1
|
Siesto G, Pietrafesa R, Alberico G, Tedesco F, Cardinale M, Romano P, Capece A. Culturable yeast community associated with grape must and honey bees sampled from apiaries located in the vineyards. J Appl Microbiol 2024; 135:lxae160. [PMID: 38991988 DOI: 10.1093/jambio/lxae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
AIM In this study, we investigated culturable yeast community, present in grape must sampled from vineyards with apiaries on the borders, and in honey bees collected in these apiaries. METHODS AND RESULTS To this aim, yeasts isolated from spontaneously fermented grapes randomly collected in two vineyards (P1 and P2) with apiaries on the borders (A1 and A2) were compared to those isolated from spontaneously fermented grapes collected from a vineyard without apiary (P4). At the same time, yeast community was analyzed on bees collected in each apiary placed in the vineyards, in comparison to yeasts isolated from an apiary (A3) located far from the vineyards. The analysis was performed for two consecutive years (2021 and 2022). The isolated yeasts were identified by restriction analysis of amplified ITS region, followed by sequencing of ITS fragment.Our research showed that the presence of apiaries seems to increase yeast counts of grape must, in particular of Saccharomyces cerevisiae; furthermore, the permanence of apiaries in the vineyards allowed the recovering of these yeasts also from bees. CONCLUSIONS Our findings seem to corroborate the role of bees as vectors and reservoirs of oenologically relevant yeasts, such as a source of non-conventional yeasts with potential biotechnological applications.
Collapse
Affiliation(s)
- Gabriella Siesto
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Rocchina Pietrafesa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Grazia Alberico
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Francesco Tedesco
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, SP6 Lecce-Monteroni, 73100 Lecce, Italy
| | - Patrizia Romano
- Dipartimento di Economia, Universitas Mercatorum, 00186 Roma, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Angela Capece
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spin-off StarFInn s.r.l.s., Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
2
|
Nosratabadi L, Kavousi HR, Hajimohammadi-Farimani R, Balvardi M, Yousefian S. Estamaran date vinegar: chemical and microbial dynamics during fermentation. Braz J Microbiol 2024; 55:1265-1277. [PMID: 38696037 PMCID: PMC11153425 DOI: 10.1007/s42770-024-01354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
Vinegar is a fermented food produced by alcoholic and then acetic acid microbial metabolism. Date palm fruit (Phoenix dactylifera L.) is a valuable source for the production of vinegar. Microbial identification has a major role in the improvement and bio-management of the fermentation process of vinegar. Estamaran and Kabkab two varieties of date palm fruit were selected to study the fermentation process. A culture-dependent approach was used to study bacterial dynamics. 16 S rRNA gene was amplified by Polymerase Chain Reaction (PCR), also restriction enzyme analysis with HinfI and TaqI, and sequencing was done. Assessment of microbial flora of date palm fruit during fermentation showed that Fructobacillus tropaeoli, Bacillus sp., Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, and Weissella paramesenteroides existed in the first phase of fermentation. With fermentation progress, microbial diversity decreased so only one species remained. Komagataeibacter xylinus as an acid acetic producer was present in the third phase of fermentation. Based on chemical analysis, the concentration of reducing sugars decreased during fermentation. With decreasing pH, a simultaneous increase in acidity and total phenolic compounds occurred. The trend of changes during Estamaran fermentation was more severe and a vinegar with desirable properties was produced. Therefore, this date variety is recommended for the production of date vinegar.
Collapse
Affiliation(s)
- Leila Nosratabadi
- Faculty of Agriculture, Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hamid-Reza Kavousi
- Faculty of Agriculture, Department of Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Hajimohammadi-Farimani
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran.
- Faculty of Agriculture, Department of Food Science and Technology, Shahid Bahonar University of Kerman, 22 Bahman Blvd., Kerman, P.O. Box 76169-133, Iran.
| | - Mohammad Balvardi
- Faculty of Agriculture, Department of Food Science and Technology, Shahid Bahonar University of Kerman, 22 Bahman Blvd., Kerman, P.O. Box 76169-133, Iran
| | - Shirin Yousefian
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
3
|
Nwaefuna AE, Boekhout T, Garcia-Aloy M, Vrhovsek U, Zhou N. Diversity of dung beetle-associated yeasts from pristine environments of Botswana. Yeast 2023; 40:182-196. [PMID: 37096317 DOI: 10.1002/yea.3852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/26/2023] Open
Abstract
Yeast-insect interactions are increasingly becoming an attractive source of discovery for previously unknown, unique, diverse, and industrially relevant yeast species. Despite a wealth of studies that have recently focused on yeasts in symbiotic association with Hymenopteran insects, yeasts associated with Coleopteran insects, such as lignocellulosic-rich dung-dependent beetles, remain poorly studied. Trends in yeast discovery suggest that species richness and diversity can be attributed to the ecological niche of the insect. Here, we considered the potential of dung beetles inhabiting the extreme environments of Botswana, characterized by desert-like conditions (semi-arid to arid and hot) as well as protected pristine environments, as possible attribute niches that can shape the extremophilic and diverse life history strategies of yeasts. We obtained a total of 97 phylogenetically diverse yeast isolates from six species of dung beetles from Botswana's unexplored environments, representing 19 species belonging to 11 genera. The findings suggest that the guts of dung beetles are a rich niche for non-Saccharomyces yeast species. Meyerozyma and Pichia were the most dominant genera associated with dung beetles, representing 55% (53 out of 97) of the yeast isolates in our study. Trichosporon and Cutaneotrichosporon genera represented 32% (31 out of 97) of the isolates. The remaining isolates belonged to Apiotrichum, Candida, Diutina, Naganishia, Rhodotorula, and Wickerhamiella genera (12 out of 97). We found out that about 62% (60 out of 97) of the isolates were potentially new species because of their low internal transcribed spacer (ITS) sequence similarity when compared to the most recent optimal species delineation threshold. A single isolate was unidentifiable using the ITS sequences. Using an in silico polymerase chain reaction-restriction fragment length polymorphism approach, we revealed that there was genetic diversity within isolates of the same species. Our results contribute to the knowledge and understanding of the diversity of dung beetle-associated yeasts.
Collapse
Affiliation(s)
- Anita E Nwaefuna
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Teun Boekhout
- Westerdijk Institute of Fungal Biodiversity, Utrecht, The Netherlands
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mar Garcia-Aloy
- Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Metabolomics Unit, Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
4
|
Es-sbata I, Castro R, Durán-Guerrero E, Zouhair R, Astola A. Production of prickly pear (Opuntia ficus-indica) vinegar in submerged culture using Acetobacter malorum and Gluconobacter oxydans: Study of volatile and polyphenolic composition. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Santana I, Matheus JRV, Serrano Pinheiro de Souza T, Silva GAD, Lacerda ECQ, Araújo JC, Brotto LI, Silva RMD, Laurino NM, Schallitz T, Ferreira WA, Fai AEC. Insights into Developing Persimmon-based Food Products: Bibliometric Analysis and the Innovative Formulation of Chutney and Ketchup. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2022.2060159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Isabelle Santana
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (uerj), Rio de Janeiro, Brazil
| | - Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (unirio), Rio de Janeiro, Brazil
| | | | - Genilton Alves da Silva
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (uerj), Rio de Janeiro, Brazil
| | - Ellen Cristina Quirino Lacerda
- Department of Basic and Experimental Nutrition, Instituto de Nutrição Josué de Castro (injc), Federal University of Rio de Janeiro (ufrj), Rio de Janeiro, Brazil
| | - Julia Chactoura Araújo
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (uerj), Rio de Janeiro, Brazil
| | - Lais Irencio Brotto
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (uerj), Rio de Janeiro, Brazil
| | - Rayanne Menezes da Silva
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (uerj), Rio de Janeiro, Brazil
| | - Natália Martins Laurino
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (uerj), Rio de Janeiro, Brazil
| | - Tatiane Schallitz
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (uerj), Rio de Janeiro, Brazil
| | - Wagner Andrade Ferreira
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (uerj), Rio de Janeiro, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (uerj), Rio de Janeiro, Brazil
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (unirio), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Mutualism between Gut-Borne Yeasts and Their Host, Thaumatotibia leucotreta, and Potential Usefulness in Pest Management. INSECTS 2022; 13:insects13030243. [PMID: 35323541 PMCID: PMC8954841 DOI: 10.3390/insects13030243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/04/2022]
Abstract
Thaumatotibia leucotreta is endemic to southern Africa and is highly significant for various fruit industries, including the South African citrus industry, due to its classification as a phytosanitary pest. Mutualistic associations between C. pomonella, closely related to T. leucotreta, and yeasts have previously been described and reported to reduce larval mortality and enhance larval development. Here, we determined which yeast species occur naturally in the gut of T. leucotreta larvae and investigated whether any of the isolated yeast species affect their behaviour and development. Navel oranges infested with T. leucotreta larvae were collected from geographically distinct provinces in South Africa, and the larvae were processed for analysis of naturally occurring associated yeasts. Six yeast species were isolated and identified from the guts of these T. leucotreta larvae via PCR amplification and sequencing of the ITS region of rDNA and D1/D2 domain of large ribosomal subunit. Larval development and attraction assays were conducted, and T. leucotreta larvae that fed on Navel oranges inoculated with yeast had accelerated developmental periods and reduced mortality rates. Neonate T. leucotreta were also attracted to YPD broth cultures inoculated with yeast for feeding. Oviposition preference assays were conducted with adult T. leucotreta females. Navel oranges inoculated with yeast were shown to influence the oviposition preference of adult females. Yeasts harbour the potential for use in biocontrol, especially when combined with other well-established control methods. This study provides a platform for future research into incorporating yeast with current biological control agents as a novel option for controlling T. leucotreta in the field.
Collapse
|
7
|
Influence of Different Bacteria Inocula and Temperature Levels on the Chemical Composition and Antioxidant Activity of Prickly Pear Vinegar Produced by Surface Culture. Foods 2022; 11:foods11030303. [PMID: 35159455 PMCID: PMC8834249 DOI: 10.3390/foods11030303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 12/10/2022] Open
Abstract
This work intends to determine the effect on the aroma profile, phenolic content and antioxidant activity of prickly pear vinegars produced by the surface culture at two different fermentation temperatures and using different acetic acid bacteria (AAB) inocula. Prickly pear wine was fermented at two temperature levels (30 and 37 °C) by using bacteria inocula containing Acetobacter, Gluconobacter or a mixture of bacteria isolated from Sherry vinegars. Eighty-five individual volatile compounds from different families and sixteen polyphenolic compounds have been identified. It was confirmed that the highest temperature tested (37 °C) resulted in a lower concentration of volatile compounds, while no significant effect on the vinegars' volatile composition could be associated with the AAB inoculum used. Contrariwise, the highest content of polyphenolic compounds was detected in those vinegars produced at 37 °C and their concentration was also affected by the type of AAB inoculum used. Prickly pear wine displayed greater antioxidant activity than juices or vinegars, while the vinegars obtained through the mixture of AAB from Sherry vinegar showed higher antiradical activity than those obtained through either of the two AAB genera used in this study. It can be therefore concluded that, although the volatile content of vinegars decreased when fermented at a higher temperature, vinegars with a higher content in polyphenols could be obtained by means of partial fermentations at 37 °C, as long as thermotolerant bacteria were employed.
Collapse
|
8
|
Effect of microwave-assisted hydrothermal extraction on the bioactive compounds and antioxidant activities of dateplum persimmon juice and vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Biotechnological Processes in Fruit Vinegar Production. Foods 2021; 10:foods10050945. [PMID: 33925896 PMCID: PMC8145929 DOI: 10.3390/foods10050945] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
The production of fruit vinegars as a way of making use of fruit by-products is an option widely used by the food industry, since surplus or second quality fruit can be used without compromising the quality of the final product. The acetic nature of vinegars and its subsequent impact on the organoleptic properties of the final product allows almost any type of fruit to be used for its elaboration. A growing number of scientific research studies are being carried out on this matrix, and they are revealing the importance of controlling the processes involved in vinegar elaboration. Thus, in this review, we will deal with the incidence of technological and biotechnological processes on the elaboration of fruit vinegars other than grapes. The preparation and production of the juice for the elaboration of the vinegar by means of different procedures is an essential step for the final quality of the product, among which crushing or pressing are the most employed. The different conditions and processing methods of both alcoholic and acetic fermentation also affect significantly the final characteristics of the vinegar produced. For the alcoholic fermentation, the choice between spontaneous or inoculated procedure, together with the microorganisms present in the process, have special relevance. For the acetic fermentation, the type of acetification system employed (surface or submerged) is one of the most influential factors for the final physicochemical properties of fruit vinegars. Some promising research lines regarding fruit vinegar production are the use of commercial initiators to start the acetic fermentation, the use of thermotolerant bacteria that would allow acetic fermentation to be carried out at higher temperatures, or the use of innovative technologies such as high hydrostatic pressure, ultrasound, microwaves, pulsed electric fields, and so on, to obtain high-quality fruit vinegars.
Collapse
|
10
|
Hu M, Chen X, Huang J, Du J, Li M, Yang S. Revitalizing the ethanologenic bacterium Zymomonas mobilis for sugar reduction in high-sugar-content fruits and commercial products. BIORESOUR BIOPROCESS 2021; 8:119. [PMID: 34873566 PMCID: PMC8637514 DOI: 10.1186/s40643-021-00467-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
The excessive consumption of sugars can cause health issues. Different strategies have been developed to reduce sugars in the diets. However, sugars in fruits and commercial products may be difficult to reduce, limiting their usage among certain populations of people. Zymomonas mobilis is a generally recognized as safe (GRAS) probiotic bacterium with the capability to produce levan-type prebiotics, and thrives in high-sugar environments with unique characteristics to be developed for lignocellulosic biofuel and biochemical production. In this study, the sugar reduction capabilities of Z. mobilis ZM4 were examined using two fruits of pear and persimmon and three high-sugar-content commercial products of two pear pastes (PPs) and one Chinese traditional wine (CTW). Our results demonstrated that Z. mobilis ZM4 can utilize sugars in fruits with about 20 g/L ethanol and less than 5 g/L sorbitol produced within 22 h using pears, and about 45 g/L ethanol and 30 g/L sorbitol produced within 34 h using persimmons. When PPs made from pears were used, Z. mobilis can utilize nearly all glucose (ca. 60 g/L) and most fructose (110 g/L) within 100 h with 40 ~ 60 g/L ethanol and more than 20 g/L sorbitol produced resulting in a final sorbitol concentration above 80 g/L. In the high-sugar-content alcoholic Chinese traditional wine, which contains mostly glucose and ethanol, Z. mobilis can reduce nearly all sugars with about 30 g/L ethanol produced, resulting in a final ethanol above 90 g/L. The ethanol yield and percentage yield of Z. mobilis in 50 ~ 60% CTW were 0.44 ~ 0.50 g/g and 86 ~ 97%, respectively, which are close to its theoretical yields-especially in 60% CTW. Although the ethanol yield and percentage yield in PPs were lower than those in CTW, they were similar to those in fruits of pears and persimmons with an ethanol yield around 0.30 ~ 0.37 g/g and ethanol percentage yield around 60 ~ 72%, which could be due to the formation of sorbitol and/or levan in the presence of both glucose and fructose. Our study also compared the fermentation performance of the classical ethanologenic yeast Saccharomyces cerevisiae BY4743 to Z. mobilis, with results suggesting that Z. mobilis ZM4 had better performance than that of yeast S. cerevisiae BY4743 given a higher sugar conversion rate and ethanol yield for sugar reduction. This work thus laid a foundation for utilizing the advantages of Z. mobilis in the food industry to reduce sugar concentrations or potentially produce alcoholic prebiotic beverages. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s40643-021-00467-2.
Collapse
Affiliation(s)
- Mimi Hu
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xiangyu Chen
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Ju Huang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Jun Du
- China Biotech Fermentation Industry Association, Beijing, 100833 China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua County, Zhejiang, China
| | - Shihui Yang
- grid.34418.3a0000 0001 0727 9022State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, and School of Life Sciences, Hubei University, Wuhan, 430062 China
| |
Collapse
|
11
|
Comparative study of microbial communities and volatile profiles during the inoculated and spontaneous fermentation of persimmon wine. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Song M, Yang G, Hoa TQ, Hieu HD, Amin ASM, Choe W, Kang I, Kim SS, Ha J. Anti-obesity Effect of Fermented Persimmon Extracts via Activation of AMP-Activated Protein Kinase. Biol Pharm Bull 2020; 43:440-449. [PMID: 32115502 DOI: 10.1248/bpb.b19-00777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is significant cultivation of persimmon (Diospyros kaki) in East Asia, a plant whose fruit has abundant nutrients, including vitamins, polyphenols, and dietary fiber. Persimmon dietary supplements can benefit health by amelioration of diabetes, cardiovascular disease, and obesity. There are also persimmon-based beverages produced via fermentation, such as wines and vinegars, and increasing consumption of these products in East Asia. Although there is great interest in functional foods, the health effects of fermented persimmon extract (FPE) are completely unknown. We examined the effects of FPE on the metabolic parameters of mice fed a high-fat diet (HFD). Our results indicated that FPE supplementation led to an approx. 15% reduction of body weight, reduced abdominal and liver fat, and reduced serum levels of triglycerides, total cholesterol, and glucose. FPE also blocked the differentiation of murine 3T3-L1 pre-adipocyte cells into mature adipocytes. We suggest that gallic acid is a major bioactive component of FPE, and that AMP-activated protein kinase mediates the beneficial effects of FPE and gallic acid.
Collapse
Affiliation(s)
- Minhyeok Song
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University
| | - Goowon Yang
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University
| | - Tran Quynh Hoa
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University
| | - Hoang Dang Hieu
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University
| | - Ain Syafiza Mohd Amin
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, Graduate School, College of Medicine, Kyung Hee University
| |
Collapse
|
13
|
Matheus JRV, Andrade CJD, Miyahira RF, Fai AEC. Persimmon (Diospyros Kaki L.): Chemical Properties, Bioactive Compounds and Potential Use in the Development of New Products – A Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1733597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program (PPGAN), Federal Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Roberta Fontanive Miyahira
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program (PPGAN), Federal Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Basic and Experimental Nutrition, Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Choi J, Kim MJ, Komakech R, Jung H, Kang Y. Anti-inflammatory activities of astringent persimmons (Diospyros kaki Thunb.) stalks of various cultivar types based on the stages of maturity in the Gyeongnam province. Altern Ther Health Med 2019; 19:262. [PMID: 31547810 PMCID: PMC6757412 DOI: 10.1186/s12906-019-2659-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/28/2019] [Indexed: 02/17/2023]
Abstract
Background Natural products play a significant role in human health in relation to the prevention and treatment of inflammatory conditions. One of the plants with great medicinal potentials is Diospyros kaki which is mainly cultivated in Asian countries including Korea, Japan, and China. Astringent D. kaki is a wild species with an astringent taste until they are Ripened. kaki calyx is a traditional Korean medicine (TKM) made from the stalks of astringent D. kaki and is used in treating bed-wetting, vomiting, and hiccupping. The present study was designed to investigate the potential anti-inflammatory activities of astringent D. kaki stalks based on cultivar types and stages of maturity. Methods The anti-inflammatory effects of the stalk extracts of local astringent D. kaki cultivar species were evaluated on RAW 264.7 cells. Cell viability was measured using a Cell Counting Kit-8 (CCK8) method. The anti-inflammatory effects were determined by measuring the nitric oxide (NO) concentration of the supernatant. Cellular signaling pathways were determined by quantitative polymerase chain reactions of inducible nitric oxide synthase (iNOS). Protein expression of iNOS and phospho-p65 was determined using western blot, and the nuclear localization of p65 was determined using confocal imaging in RAW 264.7 cells. Results We found that the stage 1 (8–9 month) samples all showed a high percentage of tannic acid content and Gojongsi (Hamyang) stalks had the highest content. The stage 1 samples also showed the highest inhibition of NO production. Decreases in the expression of iNOS and phosphorylated p65, and in the nuclear localization of p65, were dose-dependent. All the extracts were nontoxic under 100 μg/ml concentration. Conclusion This study provides insight into the changes in tannic acid content in astringent D. kaki and their anti-inflammatory effects, in relation to their stage of maturity. These results are expected to be useful in the verification of the efficacy of oriental medicine and the timing of proper harvest for medical use.
Collapse
|
15
|
Song NE, Jeong DY, Baik SH. Application of indigenous Saccharomyces cerevisiae to improve the black raspberry ( Rubus coreanus Miquel) vinegar fermentation process and its microbiological and physicochemical analysis. Food Sci Biotechnol 2019; 28:481-489. [PMID: 30956860 PMCID: PMC6431333 DOI: 10.1007/s10068-018-0489-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 01/17/2023] Open
Abstract
In order to improve the slow ethanol fermentation during acetic acid fermentation process of black raspberry vinegar (BRV), the microbiological and physicochemical aspects of the effects of indigenous Saccharomyces cerevisiae JBCC-21A were examined. The selected S. cerevisiae JBCC-21A showed better growth and ethanol production rates than the commercial yeast strains. The ethanol production rate was 3-times faster than the traditional method. Acetic acid fermentation by S. cerevisiae JBCC-21A began 10 days earlier than the traditional method and reached up to 60 g/L acetic acid. Bacterial counts revealed Acetobacter pasteurianus was the only dominant species throughout the inoculated acetic acid fermentation. The physicochemical and functional properties of the fermented vinegar using indigenous S. cerevisiae JBCC-21A maintained a high quality similar to the traditional method, while being the faster fermentation process. Thus, it is suggested that inoculation of the indigenous S. cerevisiae strain in order to shorten the fermentation time without affecting the quality of traditional BRV.
Collapse
Affiliation(s)
- Nho-Eul Song
- Department of Food Nutrition and Health, and Fermented Food Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
- Present Address: Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365 Republic of Korea
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, 56048 Republic of Korea
| | - Sang-Ho Baik
- Department of Food Nutrition and Health, and Fermented Food Research Center, Chonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| |
Collapse
|
16
|
Development of air-blast dried non-Saccharomyces yeast starter for improving quality of Korean persimmon wine and apple cider. Int J Food Microbiol 2019; 290:193-204. [DOI: 10.1016/j.ijfoodmicro.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 11/21/2022]
|
17
|
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. Understanding Kombucha Tea Fermentation: A Review. J Food Sci 2018; 83:580-588. [PMID: 29508944 DOI: 10.1111/1750-3841.14068] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 12/01/2022]
Abstract
Kombucha is a beverage of probable Manchurian origins obtained from fermented tea by a microbial consortium composed of several bacteria and yeasts. This mixed consortium forms a powerful symbiosis capable of inhibiting the growth of potentially contaminating bacteria. The fermentation process also leads to the formation of a polymeric cellulose pellicle due to the activity of certain strains of Acetobacter sp. The tea fermentation process by the microbial consortium was able to show an increase in certain biological activities which have been already studied; however, little information is available on the characterization of its active components and their evolution during fermentation. Studies have also reported that the use of infusions from other plants may be a promising alternative. PRACTICAL APPLICATION Kombucha is a traditional fermented tea whose consumption has increased in the recent years due to its multiple functional properties such as anti-inflammatory potential and antioxidant activity. The microbiological composition of this beverage is quite complex and still more research is needed in order to fully understand its behavior. This study comprises the chemical and microbiological composition of the tea and the main factors that may affect its production.
Collapse
Affiliation(s)
| | - Sandra Beaufort
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jean-Pierre Souchard
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France.,Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, Toulouse, France
| | - Patricia Taillandier
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
18
|
Liu M, Yang K, Qi Y, Fan M, Wei X. Physicochemical characteristics and antioxidant activity of persimmon wine by technology of pectinase addition and different pre‐macerations. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miaomiao Liu
- College of Food Science and EngineeringNorthwest A & F UniversityYangling Shaanxi 712100 China
| | - Kun Yang
- College of Food Science and EngineeringNorthwest A & F UniversityYangling Shaanxi 712100 China
| | - Yiman Qi
- College of Food Science and EngineeringNorthwest A & F UniversityYangling Shaanxi 712100 China
| | - Mingtao Fan
- College of Food Science and EngineeringNorthwest A & F UniversityYangling Shaanxi 712100 China
| | - Xinyuan Wei
- College of Food Science and EngineeringNorthwest A & F UniversityYangling Shaanxi 712100 China
| |
Collapse
|
19
|
Evolution of the antioxidant capacity and phenolic contents of persimmon during fermentation. Food Sci Biotechnol 2017; 26:563-571. [PMID: 30263580 DOI: 10.1007/s10068-017-0099-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/22/2017] [Accepted: 02/07/2017] [Indexed: 10/19/2022] Open
Abstract
The changes in antioxidant capacity and phenolics of persimmon during alcoholic fermentation, acetification, and short aging were investigated. An increase in the antioxidant activity was observed when persimmon was transformed from puree to vinegar. The total content of phenolics remained stable, in contrast to the concentration of condensed tannin, which significantly (p < 0.05) increased during alcoholic and acetic fermentations, although followed by a decrease after aging. The phenolic compounds were characterized and quantitated. Gallic acid was the main phenolic compound, and its content increased by 14.4% during alcoholic fermentation and reduced by 53.5% during acetic fermentation. Additionally, the flavan-3-ol compounds increased during alcoholic fermentation and acetification. Vanillyl alcohol, (-)-epigallocatechin, and p-coumaric acid were not observed in persimmon puree but detected in persimmon wine and vinegar. These results indicate that alcoholic and acetic fermentation can improve the antioxidant capacity of persimmon fruit.
Collapse
|
20
|
Song NE, Cho SH, Baik SH. Microbial community, and biochemical and physiological properties of Korean traditional black raspberry (Robus coreanus Miquel) vinegar. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3723-3730. [PMID: 26676481 DOI: 10.1002/jsfa.7560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The aim of this study was to elucidate the changes in microbial community and biochemical and physiological properties of traditional Muju black raspberry (Robus coreanus Miquel) vinegar (TMBV) during fermentation by culture-independent methods. RESULTS During vinegar fermentation, ethanol produced up to 120 g L(-1) until day 35, with continuously increasing yeast concentration to a total of log 7.6 CFU mL(-1) . After day 35, acetic acid bacteria (AAB) concentrations rose to log 5.8 CFU mL(-1) until day 144. Denaturing gradient gel electrophoresis analysis showed that Saccharomyces cerevisiae was detected until day 87 of the fermentation, at which point Acetobacter pasteurianus gradually took over as the dominant species. Total sugar was reduced to 6.6 °Brix and total acidity produced up to 44 g L(-1) . CONCLUSION In this study, we established the physicochemical analysis and growth dynamics of yeast and AAB during alcoholic and acetic acid fermentation of black raspberry by a traditional method. Overall, S. cerevisiae and A. pasteurianus species appeared to dominate the TMBV fermentation. In conclusion, this study demonstrated a suitable fermentation system for TMBV by the static surface method. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nho-Eul Song
- Department of Food Science and Human Nutrition, and Fermented Food Research Center, Chonbuk National University, Jeonju, 561-756, South Korea
| | - Sung-Ho Cho
- Microbial Institute for Fermentation Industry, Sunchang, 595-804, South Korea
| | - Sang-Ho Baik
- Department of Food Science and Human Nutrition, and Fermented Food Research Center, Chonbuk National University, Jeonju, 561-756, South Korea
| |
Collapse
|
21
|
Draft Genome Sequence of Acetobacter malorum CECT 7742, a Strain Isolated from Strawberry Vinegar. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00620-16. [PMID: 27340078 PMCID: PMC4919417 DOI: 10.1128/genomea.00620-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present article reports the draft genome sequence of the strain Acetobacter malorum CECT 7742, an acetic acid bacterium isolated from strawberry vinegar. This species is characterized by the production of d-gluconic acid from d-glucose, which it further metabolizes to keto-d-gluconic acids.
Collapse
|
22
|
Dias DR, Silva MS, Cristina de Souza A, Magalhăes-Guedes KT, Ribeiro FSDR, Schwan RF. Vinegar Production from Jabuticaba ( Myrciaria jaboticaba) Fruit Using Immobilized Acetic Acid Bacteria. Food Technol Biotechnol 2016; 54:351-359. [PMID: 27956867 DOI: 10.17113/ftb.54.03.16.4416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell immobilization comprises the retention of metabolically active cells inside a polymeric matrix. In this study, the production of jabuticaba (Myrciaria jaboticaba) vinegar using immobilized Acetobacter aceti and Gluconobacter oxydans cells is proposed as a new method to prevent losses of jabuticaba fruit surplus. The pulp of jabuticaba was processed and Saccharomyces cerevisiae CCMA 0200 was used to ferment the must for jabuticaba wine production. Sugars, alcohols (ethanol and glycerol) and organic acids were assayed by high-performance liquid chromatography. Volatile compounds were determined by gas chromatography-flame ionization detector. The ethanol content of the produced jabuticaba wine was approx. 74.8 g/L (9.5% by volume) after 168 h of fermentation. Acetic acid fermentation for vinegar production was performed using a mixed culture of immobilized A. aceti CCT 0190 and G. oxydans CCMA 0350 cells. The acetic acid yield was 74.4% and productivity was 0.29 g/(L·h). The vinegar had particularly high concentrations of citric (6.67 g/L), malic (7.02 g/L) and succinic (5.60 g/L) acids. These organic acids give a suitable taste and flavour to the vinegar. Seventeen compounds (aldehydes, higher alcohols, terpene, acetate, diether, furans, acids, ketones and ethyl esters) were identified in the jabuticaba vinegar. In conclusion, vinegar was successfully produced from jabuticaba fruits using yeast and immobilized mixed cultures of A. aceti and G. oxydans. To the best of our knowledge, this is the first study to use mixed culture of immobilized cells for the production of jabuticaba vinegar.
Collapse
Affiliation(s)
- Disney Ribeiro Dias
- Department of Food Science, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| | - Monique Suela Silva
- Department of Biology, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| | - Angélica Cristina de Souza
- Department of Biology, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| | | | | | - Rosane Freitas Schwan
- Department of Biology, Federal University of Lavras (UFLA), University Campus,
37200-000 Lavras, MG, Brazil
| |
Collapse
|
23
|
Štornik A, Skok B, Trček J. Comparison of Cultivable Acetic Acid Bacterial Microbiota in Organic and Conventional Apple Cider Vinegar. Food Technol Biotechnol 2016; 54:113-119. [PMID: 27904401 DOI: 10.17113/ftb.54.01.16.4082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Organic apple cider vinegar is produced from apples that go through very restricted treatment in orchard. During the first stage of the process, the sugars from apples are fermented by yeasts to cider. The produced ethanol is used as a substrate by acetic acid bacteria in a second separated bioprocess. In both, the organic and conventional apple cider vinegars the ethanol oxidation to acetic acid is initiated by native microbiota that survived alcohol fermentation. We compared the cultivable acetic acid bacterial microbiota in the production of organic and conventional apple cider vinegars from a smoothly running oxidation cycle of a submerged industrial process. In this way we isolated and characterized 96 bacteria from organic and 72 bacteria from conventional apple cider vinegar. Using the restriction analysis of the PCR-amplified 16S-23S rRNA gene ITS regions, we identified four different HaeIII and five different HpaII restriction profiles for bacterial isolates from organic apple cider vinegar. Each type of restriction profile was further analyzed by sequence analysis of the 16S-23S rRNA gene ITS regions, resulting in identification of the following species: Acetobacter pasteurianus (71.90%), Acetobacter ghanensis (12.50%), Komagataeibacter oboediens (9.35%) and Komagataeibacter saccharivorans (6.25%). Using the same analytical approach in conventional apple cider vinegar, we identified only two different HaeIII and two different HpaII restriction profiles of the 16S‒23S rRNA gene ITS regions, which belong to the species Acetobacter pasteurianus (66.70%) and Komagataeibacter oboediens (33.30%). Yeasts that are able to resist 30 g/L of acetic acid were isolated from the acetic acid production phase and further identified by sequence analysis of the ITS1-5.8S rDNA‒ITS2 region as Candida ethanolica, Pichia membranifaciens and Saccharomycodes ludwigii. This study has shown for the first time that the bacterial microbiota for the industrial production of organic apple cider vinegar is clearly more heterogeneous than the bacterial microbiota for the industrial production of conventional apple cider vinegar. Further chemical analysis should reveal if a difference in microbiota composition influences the quality of different types of apple cider vinegar.
Collapse
Affiliation(s)
- Aleksandra Štornik
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia
| | - Barbara Skok
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor,
Koroška cesta 160, SI-2000 Maribor, Slovenia; Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17,
SI-2000 Maribor, Slovenia
| |
Collapse
|
24
|
Microbial diversity and their roles in the vinegar fermentation process. Appl Microbiol Biotechnol 2015; 99:4997-5024. [DOI: 10.1007/s00253-015-6659-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
|
25
|
Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Analyzing the relation between the microbial diversity of DaQu and the turbidity spoilage of traditional Chinese vinegar. Appl Microbiol Biotechnol 2014; 98:6073-84. [PMID: 24691870 DOI: 10.1007/s00253-014-5697-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
Abstract
Vinegar is a traditional fermented condiment, and the microbial diversity of DaQu makes the quality of vinegar products. Recently, turbidity spoilage of vinegar sharply tampered with the quality of vinegar. In this study, the relation between the microbial diversity of DaQu and turbidity spoilage of vinegar was analyzed by plating technique, PCR-denaturing gradient gel electrophoresis (DGGE), and high-performance liquid chromatography (HPLC). The 16S rRNA sequencing and DGGE analysis indicated that Bacillus (Bacillus subtilis, Bacillus amyloliquefaciens, and Bacillus thuringiensis) and Lactobacillus (including Lactobacillus acidipiscis and Lactobacillus pobuzihii) species were the dominant contaminants in vinegar products. Meanwhile, DGGE analysis showed that the dominant bacteria in DaQu belonged to genera Bacillus, Lactobacillus, Pseudomonas, Weissella, Saccharopolyspora, Enterobacter, and Pantoea. However, only two yeast species (Pichia kudriavzevii and Saccharomycopsis fibuligera) and seven mold species including Aspergillus oryzae, Aspergillus niger, Aspergillus candidus, Rhizopus microspores, Eurotium herbariorum, Absidia corymbifera, and Eupenicillium javanicum were detected in the DaQu. The population level of fungi was below 5 log CFU/g in DaQu. The chemical and physical properties of vinegar and sediments were also determined. On the basis of a combined microbial diversity-chemical analysis, we demonstrated that turbidity spoilage of vinegar was a result of cooperation among the low population level and abundance of fungal species in DaQu, the suitable climate conditions, and the contaminants in vinegar. This is the first report to analyze the relation between the microbial diversity of DaQu and turbidity spoilage of vinegar.
Collapse
|
27
|
Acetic acid bacteria isolated from grapes of South Australian vineyards. Int J Food Microbiol 2014; 178:98-106. [PMID: 24681711 DOI: 10.1016/j.ijfoodmicro.2014.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
Acetic acid bacteria (AAB) diversity from healthy, mould-infected and rot-affected grapes collected from three vineyards of Adelaide Hills (South Australia) was analyzed by molecular typing and identification methods. Nine different AAB species were identified from the 624 isolates recovered: Four species from Gluconobacter genus, two from Asaia and one from Acetobacter were identified by the analysis of 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer. However, the identification of other isolates that were assigned as Asaia sp. and Ameyamaea chiangmaiensis required more analysis for a correct species classification. The species of Gluconobacter cerinus was the main one identified; while one genotype of Asaia siamensis presented the highest number of isolates. The number of colonies recovered and genotypes identified was strongly affected by the infection status of the grapes; the rot-affected with the highest number. However, the species diversity was similar in all the cases. High AAB diversity was detected with a specific genotype distribution for each vineyard.
Collapse
|
28
|
Romi W, Keisam S, Ahmed G, Jeyaram K. Reliable differentiation of Meyerozyma guilliermondii from Meyerozyma caribbica by internal transcribed spacer restriction fingerprinting. BMC Microbiol 2014; 14:52. [PMID: 24575831 PMCID: PMC3946169 DOI: 10.1186/1471-2180-14-52] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 02/24/2014] [Indexed: 11/10/2022] Open
Abstract
Background Meyerozyma guilliermondii (anamorph Candida guilliermondii) and Meyerozyma caribbica (anamorph Candida fermentati) are closely related species of the genetically heterogenous M. guilliermondii complex. Conventional phenotypic methods frequently misidentify the species within this complex and also with other species of the Saccharomycotina CTG clade. Even the long-established sequencing of large subunit (LSU) rRNA gene remains ambiguous. We also faced similar problem during identification of yeast isolates of M. guilliermondii complex from indigenous bamboo shoot fermentation in North East India. There is a need for development of reliable and accurate identification methods for these closely related species because of their increasing importance as emerging infectious yeasts and associated biotechnological attributes. Results We targeted the highly variable internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) and identified seven restriction enzymes through in silico analysis for differentiating M. guilliermondii from M. caribbica. Fifty five isolates of M. guilliermondii complex which could not be delineated into species-specific taxonomic ranks by API 20 C AUX and LSU rRNA gene D1/D2 sequencing were subjected to ITS-restriction fragment length polymorphism (ITS-RFLP) analysis. TaqI ITS-RFLP distinctly differentiated the isolates into M. guilliermondii (47 isolates) and M. caribbica (08 isolates) with reproducible species-specific patterns similar to the in silico prediction. The reliability of this method was validated by ITS1-5.8S-ITS2 sequencing, mitochondrial DNA RFLP and electrophoretic karyotyping. Conclusions We herein described a reliable ITS-RFLP method for distinct differentiation of frequently misidentified M. guilliermondii from M. caribbica. Even though in silico analysis differentiated other closely related species of M. guilliermondii complex from the above two species, it is yet to be confirmed by in vitro analysis using reference strains. This method can be used as a reliable tool for rapid and accurate identification of closely related species of M. guilliermondii complex and for differentiating emerging infectious yeasts of the Saccharomycotina CTG clade.
Collapse
Affiliation(s)
| | | | | | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development (IBSD), Takyelpat Institutional Area, Imphal 795001, Manipur, India.
| |
Collapse
|
29
|
Acetic acid bacteria and the production and quality of wine vinegar. ScientificWorldJournal 2014; 2014:394671. [PMID: 24574887 PMCID: PMC3918346 DOI: 10.1155/2014/394671] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/11/2013] [Indexed: 11/18/2022] Open
Abstract
The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties.
Collapse
|
30
|
Hidalgo C, García D, Romero J, Mas A, Torija M, Mateo E. Acetobacter
strains isolated during the acetification of blueberry (Vaccinium corymbosum
L.) wine. Lett Appl Microbiol 2013; 57:227-32. [DOI: 10.1111/lam.12104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. Hidalgo
- Biotecnologia Enológica; Dept. Bioquímica i Biotecnologia; Facultat d'Enologia; Universitat Rovira i Virgili; Tarragona Spain
| | - D. García
- Biotecnologia Enológica; Dept. Bioquímica i Biotecnologia; Facultat d'Enologia; Universitat Rovira i Virgili; Tarragona Spain
| | - J. Romero
- Laboratorio de Biotecnología; INTA; Universidad de Chile; Santiago de Chile Chile
| | - A. Mas
- Biotecnologia Enológica; Dept. Bioquímica i Biotecnologia; Facultat d'Enologia; Universitat Rovira i Virgili; Tarragona Spain
| | - M.J. Torija
- Biotecnologia Enológica; Dept. Bioquímica i Biotecnologia; Facultat d'Enologia; Universitat Rovira i Virgili; Tarragona Spain
| | - E. Mateo
- Biotecnologia Enológica; Dept. Bioquímica i Biotecnologia; Facultat d'Enologia; Universitat Rovira i Virgili; Tarragona Spain
| |
Collapse
|
31
|
Valera MJ, Torija MJ, Mas A, Mateo E. Acetobacter malorum and Acetobacter cerevisiae identification and quantification by Real-Time PCR with TaqMan-MGB probes. Food Microbiol 2013; 36:30-9. [PMID: 23764217 DOI: 10.1016/j.fm.2013.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/06/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
The identification and quantification of Acetobacter malorum and Acetobacter cerevisiae in wine and vinegar were performed using the Real-Time PCR (RT-PCR) with two TaqMan-MGB probes designed to amplify the internal transcribed spacer (ITS) region between the 16S-23S rRNA genes. The primers and probes were highly specific, with a detection limit of 10² cells/ml for both species, and the efficiency of the technique was >80%. The RT-PCR technique with these two new TaqMan-MGB probes, together with the five (Acetobacter aceti, Acetobacter pasteurianus, Gluconobacter oxydans, Gluconacetobacter hansenii and Gluconacetobacter europaeus) that are already available (Torija et al., 2010), were validated on known concentrations of Acetic Acid Bacteria (AAB) grown in glucose medium (GY) and in inoculated matrices of wine and vinegar. Furthermore, this technique was applied to evaluate the AAB population in real wine samples collected in the Canary Islands. PCR enrichment performed prior to RT-PCR increased the accuracy of quantification and produced results similar to those detected with SYBR-Green. In real wine samples, the total AAB enumeration ranged from 9 × 10² to 10⁶ cells/ml, and the seven AAB species tested were detected in more than one sample. However, AAB recovery on plates was poor; the isolates obtained on plates were A. malorum, G. oxydans, A. cerevisiae and A. pasteurianus species. RT-PCR with TaqMan-MGB probes is an accurate, specific and fast method for the identification and quantification of AAB species commonly found in wine and vinegar.
Collapse
Affiliation(s)
- Maria José Valera
- Biotecnologia Enológica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | | | | | |
Collapse
|
32
|
Vegas C, González Á, Mateo E, Mas A, Poblet M, Torija MJ. Evaluation of representativity of the acetic acid bacteria species identified by culture-dependent method during a traditional wine vinegar production. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.12.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Hidalgo C, Torija MJ, Mas A, Mateo E. Effect of inoculation on strawberry fermentation and acetification processes using native strains of yeast and acetic acid bacteria. Food Microbiol 2012; 34:88-94. [PMID: 23498182 DOI: 10.1016/j.fm.2012.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 11/20/2012] [Accepted: 11/27/2012] [Indexed: 11/25/2022]
Abstract
The aim of this work was to analyze the microbiota involved in the traditional vinegar elaboration of strawberry fruit during a spontaneous and inoculated process. In the spontaneous processes, low biodiversity was detected in both alcoholic fermentation (AF) and acetification. Nevertheless, a strain of Saccharomyces cerevisiae and of Acetobacter malorum were selected and tested as starter cultures in the inoculation study. The inoculated processes with these strains were compared with another spontaneous process, yielding a significant reduction in time for AF with a total imposition of the S. cerevisiae strain. The resulting strawberry wine was acetified in different containers (glass and wood) yielding an initial imposition of the A. malorum inoculated strain, although displacement by Gluconacetobacter species was observed in the wood barrels.
Collapse
Affiliation(s)
- C Hidalgo
- Biotecnologia Enológica, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, C/Marcel.lí Domingo s/n, 43007 Tarragona, Spain
| | | | | | | |
Collapse
|