED COMMERCIALIZATION. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
17
|
Ding F, Krasilnikova AA, Leontieva MR, Stoyanova LG, Netrusov AI. Analysis of Kefir Grains from Different Regions of the Planet Using High-Throughput Sequencing. MOSCOW UNIVERSITY BIOLOGICAL SCIENCES BULLETIN 2022; 77:286-291. [PMID: 36843649 PMCID: PMC9940072 DOI: 10.3103/s0096392522040010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/23/2022] [Accepted: 11/10/2022] [Indexed: 02/22/2023]
Abstract
The taxonomic composition and spatial localization of yeast and bacteria in kefir grains (KG) obtained for study from different regions of the planet were investigated. The diversity of their microbiome has been demonstrated by high-throughput sequencing of bacterial 16S rRNA genes and the ITS1 region of the 18S-ITS1-5.8S-ITS2-28S complex of yeast rRNA. It has been established that the main representatives of the complex community of KG from different regions are lactic acid bacteria (LAB; lactobacilli, lactococci, and Leuconostoc spp. in different ratios) and different types of yeast of the genus Kazachstania (family Saccharomycetaceae). Acetic acid bacteria and a small percentage of yeast Kluyveromyces marxianus were detected in the KG from Tibet, and yeast Pichia kluyveri was detected in the KG from Ossetia.
Collapse
Affiliation(s)
- F. Ding
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia ,Shenzhen MSU-BIT University, 518172 Shenzhen, China
| | - A. A. Krasilnikova
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - M. R. Leontieva
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - L. G. Stoyanova
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - A. I. Netrusov
- grid.14476.300000 0001 2342 9668Microbiology Department, Biological Faculty, Moscow State University, 119234 Moscow, Russia ,Faculty of Biology and Biotechnology, High School of Economics, 101000 Moscow, Russia
| |
Collapse
|
18
|
Wang X, Li W, Xu M, Tian J, Li W. The Microbial Diversity and Biofilm-Forming Characteristic of Two Traditional Tibetan Kefir Grains. Foods 2021; 11:foods11010012. [PMID: 35010139 PMCID: PMC8750057 DOI: 10.3390/foods11010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
In this study, a high-throughput sequencing technique was used to analyze bacterial and fungal diversity of two traditional Tibetan kefir grains from Linzhi (K1) and Naqu (K2) regions. Comparative bioinformatic analyses indicated that Lactobacillus kefiranofaciens, L. kefiri and Kluyveromyces marxianus were the main dominant strains in K1 and K2. In order to research the relationship of the growth of kefir grains, the biofilm and the extracellular polysaccharides (EPS) produced by microorganisms, the proliferation rate of kefir grains, the yield and chemical structure of EPS and the optimal days for biofilm formation were determined. The results showed that the growth rate, the yield of EPS and the biofilm formation ability of K1 were higher than K2, and the optimal day of their biofilm formation was the same in 10th day. Additionally, the live cells, dead cells and EPS in biofilm formation of K1 and K2 were observed by fluorescence microscope to clarify the formation process of kefir grains. To determine the influence of microbial interactions on biofilm and the formation of kefir grains, the essential role of microbial quorum sensing needs further attention.
Collapse
Affiliation(s)
| | | | | | | | - Wei Li
- Correspondence: ; Tel.: +86-25-84396989
| |
Collapse
|
19
|
Carasi P, Malamud M, Serradell MA. Potentiality of Food-Isolated Lentilactobacillus kefiri Strains as Probiotics: State-of-Art and Perspectives. Curr Microbiol 2021; 79:21. [PMID: 34905095 DOI: 10.1007/s00284-021-02728-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
Lentilactobacillus kefiri is one of the main lactic acid bacteria species in kefir and it was also isolated from other fermented foods. Numerous strains have been isolated and characterized regarding its potential as probiotics for the development of novel functional foods. To our knowledge this is the first review focused on highlighting safety aspects and health beneficial effects reported for L. kefiri strains. Several L. kefiri strains lack of transmissible antibiotic resistance genes, are tolerant to the harsh conditions of the gastrointestinal environment, and could resist different preservation procedures. Moreover, many of the isolated strains have shown antimicrobial activity against pathogens and their toxins, exhibited immunomodulatory activity as well as induced some beneficial effects at metabolic level. Regarding all the scientific evidence, certain L. kefiri strains emerge as excellent candidates to be applied to the development of both food supplements and new fermented foods with health-promoting properties. However, the availability of genomic information is still very limited, so much more work must be done in order to explore the potentiality of L. kefiri as a probiotic and a source of bioactive metabolites.
Collapse
Affiliation(s)
- P Carasi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, UNLP, CONICET, Asociado CIC PBA, La Plata, Argentina
| | - M Malamud
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Cátedra de Microbiología, UNLP, La Plata, Argentina.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - M A Serradell
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Cátedra de Microbiología, UNLP, La Plata, Argentina.
| |
Collapse
|
20
|
Biosynthesis of exopolysaccharide and structural characterization by Lacticaseibacillus paracasei ZY-1 isolated from Tibetan kefir. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 3:100054. [PMID: 35415646 PMCID: PMC8991806 DOI: 10.1016/j.fochms.2021.100054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 01/17/2023]
|
21
|
Georgalaki M, Zoumpopoulou G, Anastasiou R, Kazou M, Tsakalidou E. Lactobacillus kefiranofaciens: From Isolation and Taxonomy to Probiotic Properties and Applications. Microorganisms 2021; 9:2158. [PMID: 34683479 PMCID: PMC8540521 DOI: 10.3390/microorganisms9102158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
One of the main lactic acid bacterial species found in the kefir grain ecosystem worldwide is Lactobacillus kefiranofaciens, exhibiting strong auto-aggregation capacity and, therefore, being involved in the mechanism of grain formation. Its occurrence and dominance in kefir grains of various types of milk and geographical origins have been verified by culture-dependent and independent approaches using multiple growth media and regions of the 16S rRNA gene, respectively, highlighting the importance of their combination for its taxonomic identification. L. kefiranofaciens comprises two subspecies, namely kefiranofaciens and kefirgranum, but only the first one is responsible for the production of kefiran, the water-soluble polysaccharide, which is a basic component of the kefir grain and famous for its technological as well as health-promoting properties. L. kefiranofaciens, although very demanding concerning its growth conditions, can be involved in mechanisms affecting intestinal health, immunomodulation, control of blood lipid levels, hypertension, antimicrobial action, and protection against diabetes and tumors. These valuable bio-functional properties place it among the most exquisite candidates for probiotic use as a starter culture in the production of health-beneficial dairy foods, such as the kefir beverage.
Collapse
Affiliation(s)
- Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (G.Z.); (R.A.); (M.K.); (E.T.)
| | | | | | | | | |
Collapse
|
22
|
Goktas H, Dikmen H, Demirbas F, Sagdic O, Dertli E. Characterisation of probiotic properties of yeast strains isolated from kefir samples. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hamza Goktas
- Vocational School Programme of Food Science and Technology Istinye University Istanbul 34020 Turkey
| | - Hilal Dikmen
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University Istanbul 34210 Turkey
| | - Fatmanur Demirbas
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University Istanbul 34210 Turkey
| | - Osman Sagdic
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University Istanbul 34210 Turkey
| | - Enes Dertli
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University Istanbul 34210 Turkey
| |
Collapse
|
23
|
Kefir as a Functional Beverage Gaining Momentum towards Its Health Promoting Attributes. BEVERAGES 2021. [DOI: 10.3390/beverages7030048] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The consumption of fermented foods posing health-promoting attributes is a rising global trend. In this manner, fermented dairy products represent a significant subcategory of functional foods with established positive health benefits. Likewise, kefir—a fermented milk product manufactured from kefir grains—has been reported by many studies to be a probiotic drink with great potential in health promotion. Existing research data link regular kefir consumption with a wide range of health-promoting attributes, and more recent findings support the link between kefir’s probiotic strains and its bio-functional metabolites in the enhancement of the immune system, providing significant antiviral effects. Although it has been consumed for thousands of years, kefir has recently gained popularity in relation to novel biotechnological applications, with different fermentation substrates being tested as non-dairy functional beverages. The present review focuses on the microbiological composition of kefir and highlights novel applications associated with its fermentation capacity. Future prospects relating to kefir’s capacity for disease prevention are also addressed and discussed.
Collapse
|
24
|
Guzel-Seydim ZB, Gökırmaklı Ç, Greene AK. A comparison of milk kefir and water kefir: Physical, chemical, microbiological and functional properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Kefir improves blood parameters and reduces cardiovascular risks in patients with metabolic syndrome. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Tenorio-Salgado S, Castelán-Sánchez HG, Dávila-Ramos S, Huerta-Saquero A, Rodríguez-Morales S, Merino-Pérez E, Roa de la Fuente LF, Solis-Pereira SE, Pérez-Rueda E, Lizama-Uc G. Metagenomic analysis and antimicrobial activity of two fermented milk kefir samples. Microbiologyopen 2021; 10:e1183. [PMID: 33970536 PMCID: PMC8103080 DOI: 10.1002/mbo3.1183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
In recent years, the fermented milk product kefir has been intensively studied because of its health benefits. Here, we evaluated the microbial consortia of two kefir samples, from Escarcega, Campeche, and Campeche (México). We considered a functional comparison between both samples, including fungal and bacterial inhibition; second, we applied shotgun metagenomics to assess the structure and functional diversity of the communities of microorganisms. These two samples exhibited antagonisms against bacterial and fungal pathogens. Bioactive polyketides and nonribosomal peptides were identified by LC‐HRMS analysis. We also observed a high bacterial diversity and an abundance of Actinobacteria in both kefir samples, and a greater abundance of Saccharomyces species in kefir of Escarcega than in the Campeche kefir. When the prophage compositions were evaluated, the Campeche sample showed a higher diversity of prophage sequences. In Escarcega, we observed a prevalence of prophage families that infect Enterobacteria and Lactobacillus. The sequences associated with secondary metabolites, such as plipastatin, fengycin, and bacillaene, and also bacteriocins like helveticin and zoocin, were also found in different proportions, with greater diversity in the Escarcega sample. The analyses described in this work open the opportunity to understand the microbial diversity in kefir samples from two distant localities.
Collapse
Affiliation(s)
| | - Hugo G Castelán-Sánchez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, México
| | | | | | - Enrique Merino-Pérez
- Departamento de Microbiologia, Instituto de Biotecnologıa, Universidad Nacional Autonoma de Mexico, Cuernavaca, México
| | - Luis Fernando Roa de la Fuente
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Tabasco, México
| | | | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Unidad Académica Yucatán, Mérida, México
| | | |
Collapse
|
27
|
Du G, Liu L, Guo Q, Cui Y, Chen H, Yuan Y, Wang Z, Gao Z, Sheng Q, Yue T. Microbial community diversity associated with Tibetan kefir grains and its detoxification of Ochratoxin A during fermentation. Food Microbiol 2021; 99:103803. [PMID: 34119096 DOI: 10.1016/j.fm.2021.103803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Tibetan kefir grains (TKG) are multi-functional starter cultures used in foods and have been applied in various fermentation systems. This study aimed to investigate the microbial community composition of TKG, the detoxification abilities of TKG and their isolates towards common mycotoxins, and the potential for applying TKG and their associated microbial populations to avoid mycotoxin contamination in dairy products. Cultivation-independent high-throughput sequencing of bacterial and fungal rDNA genes indicated that Lactobacillus kefiranofaciens and Kazachstania turicensis were the most abundant bacterial and fungal taxa, respectively. In addition, 27 total isolates were obtained using cultivation methods. TKG removed more than 90% of the Ochratoxin A (OTA) after 24 h, while the isolate Kazachstania unisporus AC-2 exhibited the highest removal capacity (~46.1%). Further, the isolate exhibited good resistance to acid and bile salts environment. Analysis of the OTA detoxification mechanism revealed that both adsorption and degradation activities were exhibited by TKG, with adsorption playing a major detoxification role. Furthermore, the addition of OTA did not affect the microbial community structure of TKG. These results indicate that TKG-fermented products can naturally remove mycotoxin contamination of milk and could potentially be practically applied as probiotics in fermentation products.
Collapse
Affiliation(s)
- Gengan Du
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Lin Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yuanyuan Cui
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Hong Chen
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China
| | - Qinlin Sheng
- College of Food Science and Engineering, Northwest University, Xi'an, 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling, 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling, 712100, China; College of Food Science and Engineering, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
28
|
Chen Z, Liu T, Ye T, Yang X, Xue Y, Shen Y, Zhang Q, Zheng X. Effect of lactic acid bacteria and yeasts on the structure and fermentation properties of Tibetan kefir grains. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Mendes RML, Andrade RHCD, Marques MDFF, Andrade ERD. Potential use of the passion fruit from caatinga in kefir. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Meng L, Li Z, Liu L, Chen X, Li W, Zhang X, Dong M. Lead removal from water by a newly isolated Geotrichum candidum LG-8 from Tibet kefir milk and its mechanism. CHEMOSPHERE 2020; 259:127507. [PMID: 32650171 DOI: 10.1016/j.chemosphere.2020.127507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/01/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
In this study, a yeast-like fungal strain (LG-8), newly isolated from spontaneous Tibet kefir in China, was identified as Geotrichum candidum on the basis of its morphological characteristics and ITS5.8S gene sequence. Interestingly, the strain was able to remove more than 99% of Pb2+ ions in water at low concentrations and a maximum of 325.68 mg lead/g of dry biomass. The results of selective passivation experiments suggested that phosphate, amide and carboxyl groups on the cell wall contributed to lead removal. Scanning electron microscopy (SEM) photomicrographs revealed that large amounts of micro/nanoparticles formed on the cell wall, and energy dispersive X-ray spectroscopy (EDX) results further indicated the presence of lead along with phosphorus and chlorine in the particles. Furthermore, the results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses revealed that the particles were composed of pyromorphite [Pb5(PO4)3Cl], a highly insoluble lead mineral. Importantly, this is the first time that the biomineralization of lead into pyromorphite has been observed as the major mechanism for lead removal by G. candidum LG-8, providing a new strategy to scavenge heavy metals from aquatic environment in an eco-friendly manner.
Collapse
Affiliation(s)
- Ling Meng
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Zhiyu Li
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Lizhi Liu
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Xiaohong Chen
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China
| | - Xuhui Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 210037, Nanjing, Jiangsu, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, Jiangsu, China.
| |
Collapse
|
31
|
Wang H, Wang C, Guo M. Autogenic successions of bacteria and fungi in kefir grains from different origins when sub-cultured in goat milk. Food Res Int 2020; 138:109784. [PMID: 33288170 DOI: 10.1016/j.foodres.2020.109784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 01/06/2023]
Abstract
Kefir grains are a unique symbiotic association of different microbiota, including a variety of bacterial and fungal species. The microbiota in kefir grains is strongly influenced by the geographical origin and sub-culturing environment. After sub-culturing in goat milk for 2 to 4 months, amplicon sequencing (16S rRNA and ITS1 region) was applied for the identification of bacterial and fungal autogenic succession of three kefir grains collected from China (CN, Asia), Germany (DE, Europe) and United States of America (USA, America). Taxonomic analysis displayed three main bacterial and fungal species in kefir grains from different origins during sub-culturing process (Lactobacillus helveticus, Lactobacillus kefiranofaciens and Lactobacillus kefiri for bacteria, Kazachstania unispora, Kluyveromyces marxianus and Saccharomyces cerevisiae for fungi). Based on the results of beta diversity analysis, microbiota in kefir grains from CN and DE would be stable when sub-cultured in goat milk for more than three months. Differently, a highly microbial stability has been found for the sample from USA during the whole sub-culturing process. These results helped to understand the composition and stability of microbiota in kefir grains when sub-cultured in goat milk.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Cuina Wang
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mingruo Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
32
|
Ajam F, Koohsari H. Effect of some fermentation conditions on antibacterial activity of fermented milk by kefir grains. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fahime Ajam
- Department of Food Science and Technology Islamic Azad University Azadshahr Iran
| | - Hadi Koohsari
- Department of Microbiology, Azadshahr Branch Islamic Azad University Azadshahr Iran
| |
Collapse
|
33
|
Bacterial Populations in International Artisanal Kefirs. Microorganisms 2020; 8:microorganisms8091318. [PMID: 32872546 PMCID: PMC7565184 DOI: 10.3390/microorganisms8091318] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Artisanal kefir is a traditional fermented dairy product made using kefir grains. Kefir has documented natural antimicrobial activity and health benefits. A typical kefir microbial community includes lactic acid bacteria (LAB), acetic acid bacteria, and yeast among other species in a symbiotic matrix. In the presented work, the 16S rRNA gene sequencing was used to reveal bacterial populations and elucidate the diversity and abundance of LAB species in international artisanal kefirs from Fusion Tea, Britain, the Caucuses region, Ireland, Lithuania, and South Korea. Bacterial species found in high abundance in most artisanal kefirs included Lactobacillus kefiranofaciens, Lentilactobacillus kefiri,Lactobacillus ultunensis, Lactobacillus apis, Lactobacillus gigeriorum, Gluconobacter morbifer, Acetobacter orleanensis, Acetobacter pasteurianus, Acidocella aluminiidurans, and Lactobacillus helveticus. Some of these bacterial species are LAB that have been reported for their bacteriocin production capabilities and/or health promoting properties.
Collapse
|
34
|
Abstract
The expansion of the beer industry has enabled many possibilities for improvement regarding the taste, aroma and functionality of this drink. Health-related issues and a general wish for healthier lifestyles has resulted in increased demand for functional beers. The addition of different herbs or adjuncts in wort or beer has been known for centuries. However, today’s technologies provide easier ways to do this and offer additional functional properties for the health benefits and sensory adjustments of classical beer. Medicinal, religious or trendy reasons for avoiding certain compounds in beer or the need to involve new ones in the brewing recipe has broadened the market for the brewing industry and made beer more accessible to consumers who, till now, avoided beer.
Collapse
|
35
|
Microbiological characterization of Gioddu, an Italian fermented milk. Int J Food Microbiol 2020; 323:108610. [PMID: 32240882 DOI: 10.1016/j.ijfoodmicro.2020.108610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/21/2020] [Accepted: 03/19/2020] [Indexed: 12/24/2022]
Abstract
Gioddu, also known as "Miciuratu", "Mezzoraddu" or "Latte ischidu" (literally meaning acidulous milk), is the sole variety of traditional Italian fermented milk. The aim of the present study was to elucidate the microbiota and the mycobiota occurring in artisan Gioddu sampled from three Sardinian producers by combining the results of viable counting on selective culture media and high-throughput sequencing. Physico-chemical parameters were also measured. The overall low pH values (3.80-4.22) recorded in the analyzed Gioddu samples attested the strong acidifying activity carried out by lactic acid bacteria during fermentation. Viable counts revealed the presence of presumptive lactococci, presumptive lactobacilli and non-Saccharomyces yeasts. A complex (kefir-like) microbiota of bacteria and yeasts was unveiled through sequencing. In more detail, Lactobacillus delbrueckii was found to dominate in Gioddu together with Streptococcus thermophilus, thus suggesting the establishment of a yogurt-like protocooperation. Unexpectedly, in all the three analyzed batches from two out of the three producers Lactobacillus kefiri was also detected, thus representing an absolute novelty, which suggests the presence of bioactive compounds (e.g. exopolysaccharides) similar to those characterizing milk kefir beverage. Mycobiota population, studied for the very first time in Gioddu, revealed a more complex composition, with Kluyveromyces marxianus, Galactomyces candidum and Geotrichum galactomyces constituting the core species. Further research is needed to disclose the eventual occurence in Gioddu of probiotic cultures and bioactive compounds (e.g. exopolysaccharides, angiotensin-converting enzyme inhibitory peptides and antimicrobial compounds) with potential health-benefits for the consumers.
Collapse
|
36
|
Study of kefir drinks produced by backslopping method using kefir grains from Bosnia and Herzegovina: Microbial dynamics and volatilome profile. Food Res Int 2020; 137:109369. [PMID: 33233071 DOI: 10.1016/j.foodres.2020.109369] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Kefir is a well-known health-promoting beverage that can be produced by using kefir grains (traditional method) or by using natural starter cultures from kefir (backslopping method). The aim of this study was to elucidate the microbial dynamics and volatilome profile occurring during kefir production through traditional and backslopping methods by using five kefir grains that were collected in Bosnia and Herzegovina. The results from conventional pour plating techniques and amplicon-based sequencing were combined. The kefir drinks have also been characterized in terms of their physico-chemical and colorimetric parameters. A bacterial shift from Lactobacillus kefiranofaciens to Acetobacter syzygii, Lactococcus lactis and Leuconostoc pseudomesenteroides from kefir grains in traditional kefir to backslopped kefir was generally observed. Despite some differences within samples, the dominant mycobiota of backslopped kefir samples remained quite similar to that of the kefir grain samples. However, unlike the lactic acid and acetic acid bacteria, the yeast counts decreased progressively from the grains to the backslopped kefir. The backslopped kefir samples showed higher protein, lactose and ash content and lower ethanol content compared to traditional kefir samples, coupled with optimal pH values that contribute to a pleasant sensory profile. Concerning the volatilome, backslopped kefir samples were correlated with cheesy, buttery, floral and fermented odors, whereas the traditional kefir samples were correlated with alcoholic, fruity, fatty and acid odors. Overall, the data obtained in the present study provided evidence that different kefir production methods (traditional vs backslopping) affect the quality characteristics of the final product. Hence, the functional traits of backslopped kefir should be further investigated in order to verify the suitability of a potential scale-up methodology for backslopping.
Collapse
|
37
|
You X, Yang L, Zhao X, Ma K, Chen X, Zhang C, Wang G, Dong M, Rui X, Zhang Q, Li W. Isolation, purification, characterization and immunostimulatory activity of an exopolysaccharide produced by Lactobacillus pentosus LZ-R-17 isolated from Tibetan kefir. Int J Biol Macromol 2020; 158:408-419. [PMID: 32389648 DOI: 10.1016/j.ijbiomac.2020.05.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
In this study, three strains of lactic acid bacteria isolated from Tibetan kefir grains, including two strains of Lactobacillus pentosus LZ-R-17 and L. helveticus LZ-R-5, and one strain of Lactococcus lactis subsp. lactis LZ-R-12. The ability of three strains to produce exopolysaccharide (EPS) was tested, and L. pentosus LZ-R-17 was found to have the highest EPS yield. One EPS (R-17-EPS) was isolated from the fermented milk by L. pentosus LZ-R-17 and purified by DEAE-52 anion exchange chromatography. Furthermore, R-17-EPS preliminary structure and macrophage immunomodulatory activity in vitro were investigated. On the basis of the analytical results of ultraviolet-visible spectrum, Fourier transform-infrared spectrum, monosaccharide composition analysis and one-dimensional and two-dimensional nuclear magnetic resonance (NMR) spectra, R-17-EPS was found to have an average molecular weight of 1.20 × 106 Da and was composed of galactose and glucose residues with a molar ratio of 1.00:3.15. NMR analysis revealed that the R-17-EPS was a linear hetero-galactoglucan containing repeating units of →2)-α-D-Galp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Glcp-(1 → 4)-β-D-Glcp-(1→. In addition, R-17-EPS could effectively enhanced the proliferation, phagocytosis, nitric oxide and cytokines production of RAW264.7 cells, suggesting that R-17-EPS had potent immunostimulatory activity and could be explored as immunomodulator in functional food and/or medicine fields.
Collapse
Affiliation(s)
- Xiu You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Lin Yang
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet 860000, PR China
| | - Xiaojuan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kai Ma
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Xiaohong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changliang Zhang
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Guangxian Wang
- Jiangsu Biodep Biotechnology Co., Ltd., Jiangyin, Jiangsu 214400, PR China; Probiotics Australia Pty, Ormeau, Queensland 4208, Australia
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Qiuqin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
38
|
TOMAR O, AKARCA G, ÇAĞLAR A, BEYKAYA M, GÖK V. The effects of kefir grain and starter culture on kefir produced from cow and buffalo milk during storage periods. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.39418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Farag MA, Jomaa SA, Abd El-Wahed A, R. El-Seedi H. The Many Faces of Kefir Fermented Dairy Products: Quality Characteristics, Flavour Chemistry, Nutritional Value, Health Benefits, and Safety. Nutrients 2020; 12:E346. [PMID: 32013044 PMCID: PMC7071183 DOI: 10.3390/nu12020346] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/23/2022] Open
Abstract
Kefir is a dairy product that can be prepared from different milk types, such as goat, buffalo, sheep, camel, or cow via microbial fermentation (inoculating milk with kefir grains). As such, kefir contains various bacteria and yeasts which influence its chemical and sensory characteristics. A mixture of two kinds of milk promotes kefir sensory and rheological properties aside from improving its nutritional value. Additives such as inulin can also enrich kefir's health qualities and organoleptic characters. Several metabolic products are generated during kefir production and account for its distinct flavour and aroma: Lactic acid, ethanol, carbon dioxide, and aroma compounds such as acetoin and acetaldehyde. During the storage process, microbiological, physicochemical, and sensory characteristics of kefir can further undergo changes, some of which improve its shelf life. Kefir exhibits many health benefits owing to its antimicrobial, anticancer, gastrointestinal tract effects, gut microbiota modulation and anti-diabetic effects. The current review presents the state of the art relating to the role of probiotics, prebiotics, additives, and different manufacturing practices in the context of kefir's physicochemical, sensory, and chemical properties. A review of kefir's many nutritional and health benefits, underlying chemistry and limitations for usage is presented.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo 11562, Egypt
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Suzan A. Jomaa
- Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt;
| | - Aida Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza 12627, Egypt;
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23 Uppsala, Sweden
- Al-Rayan Research and Innovation Center, Al-Rayan Colleges, Medina 42541, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
40
|
Nikolaou A, Sgouros G, Mitropoulou G, Santarmaki V, Kourkoutas Y. Freeze-Dried Immobilized Kefir Culture in Low Alcohol Winemaking. Foods 2020; 9:foods9020115. [PMID: 31973003 PMCID: PMC7073665 DOI: 10.3390/foods9020115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/10/2020] [Accepted: 01/18/2020] [Indexed: 12/22/2022] Open
Abstract
Low alcohol wines represent a rising trend in the global market. Since for ethanol removal, certain physicochemical methods that negatively affect wine quality are applied, the aim of this present study was to evaluate the efficiency of freeze-dried, immobilized kefir culture on natural supports (apple pieces, grape skins and delignified cellulosic material) in low alcohol winemaking at various temperatures (5–30 °C). Initially, genetic analysis of kefir culture was performed by Next Generation Sequencing. There was an immobilization of kefir culture on grape skins-enhanced cell survival during freeze-drying in most cases, even when no cryoprotectant was used. Simultaneous alcoholic and malolactic fermentations were performed in repeated batch fermentations for >12 months, using freeze-dried free or immobilized cells produced with no cryoprotectant, suggesting the high operational stability of the systems. Values of great industrial interest for daily ethanol productivity and malic acid conversion [up to 39.5 g/(Ld) and 67.3%, respectively] were recorded. Principal Component Analysis (PCA) showed that freeze-drying rather than the fermentation temperature affected significantly minor volatiles. All low alcohol wines produced were accepted during the preliminary sensory evaluation.
Collapse
|
41
|
Metabolic engineering probiotic yeast produces 3S, 3′S-astaxanthin to inhibit B16F10 metastasis. Food Chem Toxicol 2020; 135:110993. [DOI: 10.1016/j.fct.2019.110993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022]
|
42
|
Purutoğlu K, İspirli H, Yüzer MO, Serencam H, Dertli E. Diversity and functional characteristics of lactic acid bacteria from traditional kefir grains. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12633] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kübra Purutoğlu
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Hümeyra İspirli
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Mustafa Onur Yüzer
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Hüseyin Serencam
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Engineering Bayburt University Bayburt 69000 Turkey
| |
Collapse
|
43
|
Gut AM, Vasiljevic T, Yeager T, Donkor ON. Characterization of yeasts isolated from traditional kefir grains for potential probiotic properties. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
44
|
Liu W, Zhang M, Xie J, Wang H, Zhao X, Chen B, Suo H. Comparative analyses of microbial community diversities of Tibetan kefir grains from three geographic regions. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenwen Liu
- College of Food Science Southwest University Chongqing 400715 China
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing 400067 China
| | - Meimei Zhang
- College of Food Science Southwest University Chongqing 400715 China
| | - Jie Xie
- College of Food Science Southwest University Chongqing 400715 China
| | - Hongwei Wang
- College of Food Science Southwest University Chongqing 400715 China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing 400067 China
| | - Bingcan Chen
- Department of Plant Sciences North Dakota State University Fargo North Dakota 58108 USA
| | - Huayi Suo
- College of Food Science Southwest University Chongqing 400715 China
- Chongqing Collaborative Innovation Center for Functional Food Chongqing University of Education Chongqing 400067 China
| |
Collapse
|
45
|
El Golli-Bennour E, Timoumi R, Annaibi E, Mokni M, Omezzine A, Bacha H, Abid-Essefi S. Protective effects of kefir against deltamethrin-induced hepatotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18856-18865. [PMID: 31062243 DOI: 10.1007/s11356-019-05253-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Deltamethrine (DLM) is a synthetic pyrethroid with broad spectrum activities against acaricides and insects. Widely used for agricultural and veterinary purposes, its human and animal exposure occurs by ingestion of contaminated water and food and leads to serious health problems. Kefir is fermented milk with numerous health favors counting restorative properties of bacterial flora, immune system stimulation, cholesterol reduction, as well as anti-mutagenic and anti-tumor properties. The present study was undertaken to examine the hepatoprotective and antioxidant potential of kefir against DLM toxicity in male Wistar albino rats. DLM-treated animals revealed a significant increase in serum biochemical parameters as well as hepatic protein and lipid oxidations but caused an inhibition in antioxidant enzymes. Additionally, we have observed an increase in hepatocyte DNA damages. This toxic effect was confirmed by histological study. Kefir administration normalized the elevated serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T bilirubin), and cholesterol. It also reduced DLM-induced protein carbonyl (PC) and malondialdehyde (MDA) formations. Furthermore, Kefir treatment restored catalase (CAT) and superoxide dismutase (SOD) activities. The co-treatment as well as the pre-treatment by kefir showed an improvement of oxidative status as well as suppressed inflammation and DNA damages. However, the pre-treatment seems to be the most efficient. Therefore, it could be concluded that kefir is a natural product able to protect against the hepatotoxic effects of DLM by its free radical-scavenging and potent antioxidant activity.
Collapse
Affiliation(s)
- Emna El Golli-Bennour
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia
| | - Rim Timoumi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia
| | - Emna Annaibi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia
| | - Moncef Mokni
- Department of Anatomic Pathology and Histology, University Hospital Farhat Hached, Sousse, Tunisia
| | - Asma Omezzine
- LR12SP11, Biochemistry Department, Sahloul University Hospital, Sousse, Tunisia
| | - Hassen Bacha
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, Monastir, Tunisia.
| |
Collapse
|
46
|
Delgado-Fernández P, Corzo N, Lizasoain S, Olano A, Moreno FJ. Fermentative properties of starter culture during manufacture of kefir with new prebiotics derived from lactulose. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Kukhtyn M, Vichko O, Kravets O, Karpyk H, Shved O, Novikov V. Biochemical and microbiological changes during fermentation and storage of a fermented milk product prepared with Tibetan Kefir Starter. ARCHIVOS LATINOAMERICANOS DE NUTRICIÓN 2019. [DOI: 10.37527/2018.68.4.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The aim of this study was to determine the optimal temperature ranges of milk fermentation by the microbial association Tibetan Kefir Grains and to set changes during the storage of the fermented milk product. The optimum technological parameters of milk fermentation by Tibetan Kefir Grains compliance are set. Compliance of these parameters ensures the desired metabolic processes and obtaining a dairy product with good organoleptic properties: fermentation temperature is 28±1 °С for 24 hours, acidity of the product is from 80 to 120 % lactic acid, the amount of lactic acid bacteria – (2.9±0.22) × 108 CFU/cm3, fungi – (3.7±0.27) × 104 CFU/cm3. It was found that during the storage of the fermented milk drink produced on the leaven Tibetan Kefir Grains at the temperature of 4 ± 1 °С for 10 days titratable acidity of the product increased by 1.2 times to 108.4 ± 8.3 °Т, the population of lactic acid bacteria (Lactobacillus fermentum and some other) and yeast (Saccharomyces spp and some other) remained at the initial level. This indicates that the finished fermented milk product can be stored without losing functional probiotic properties for at least 10 days and meets the requirements of the standard (ISO 4471). At the same time, at a temperature of +8 ± 1°С the expiration date of the fermented milk drink is decreases to 7 days.
Collapse
|
48
|
Kumari R, Jayachandran LE, Ghosh AK. Investigation of diversity and dominance of fungal biota in stored wheat grains from governmental warehouses in West Bengal, India. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3490-3500. [PMID: 30623426 DOI: 10.1002/jsfa.9568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/22/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Fungal infestation is a leading cause of qualitative and quantitative deterioration of stored wheat grains. Limited information is available on the spatial distribution of fungal biota associated with stored wheat grains in India. Fungi were isolated and characterized from nine stored wheat grain samples in three warehouses of the Food Corporation of India, located in three agro-climatic zones (Paschim Medinipur, Bankura and Purulia) of West Bengal in India. RESULTS Maximum density and fungal diversity were observed in dichloran glycerol agar (DG-18) medium and the number increased with the increase of storage duration. Samples collected from Purulia showed maximum fungal diversity than that from Bankura and Paschim Medinipur. A total of 284 fungal isolates were obtained, classified into 29 operational taxonomic units (based on amplified ribosomal DNA restriction analysis of 18S and internal transcribed spacer sequences), and identified as 24 different fungal species. The majority of fungal isolates belonged to Aspergillus flavus (35%) followed by Rhizopus oryzae (13%) and Eurotium amstelodami (9%). Aspergillopepsin O (PEPO) gene and aflatoxin biosynthetic pathway gene, nor-1, were amplified by polymerase chain reaction (PCR) from 91% and 71% of Aspergillus flavus isolates, respectively, indicating their aflatoxin producing ability. Aflatoxin production was further confirmed by ammonia vapour test, thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). CONCLUSION The presence of toxigenic fungi in stored wheat grain emphasizes the necessity of quarantine measures of stored grains before placing them in the public domain to save consumers from health hazards. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ranjana Kumari
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Lakshmi E Jayachandran
- Department of Agricultual and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
49
|
Ghosh T, Beniwal A, Semwal A, Navani NK. Mechanistic Insights Into Probiotic Properties of Lactic Acid Bacteria Associated With Ethnic Fermented Dairy Products. Front Microbiol 2019; 10:502. [PMID: 30972037 PMCID: PMC6444180 DOI: 10.3389/fmicb.2019.00502] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbes and their metabolites maintain the health and homeostasis of the host by communicating with the host via various biochemical and physical factors. Changing lifestyle, chronic intake of foods rich in refined carbohydrates and fats have caused intestinal dysbiosis and other lifestyle-based diseases. Thus, supplementation with probiotics has gained popularity as biotherapies for improving gut health and treating disorders. Research shows that probiotic organisms enhance gastrointestinal health, immunomodulation, generation of essential micronutrients, and prevention of cancer. Ethnically fermented milk and dairy products are hotspots for novel probiotic organisms and bioactive compounds. These ethnic fermented foods have been traditionally prepared by indigenous populations, and have preserved unique microflora for ages. To apply these unique microflora for amelioration of human health, it is important that probiotic properties of the bacterial species are well studied. Majority of the published research and reviews focus on the probiotic organisms and their properties, fermented food products, isolation techniques, and animal studies with their health pathologies. As a consequence, there is a dearth of information about the underlying molecular mechanism behind probiotics associated with ethnically prepared dairy foods. This review is targeted at stimulating research on understanding these mechanisms of bacterial species and beneficial attributes of ethnically fermented dairy products.
Collapse
Affiliation(s)
| | | | | | - Naveen Kumar Navani
- Chemical Biology Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
50
|
Gao W, Zhang L. Comparative analysis of the microbial community composition between Tibetan kefir grains and milks. Food Res Int 2019; 116:137-144. [DOI: 10.1016/j.foodres.2018.11.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/24/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
|