1
|
Wang F, Fu Q, Tang T, Liu Z, Ma X, Liu Y, Zhao M, Wang C, Du J, Wang B, Shi X. Dynamic changes in microbiota and metabolome of Kazakh cheese under traditional handicraft. Food Chem 2025; 483:144251. [PMID: 40222124 DOI: 10.1016/j.foodchem.2025.144251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/17/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Kazakh cheese is a traditional fermented dairy product. In this study, high-throughput sequencing, HS-SPME-GC-MS/MS, and untargeted metabolomics were employed to investigate the microbial succession and flavor profiles of Kazakh cheese under traditional handicraft. During processing, Lactobacillus and Acetobacter were the dominant bacterial genera, while Pichia and Kluyveromyces were the predominant yeast genera. The predominant volatile compounds identified across different stages were phenethyl alcohol, acetoin, hexanoic acid, and phenethyl acetate, with their maximum concentrations attained at the cheese during ripening (CR) stage. KEGG pathway enrichment analysis identified amino acid metabolism as the most significantly enriched pathway. Furthermore, Spearman correlation analysis revealed a significant association between Pichia, Lactobacillus, Lactococcus, Kluyveromyces, and flavor compounds, suggesting the crucial role of these microbes in flavor development. This study provides a theoretical foundation for enhancing the quality of traditional fermented Kazakh cheese and advancing Xinjiang's specialty dairy industry.
Collapse
Affiliation(s)
- Fangfang Wang
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Qingquan Fu
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Tiantian Tang
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Zimeng Liu
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xinyi Ma
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yinqi Liu
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Min Zhao
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Chenqiang Wang
- Guannong Testing Technology Co., Ltd, Tiemenguan 841007, Xinjiang, China
| | - Juan Du
- Xinjiang Sailimu Modern Agriculture Co., Ltd, Shuanghe 833408, Xinjiang, China
| | - Bin Wang
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Xuewei Shi
- Food college, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
2
|
Li T, Fang Y, Chai Z, Ji L, Jiang Z, Meng D, He B, Hu X, Xi H, Jia X, Li D. Cyclic dipeptides from endophytic bacterium Bacillus velezensis as potential flavor precursors. Front Microbiol 2025; 16:1565502. [PMID: 40236483 PMCID: PMC11996796 DOI: 10.3389/fmicb.2025.1565502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
Cyclic dipeptides represent a class of intriguing molecules with a wide range of biological activities, but their potential application as flavor precursors has not been previously reported. In this study, a flavor-producing bacterium Bacillus velezensis was screened out from 35 isolated endophytic bacteria. Gas chromatography-mass spectrometry (GC-MS) analysis suggested that the fermentation broth of B. velezensis contained flavor compounds and high amount of cyclic dipeptide flavor precursors. Three cyclic dipeptide flavor precursors, namely cyclo (L-prolyl-L-valine) (1), cyclo (L-prolyl-L-isoleucine) (2), and cyclo (L-prolyl-L-leucine) (3), were further isolated from the fermentation broth extraction through Sephadex LH-20 column chromatography and semi-preparative high-performance liquid chromatography (HPLC), and were identified by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Flavor precursors can generate aroma components during pyrolysis, and the pyrolysis of compounds 1 and 3 were performed using pyrolysis GC-MS (Py-GC-MS) to analyze the flavor products. According to the relative odor activity value (ROAV) analysis, the key pyrolysis flavor compounds were revealed as 6-heptyl-5,6-dihydro-2H-pyran-2-one, isobutyric acid, 4-methyl-2-oxo-pentanoic acid ester, pyrrole derivatives, and pyrazine derivatives, which could give great contributions to milky, roasting, fruity, sweetness, and nutty aromas. The pyrolysis formation pathway of these flavor compounds was also proposed in detail. Addition of fermentation broth from the flavor-producing bacteria on cigar tobacco leaves significantly enhanced the milky, roasting, fruity, sweetness, and nutty aromas, which further demonstrated the flavor enhancing ability of cyclic dipeptides. This is the first report of flavor enhancing effects of cyclic dipeptides utilized as flavor precursors.
Collapse
Affiliation(s)
- Tianxiao Li
- Flavor Research Center, College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yaning Fang
- Flavor Research Center, College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhishun Chai
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Lingbo Ji
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhongrong Jiang
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| | - Dandan Meng
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Baojiang He
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xiaolong Hu
- Flavor Research Center, College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Hui Xi
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xuewei Jia
- Flavor Research Center, College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of Tobacco Industry, China Tobacco Sichuan Industrial Co., Ltd., Chengdu, China
| |
Collapse
|
3
|
Chen H, Zhong S, Liu Z, Hu Z, Wang C, Zhou Y, Xu N, Zhao F, Li D, Hu Y. Microbiome-metabolomic insights into the systemic regulation in Fangxian Huangjiu fermentation. Food Chem 2025; 481:143980. [PMID: 40154057 DOI: 10.1016/j.foodchem.2025.143980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/04/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Metabolic forces drive microecological succession in Huangjiu fermentation. This study investigates the dynamic metabolic-microbial interplay during Fangxian Huangjiu fermentation. Temporal changes of metabolome and microbiome revealed a syntropic relationship that purified the microbial community with convergent metabolic patterns. With species turnover driving microbial community structure, early-stage microbiomes exhibited great functional diversity. Functions related to energy and molecular building blocks were enriched at the end of early stage, and contributed greatly to microbial adaptation, highlighting the importance of metabolic forces in shaping community structure. Proteobacteria were identified as key facilitators of diverse metabolic activities, and Enterobacter emerged as a fundamental microbial community particularly for materials transformation. Correlation analysis enriched amino acid metabolism pathways. Further, Pantoea ananatis and Wickerhamomyces anomalus were isolated to enhance sphingosine-1-phosphate, γ-aminobutyric acid, and creatine levels without altering physicochemical properties. The study offers insights into the regulation of Huangjiu fermentation, and suggested potential micobiome manipulation to optimize characteristics.
Collapse
Affiliation(s)
- Haiyin Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Sicheng Zhong
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhijie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhao Hu
- Hubei Lulingwang Liquor Industry Co., Ltd, Fangxian 442399, Hubei, China
| | - Chao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Yuke Zhou
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Ning Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Fuquan Zhao
- Hubei Lulingwang Liquor Industry Co., Ltd, Fangxian 442399, Hubei, China
| | - Dongsheng Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Yong Hu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, Hubei, China; Hubei Xizhiyuan Bioengineering Co., Ltd, 445099, Hubei, China.
| |
Collapse
|
4
|
Fu Q, Wang F, Tang T, Liu Z, Wang L, Wang Q, Shi X, Wang B. A Snapshot of Microbial Succession and Volatile Component Dynamics of Marselan Wine in Xinjiang During Spontaneous Fermentation. Foods 2025; 14:994. [PMID: 40232002 PMCID: PMC11941887 DOI: 10.3390/foods14060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Marselan wine is characterized by distinctive flavors of blackcurrant, cranberry, and spice, which are significantly influenced by environmental factors such as region and climate. In this study, we analyzed the dynamic changes in the microbial community, physicochemical indices, and flavor compounds during the spontaneous fermentation of Marselan wine in Xinjiang using high-throughput sequencing (HTS), high-performance liquid chromatography (HPLC), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results indicated that the sugar content decreased from 259.12 g/L to 22.45 g/L, while the ethanol content increased to 13.63 ± 0.15% vol after 12 days of fermentation. The predominant aromatic components identified in Marselan grapes include isophorone, 2,3-pentanedione, 2-hexenal, and melonal. After fermentation, ethanol, phenethyl alcohol, isoamyl acetate, ethyl acetate, and ethyl hexanoate were produced, imparting rose, cream, and fruit flavors to wine. The key microorganisms involved in the spontaneous fermentation of Marselan wine include Saccharomyces, Starmerella, Pichia, Pseudomonas, Sphingomonas, and Aspergillus. These microorganisms contributed substantially to the main physicochemical indices and flavor profiles. Saccharomyces and Pichia enhanced the formation of most alcohols and esters, whereas Aspergillus, Acremonium, and Fusarium inhibited the synthesis of numerous volatile compounds. These findings provide valuable theoretical references for improving the quality of Marselan wines in Xinjiang.
Collapse
Affiliation(s)
- Qingquan Fu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fangfang Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Tiantian Tang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zimen Liu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lilin Wang
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Qingling Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
5
|
Yang Z, Lian J, Li J, Guo W, Ni L, Lv X. Intestinal Microbiomics and Liver Metabolomics Insights into the Ameliorative Effects of Selenium-Enriched Lactobacillus fermentum FZU3103 on Alcohol-Induced Liver Injury in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3232-3245. [PMID: 39658842 DOI: 10.1021/acs.jafc.4c06072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
In this study, we investigated the ameliorative effects of selenium-enriched Lactobacillus fermentum FZU3103 (Lf@Se) and its pathway on alcoholic liver injury (ALI) in mice. The results showed that Lf@Se was superior to Lf and inorganic selenium in alleviating ALI. Oral Lf@Se effectively prevented lipid metabolism disorders, improved liver function, promoted alcohol metabolism, and alleviated liver oxidative damage in mice. 16S amplicons sequencing indicated that Lf@Se intervention modulated intestinal flora homeostasis by increasing (decreasing) the abundance of beneficial bacteria (harmful bacteria), which is associated with the improvement of liver function. Besides, Lf@Se intervention altered the liver metabolic profile, and the characteristic biomarkers were mainly involved in tyrosine metabolism, retinol metabolism, galactose metabolism, and primary bile acid biosynthesis. Additionally, Lf@Se intervention regulated liver gene expression for lipid metabolism and oxidative stress. Western blot analysis revealed increased expression levels of intestinal tight junction proteins after Lf@Se intervention, thereby ameliorating alcohol-induced intestinal barrier damage.
Collapse
Affiliation(s)
- Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Jingyu Lian
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Jiayi Li
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, China
| |
Collapse
|
6
|
Yang Y, Zhou G, Ding Y, Shi W, Chen Y, Ge C, Xu B, Yang L. Microbiota dynamics and metabolic mechanisms in fermented sausages inoculated with Lactiplantibacillus plantarum and Staphylococcus xylosus. Food Res Int 2025; 201:115680. [PMID: 39849797 DOI: 10.1016/j.foodres.2025.115680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/25/2025]
Abstract
Lactiplantibacillus plantarum and Staphylococcus xylosus are common starters for fermented sausages. Several studies have demonstrated the impact of these two strains on the quality of fermented sausages. However, the mechanism underlying the effects of these two microorganisms on co-cultivation in sausages remains unclear. This study aimed to investigate the effects of inoculation with various combinations of starters on the microbial communities and metabolic profiles of fermented sausages. High-throughput sequencing revealed that, during sausage fermentation, Firmicutes was the dominant bacterial phylum, and the primary microorganisms were Lactococcus, Staphylococcus, Lactobacillus, and Pseudomonas. On the last day of fermentation, the highest abundance of Staphylococcus was observed in the co-inoculation group. Furthermore, inoculated fermentation effectively inhibited the growth of pathogenic and spoilage bacteria. Metabolomic analysis of the four groups of samples identified 208 metabolites in positive ion mode and 109 in negative ion mode. A total of 31 differential metabolites were identified (P < 0.05, variable importance in the projection >1.5), primarily benzene and substituted derivatives, carboxylic acids and derivatives, and fatty acyls. Five crucial differential metabolites (subaphylline, naringenin, 1-hexadecanol, beta-alanyl-L-lysine, and 3'-AMP) were identified as potential biomarkers for fermented sausages. Key differential metabolite metabolic pathways indicated that L. plantarum YR07 dominated in metabolite regulation during sausage fermentation, and S. xylosus Y-18 downregulated the fatty acid degradation pathway, which also affected the metabolism of fermented sausages. Co-cultivation of the two bacteria exhibited a synergistic effect on the metabolism of the fermented sausages. This study offers further insights into improving the quality of fermented sausages, thereby establishing a theoretical foundation for the production of excellent fermenters.
Collapse
Affiliation(s)
- Yulong Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Gang Zhou
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yining Ding
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wenjing Shi
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yueqian Chen
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Chunbo Ge
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baocai Xu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Liu Yang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
7
|
Niu J, Li W, Du B, Wu Y, Lang Y, Sun B, Sun W, Li X. Temporal heterogeneity of microbial communities and flavor metabolism during storage of high-temperature Daqu. Food Chem 2025; 464:141577. [PMID: 39427619 DOI: 10.1016/j.foodchem.2024.141577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Storage is a crucial step in the production of Daqu, but the microbiological and flavor chemical kinetics of the storage process remain largely unknown and limit the quality control of Daqu. In this study, the microbial communities and volatile compounds were analyzed and compared during the storage of Daqu. Virgibacillus, Bacillus and Kroppenstedtia were the dominant bacterial genera, and Thermoascus, Thermomyces and Aspergillus were the dominant fungal genera. By LEfSe analysis, JW1 Daqu had more differential microbial markers. At the end of storage, the content of some compounds decreased significantly, such as esters, alcohols and ketones. In addition, PICRUSt2 predicted enzymes related to some important aroma production. These results indicated that microbial communities and volatiles changed significantly during storage of Daqu, which might be important for optimization of quality.
Collapse
Affiliation(s)
- Jialiang Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Binghao Du
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanfang Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute Co.Ltd, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
8
|
Zhang B, Zheng S, Huang M, Wu Q, Dong W, Wu J, Liu H, Zhao D, Yu Y, Li J. Analysis of volatile compounds in Xiangjiao baijiu from different storage containers and years based on HS-GC-IMS and DI-GC-MS. Food Chem X 2024; 24:101976. [PMID: 39641112 PMCID: PMC11617706 DOI: 10.1016/j.fochx.2024.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
The volatile compounds in 16 different storage containers and years of Xiangjiao Baijiu (XJBJ) were compared and analyzed via direct injection (DI) combined with gas chromatography-mass spectrometry (GC-MS) and headspace extraction (HS) coupled with gas chromatography-ion mobility spectrometry (HS-GC-IMS) for the first time. Through HS-GC-IMS analysis, it was found that the succession rules of 14 compounds such as furfural during aging process. A total of 60 compounds were identified using DI-GC-MS. Twenty-five of these compounds were further quantified, and 19 compounds had odor activity values (OAVs) > 1, which were important contributor to aroma of XJBJ. Among them, those with OAVs >1000 included ethyl hexanoate, ethyl octanoate, ethyl butanoate, and ethyl pentanoate. Combining the results of quantitative, OAVs and partial least squares-discriminant analysis (PLS-DA) revealed that 10 compounds such as ethyl octanoate were the important compounds that lead to the differences between different storage types of XJBJ.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Siman Zheng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qiang Wu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Wei Dong
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Hongqin Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Jinchen Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
9
|
Yang Z, Lian J, Yang Y, Li J, Guo W, Lv X, Ni L, Chen Y. Selenium enrichment enhances the alleviating effect of Lactobacillus rhamnosus GG on alcoholic liver injury in mice. Curr Res Food Sci 2024; 10:100964. [PMID: 39811256 PMCID: PMC11732223 DOI: 10.1016/j.crfs.2024.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Selenium-enriched probiotics have attracted much attention due to the physiological activities of both probiotics and selenium (organic selenium). In this study, we investigated the mitigating effect of selenium-enriched Lactobacillus rhamnosus GG (LGG@Se) and its pathway on alcohol-induced liver injury (ALI) in mice. The results showed that LGG@Se was superior to LGG and sodium selenite in alleviating ALI. Oral LGG@Se effectively prevented lipid metabolism disorders and liver oxidative damage in mice caused by excessive alcohol intake. 16S amplicon sequencing showed that LGG@Se intervention increased the abundance of beneficial bacteria and suppressed the growth of harmful bacteria in the intestinal tract of over-drinking mice, and thus effectively modulated the homeostasis of intestinal flora, which were highly correlated with the improvement of liver function. Liver metabolomics analysis indicated that LGG@Se intervention altered liver metabolic profiling, and the characteristic biomarkers were mainly involved in amino acid metabolism, including alanine, aspartate and glutamate metabolism, arginine biosynthesis, etc. In addition, LGG@Se intervention modulated the expression of genes and proteins related to lipid metabolism and oxidative stress in liver of over-drinking mice. Western blot analysis revealed that LGG@Se intervention up-regulated the expression of intestinal barrier function-related proteins, thereby ameliorating alcohol-induced intestinal barrier damage. Collectively, these findings provide scientific evidence that LGG@Se possesses the biological activity of improving alcohol-induced lipid metabolism and intestinal microbiota disorder.
Collapse
Affiliation(s)
- Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Jingyu Lian
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Yuheng Yang
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, PR China
| | - Jiayi Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Weiling Guo
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Youting Chen
- Department of Hepatopancreatobiliary Surgery, Fujian Research Institute of Abdominal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, PR China
| |
Collapse
|
10
|
Xu H, Xu J, Yurong Z, Ba W, Li Q, Xie J, Chen J, Zhang W. The Impact of Fermentation Methods on the Quality and Bacterial Diversity of Dazhu Glutinous Rice Wine. Curr Microbiol 2024; 82:38. [PMID: 39673567 DOI: 10.1007/s00284-024-04015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Dazhu glutinous rice wine is a well-known traditional Chinese rice wine, and many local factories and handicraft workshops use different fermentation methods to produce it. Still, the influence of fermentation processes on glutinous rice wine is unclear. This study aimed to compare the difference between the two fermentation methods in the quality and bacterial composition of Dazhu glutinous rice wine. Results showed that the alcoholic content (P < 0.0001) and acidity (P < 0.01) in the rice wine fermented after packaging (PFRW) were higher than in the rice wine packaged after fermentation (FPRW), but the total sugar content was lower. Most amino, such as glutamic acid proline, and lactic acid were significantly higher in FPRW (P < 0.0001). In addition, the aroma, flavor and taste were better in FPRW than in PFRW. The Limosilactobacillus fermentum, Pediococcus pentosaceus, and Lactococcus lactis were dominant bacteria in FPRW, positively associated with amino acid and lactic acid. At the same time, Alcaligenaceae and Pedobacter nutriment were dominant bacteria in PFRW and negatively correlated with the quality. These implied that lactic acid bacteria significantly contributed to accumulating flavor ingredients and improving the quality of Dazhu glutinous rice wine. This study provides reference data for improving the quality of rice wine.
Collapse
Affiliation(s)
- Haiyan Xu
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China.
- College of Biomass Science and Engineering, Sichuan University, 24 South Section, First Ring Road, Chengdu, 610065, Sichuan, China.
| | - Jiamin Xu
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - ZhuZhu Yurong
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Wenjia Ba
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Jie Xie
- College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Jiang Chen
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, 24 South Section, First Ring Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
11
|
Zhou X, Liu F, Wang CC, Zhang HL, Zhao P, Xie FH, Hu DM, Duan WJ, Cai L. Characterization of core microbiota of barley seeds from different continents for origin tracing and quarantine pathogen assessment. Food Microbiol 2024; 124:104615. [PMID: 39244367 DOI: 10.1016/j.fm.2024.104615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/09/2024]
Abstract
Seeds are important microbial vectors, and seed-associated pathogens can be introduced into a country through trade, resulting in yield and quality losses in agriculture. The aim of this study was to characterize the microbial communities associated with barley seeds, and based on which, to develop technical approaches to trace their geographical origins, and to inspect and identify quarantine pathogens. Our analysis defined the core microbiota of barley seed and revealed significant differences in the barley seed-associated microbial communities among different continents, suggesting a strong geographic specificity of the barley seed microbiota. By implementing a machine learning model, we achieved over 95% accuracy in tracing the origin of barley seeds. Furthermore, the analysis of co-occurrence and exclusion patterns provided important insights into the identification of candidate biocontrol agents or microbial inoculants that could be useful in improving barley yield and quality. A core pathogen database was developed, and a procedure for inspecting potential quarantine species associated with barley seed was established. These approaches proved effective in detecting four fungal and three bacterial quarantine species for the first time in the port of China. This study not only characterized the core microbiota of barley seeds but also provided practical approaches for tracing the regional origin of barley and identifying potential quarantine pathogens.
Collapse
Affiliation(s)
- Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chun-Chun Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hui-Li Zhang
- Ningbo Academy of Inspection and Quarantine, Ningbo Zhejiang 315012, PR China; Technical Center of Ningbo Customs District, Ningbo Zhejiang 315012, PR China
| | - Peng Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fu-Hong Xie
- Institute of Biology Co., Ltd., Henan Academy of Sciences, Zhengzhou 450008, PR China
| | - Dian-Ming Hu
- College of Bioscience & Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, PR China
| | - Wei-Jun Duan
- Ningbo Academy of Inspection and Quarantine, Ningbo Zhejiang 315012, PR China; Technical Center of Ningbo Customs District, Ningbo Zhejiang 315012, PR China.
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
12
|
Liu K, Su R, Wang Q, Shen X, Jiang B, Yang L, Li Z, Zheng J, Li P. Interaction and dynamic changes of microbial communities and volatile flavor compounds during the fermentation process of coffee flower rice wine. Front Microbiol 2024; 15:1476091. [PMID: 39364163 PMCID: PMC11446889 DOI: 10.3389/fmicb.2024.1476091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024] Open
Abstract
To develop a unique flavor of rice wine, coffee flowers (by-products of the coffee industry) were added because of their biologically active compounds that are conducive to health, and the fermentation parameters were optimized. In addition, the dynamic changes of microbial communities and volatile flavor compounds (VFCs) during the different fermentation stages were investigated. After the optimization of the fermentation parameters, a novel product, i.e., the coffee flower rice wine (CFRW), was obtained with a bright yellow transparent, fragrant, and harmonious aroma and mellow and refreshing taste by sensory evaluation, when 4.62% of the coffee flowers and 1.93% koji were added and fermented at 24.10°C for 3.88 days. The results showed that Lactococcus was the dominant bacteria, accounting for 87.0-95.7%, while Rhizopus and Cladosporium were the main fungi, accounting for 68.2% and 11.3% on average, respectively, in the fermentation process of the CFRW. Meanwhile, twenty-three VFCs were detected in the CFRW, which included three alcohols, six terpenes, ten esters, three aromatics, and one furan. The correlation analysis revealed that there were 16 significant positive correlations and 23 significant negative correlations between the bacterium and VFCs (|ρ| > 0.6, p < 0.05), while there were 12 significant positive correlations and one significant negative correlation between the fungi and VFCs (|ρ| > 0.6, p < 0.05). Furthermore, five VFCs, including linalool, geraniol, ethyl acetate, 1-hexanol, and 3-methyl-1-butanol, contributed vital flavors to the CFRW, and they were all significantly negatively correlated with the changes of Massilia and Acinetobacter (|ρ| > 0.6, p < 0.05). Moreover a significant positive correlation was found between the relative abundance of Lactococcus and the contents of 3-methyl-1-butanol and ethyl acetate (|ρ| > 0.6, p < 0.05). Therefore, this study provides a valuable theoretical basis for further improving the quality and production technology of CFRW.
Collapse
Affiliation(s)
- Kunyi Liu
- School of Wuliangye Technology and Food Engineering and School of Modern Agriculture, Yibin Vocational and Technical College, Yibin, China
| | - Rui Su
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, China
| | - Qi Wang
- School of Wuliangye Technology and Food Engineering and School of Modern Agriculture, Yibin Vocational and Technical College, Yibin, China
| | - Xiaojing Shen
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Bin Jiang
- School of Wuliangye Technology and Food Engineering and School of Modern Agriculture, Yibin Vocational and Technical College, Yibin, China
| | - Liran Yang
- School of Wuliangye Technology and Food Engineering and School of Modern Agriculture, Yibin Vocational and Technical College, Yibin, China
| | - Zelin Li
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin, China
| | - Pingping Li
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, China
| |
Collapse
|
13
|
Luo Y, Zhang C, Liao H, Luo Y, Huang X, Wang Z, Xiaole X. Integrative metagenomics, volatilomics and chemometrics for deciphering the microbial structure and core metabolic network during Chinese rice wine (Huangjiu) fermentation in different regions. Food Microbiol 2024; 122:104569. [PMID: 38839228 DOI: 10.1016/j.fm.2024.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Yunchuan Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| | - Xia Xiaole
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300000, PR China.
| |
Collapse
|
14
|
Tang J, Lin B, Shan Y, Ruan S, Jiang W, Li Q, Zhu L, Li R, Yang Q, Du H, Yang S, Sun Q, Chen S. Effects of sorghum varieties on microbial communities and volatile compounds in the fermentation of light-flavor Baijiu. Front Microbiol 2024; 15:1421928. [PMID: 39144211 PMCID: PMC11322492 DOI: 10.3389/fmicb.2024.1421928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Light-flavor Baijiu (LFB) fermentation is a representative spontaneous mixed-culture solid-state fermentation process in which sorghum is used as the raw material. Raw materials and microorganisms are crucial to the flavor formation and quality of LFB. However, the microbial and physicochemical dynamics of different sorghum varieties during LFB fermentation, as well as their impact on flavor compounds are still largely unknown. Herein, PacBio single-molecule real-time (SMRT) sequencing and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) were applied to investigate microbial community succession and volatile flavor formation in glutinous/non-glutinous sorghum-based fermented grains during LFB fermentation. Fermented grains made of glutinous sorghum Liangnuo No. 1 (GLN) had higher bacterial α-diversity and lower fungal α-diversity than those with fermented grains prepared with non-glutinous red sorghum (NRS) (p < 0.05). The dominant microbial species were Saccharomyces cerevisiae, Acetobacter pasteurinus, and Lactobacillus helveticus, the latter two of which were the predominant bacteria observed at the end of fermentation in GLN and NRS, respectively. Moisture content and reducing sugar had a more significant impact on the microorganisms in GLN, while amino acid nitrogen, total free amino acids, and residual starch were the main driving factors driving the microbial community in NRS. The correlation network and discriminant analysis indicated that a relatively high content of 4-vinylguaiacol showed a significant positive association with significant differential microbial species in GLN. These results provided valuable insights for improving the quality of LFB.
Collapse
Affiliation(s)
- Jie Tang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Bin Lin
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Yimin Shan
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Song Ruan
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Wei Jiang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Qun Li
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Liping Zhu
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Rui Li
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Qiang Yang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Hai Du
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shengzhi Yang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Qi Sun
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| | - Shenxi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye, China
| |
Collapse
|
15
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Liu B, Li Q. Effect of a New Fermentation Strain Combination on the Fermentation Process and Quality of Highland Barley Yellow Wine. Foods 2024; 13:2193. [PMID: 39063277 PMCID: PMC11276116 DOI: 10.3390/foods13142193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Yellow wine fermented from highland barley is an alcoholic beverage with high nutritional value. However, the industrialization of barley yellow wine has been constrained to a certain extent due to the lack of a systematic starter culture. Therefore, the present study aims to simulate barley yellow wine fermentation using a starter culture consisting of Rhizopus arrhizus, Saccharomyces cerevisiae, Pichia kudriavzevii, and Lacticaseibacillus rhamnosus. In this study, changes in enzyme activity, fermentation characteristics, volatile substance production, and amino acid content during the fermentation of highland barley yellow wine brewed with different starter cultures were evaluated. The results of this study show that regulating the proportion of mixed starter bacteria can effectively control the various stages of the fermentation process and improve the organoleptic characteristics and quality of yellow wine to varying degrees. Additionally, we found that the addition of probiotics could effectively improve the palatability of yellow wine. To the best of our knowledge, we have validated for the first time the use of the above multispecies starter culture, consisting of R. arrhizus, S. cerevisiae, P. kudriavzevii, and L. rhamnosus, in the production of highland barley yellow wine. The obtained findings provided reference data for optimizing highland barley yellow wine fermentation.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
16
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Shen C, Li Q. Application of Strain Selection Technology in Alcoholic Beverages: A Review. Foods 2024; 13:1396. [PMID: 38731767 PMCID: PMC11083718 DOI: 10.3390/foods13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The diversity of alcohol beverage microorganisms is of great significance for improving the brewing process and the quality of alcohol beverage products. During the process of making alcoholic beverages, a group of microorganisms, represented by yeast and lactic acid bacteria, conducts fermentation. These microorganisms have complex synergistic or competitive relationships, and the participation of different microorganisms has a major impact on the fermentation process and the flavor and aroma of the product. Strain selection is one of the key steps. Utilizing scientific breeding technology, the relationship between strains can be managed, the composition of the alcoholic beverage microbial community can be improved, and the quality and flavor of the alcoholic beverage products can be increased. Currently, research on the microbial diversity of alcohol beverages has received extensive attention. However, the selection technology for dominant bacteria in alcohol beverages has not yet been systematically summarized. To breed better-quality alcohol beverage strains and improve the quality and characteristics of wine, this paper introduces the microbial diversity characteristics of the world's three major brewing alcohols: beer, wine, and yellow wine, as well as the breeding technologies of related strains. The application of culture selection technology in the study of microbial diversity of brewed wine was reviewed and analyzed. The strain selection technology and alcohol beverage process should be combined to explore the potential application of a diverse array of alcohol beverage strains, thereby boosting the quality and flavor of the alcohol beverage and driving the sustainable development of the alcoholic beverage industry.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Caihong Shen
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
17
|
Zhao Y, Li M, Zhan P, Wang P, He W, Tian H. A quality comparison for Xiecun Huangjiu with different aging stages based on chemical profile, aroma composition and microbial succession. Food Chem X 2024; 21:101132. [PMID: 38292673 PMCID: PMC10826613 DOI: 10.1016/j.fochx.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The Xiecun Huangjiu (XCHJ), an exemplary representation of North Huangjiu, exhibits a distinct and invigorating aroma predominantly formed during its aging period. In this study, we observed dynamic changes in 16 key aroma compounds by gas chromatography-mass spectrometry (GC-MS) during the aging of XCHJ, with compounds such as phenethylalcohol, isoamylalcohol, benzaldehyde, and ethylbenzoate initially increasing and then decreasing. Ultra-Performance Liquid Chromatography (UPLC) detected nineteen amino acids, with total content ranging from 1901.45 to 3764.45 mg/L. High-throughput sequencing indicated that Pseudomonas, Ochrobactrum, Moesziomyces and Aspergillus et al. were abundant in aged XCHJ. Totally, 4 bacteria and 8 fungi exhibited strong associations with aroma compounds production. Physicochemical properties were primarily interacted with Pseudomonas, Aspergillus, Pseudeurotium, Thermomyces, Bacteroides and Blautia. Furthermore, co-occurrence network analysis highlighted significant interactions between Pantoea, Rhodotorula, Monascus, and amino acids. These findings provide valuable insights for the regulation of aroma in aged XCHJ.
Collapse
Affiliation(s)
| | | | - Ping Zhan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
| | - Peng Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
| | - Wanying He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
| | - Honglei Tian
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, Shaanxi 710119, China
| |
Collapse
|
18
|
Yang X, Yao J, Hu Y, Qin Z, Li J. Fungal Community Succession and Volatile Compound Changes during Fermentation of Laobaigan Baijiu from Chinese Hengshui Region. Foods 2024; 13:569. [PMID: 38397546 PMCID: PMC10888106 DOI: 10.3390/foods13040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
To investigate the core fungal community succession and its effects of volatile compound production during different stages (D-1, D-2, D-3, E-4, E-5, and E-6) of Hengshui Laobaigan Baijiu, high-throughput sequencing (HTS) was carried out, accompanied by the identification and quantification of the volatile flavor compounds using headspace solid-phase coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). HTS results demonstrated that the fungal community of stage D-1 was similar to that of E-4 after adding Daqu, while the richness and diversity of the fungal community were most prominent at stage E-6. Moreover, the addition of Daqu at the beginning of Ercha fermentation resulted in a significant increase in the relative abundances of the fungal community at the genus level, setting the stage for the production of volatile compounds. GC-MS analysis revealed the presence of a total of 45 volatile compounds. Combining the GC-MS result with the heat map and principal component analysis (PCA), the concentrations of volatile compounds were highest in stage E-5. Meanwhile, concentrations of esters, especially ethyl acetate, ethyl lactate, isoamyl acetate and ethyl hexanoate, were high in both stages E-5 and E-6. This indicated that stage E-5 was crucial to the fermentation process of Laobaigan Baijiu. Three fungal genera (Saccharomyces, Candida, and Pichia) were indicated as the core microbiota for the production of the main volatile flavor compounds of Laobaigan Baijiu through partial least square (PLS) analysis. The information provided in this study offered valuable insights into the fermentation mechanism of Laobaigan Baijiu, thereby serving as a theoretical framework for enhancing the quality of Baijiu and realizing cost-effective production.
Collapse
Affiliation(s)
- Xuelian Yang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China; (J.Y.); (Y.H.); (Z.Q.); (J.L.)
| | | | | | | | | |
Collapse
|
19
|
Xiang Y, Zhou B, Jiang C, Tang Z, Liu P, Ding W, Lin H, Tang J. Revealing the formation mechanisms of key flavors in fermented broad bean paste. Food Res Int 2024; 177:113880. [PMID: 38225117 DOI: 10.1016/j.foodres.2023.113880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
Pixian Douban (PXDB) is a popular Chinese condiment for its distinctive flavor. Broad bean fermentation (Meju) is the most important process in the formation of flavor substances. Key flavors were analyzed qualitatively and quantitatively, and metagenomic technology was applied to study the microbial diversity during broad bean fermentation. In addition, the main metabolic pathways of key flavors were explored. Results indicated that Staphylococcus_gallinarum was the main microorganism in the microbial community, accounting for 39.13%, followed by Lactobacillus_agilis, accounting for 13.76%. Aspergillus_flavus was the fungus with the highest species abundance, accounting for 3.02%. The KEGG Pathway enrichment analysis showed that carbohydrate metabolism and amino acid metabolism were the main metabolic pathways. Glycoside hydrolase and glycosyltransferase genes were the most abundant, accounting for more than 70% of the total number of active enzyme genes. A total of 113 enzymes related to key flavors and 39 microorganisms corresponding to enzymes were annotated. And Staphylococcus_gallinarum, Lactobacillus_agilis, Weissella_confusa, Pediococcus_acidilactici, Staphylococcus_kloosii, Aspergillus_oryzae, and Aspergillus_flavus played a key role in the metabolic pathway. This study reveals the formation mechanism of key flavors in fermented broad bean, it is important for guiding the industrial production of PXDB and improving product quality.
Collapse
Affiliation(s)
- Yue Xiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China.
| | - Binbin Zhou
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China
| | - Chunyan Jiang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Zhirui Tang
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Ping Liu
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Wenwu Ding
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China
| | - Hongbin Lin
- School of Food and Bio-engineering, Xihua University, Chengdu 610039, China; Chongqing Key Laboratory of Specialty Food Co-Built by Sichuan and Chongqing, Chengdu 610039, China.
| | - Jie Tang
- Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, China.
| |
Collapse
|
20
|
Zhang J, Zhao M, Chen J, Zhu Y, Xiao C, Li Q, Weng X, Duan Y, Zuo Y. The improvement of Hovenia acerba-sorghum co-fermentation in terms of microbial diversity, functional ingredients, and volatile flavor components during Baijiu fermentation. Front Microbiol 2024; 14:1299917. [PMID: 38249457 PMCID: PMC10797018 DOI: 10.3389/fmicb.2023.1299917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
The quality of Baijiu was largely affected by raw materials, which determine the flavor and taste. In the present study, organic acids, polyphenols, volatile flavor components and microbial community in Hovenia acerba-sorghum co-fermented Baijiu (JP1) and pure sorghum-fermented Baijiu (JP2) were comprehensively analyzed. Organic acids, polyphenols and volatile flavor components in JP1 were more abundant than JP2. The abundance and diversity of bacteria and fungi in JP1 was higher than that in JP2 in the early stage of fermentation, but presented opposite trend in the middle and late stages. Leuconostoc, Lentilactobacillus and Issatchenkia were dominant genera in JP1. Whereas, Cronobacter, Pediococcus and Saccharomyces occupied the main position in JP2. Lentilactobacillus and Issatchenkia were positively related to most of organic acids and polyphenols. Pseudomonas, Rhodococcus, Cronobacter, Pediococcus, Brucella, Lentilactobacillus, Lactobacillus, Saccharomycopsis, Wickerhamomyces, Aspergillus, Thermomyces and unclassified_f-Dipodascaccae were associated with the main volatile flavor components. The main metabolic pathways in two JPs exhibited the variation trend of first decreasing and then increasing, and the metabolism activity in JP1 were higher than that in JP2. The results demonstrated the introduction of Hovenia acerba improved the functional ingredients and volatile flavor components, which is helpful for the quality promotion of Baijiu. This study identified the key microorganisms and discussed their effect on organic acids, polyphenols and volatile flavor components during the fermentation of Baijiu with different raw materials, providing a scientific basis for the development and production of high-quality Baijiu.
Collapse
Affiliation(s)
- Jing Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Faculty of Quality Management and Inspection and Quarantine, Yibin University, Yibin, China
| | - Minhui Zhao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Jing Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
- Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province, Faculty of Quality Management and Inspection and Quarantine, Yibin University, Yibin, China
| | - Yuanting Zhu
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Chen Xiao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Qi Li
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiaoqi Weng
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yunxuan Duan
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yong Zuo
- College of Life Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
21
|
Zhang B, Wang J, Jiang X, Huang M, Liu H, Meng N, Wu J, Zhao D. Comparative study on key odorants of Jiujiang Fenggang Huangjiu and their succession regularities during aging using sensory-directed flavor analysis. Food Chem 2024; 430:137052. [PMID: 37549629 DOI: 10.1016/j.foodchem.2023.137052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Huangjiu was a Chinese national alcohol with a unique flavor. The key odorants in Jiujiang Fenggang Huangjiu (JJFG) and their succession regularities during aging were systematically researched by a sensomics analysis approach. The volatiles of JJFG were isolated by solvent-assisted flavor evaporation, 77 odorants were identified using gas chromatography-olfactometry-mass spectrometry combined with odor-specific magnitude estimation. Three aroma recombinants, prepared using odorants with odor activity values ≥ 1, all showed good similarities with their corresponding samples (92.1%∼97.5%). After omission/addition tests, 7 new key aroma compounds were found in JJFG, including 1-octen-3-one, 1-pentanol, guaiacol, ethyl 2-hydroxy-4-methylpentanoate, 2-phenethyl acetate, ethyl butanoate, and (E,Z)-2,6-nonadienal. Using orthogonal partial least squares-discriminant analysis, 20 compounds with VIP ≥ 1 were found to be important indicators during aging of JJFG. Among them, sotolon, 3-methylsulfanylpropanal, et al. increased with aging. The improved solid-phase extraction can effectively quantify sotolon, with a recovery rate of 80.96%∼91.75%.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Juan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Xinye Jiang
- Beijing Shenzhou Weiye Technology Co., Ltd, Beijing 102400, China.
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Hongqin Liu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Nan Meng
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
22
|
Zhao W, Ruan F, Qian M, Huang X, Li X, Li Y, Bai W, Dong H. Comparing the differences of physicochemical properties and volatiles in semi-dry Hakka rice wine and traditional sweet rice wine via HPLC, GC-MS and E-tongue analysis. Food Chem X 2023; 20:100898. [PMID: 38144730 PMCID: PMC10739914 DOI: 10.1016/j.fochx.2023.100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to explore effects of indica rice addition, rice soaking time and rice soup addition on total sugar and alcohol content of semi-dry Hakka rice wine (HRW) and compare its difference in physicochemical properties and volatiles with traditional sweet rice wine (TSRW) via HPLC, GC-MS and E-tongue. The optimal fermentation conditions of semi-dry HRW were 50 % indica rice addition, 12 h rice soaking time and 85 % rice soup addition. The total sugar (16.13 mg/mL) of semi-dry HRW was significantly lower than that of TSRW (135.79 mg/mL), especially the trehalose, glucose, sucrose and maltose. Its alcohol content was significantly higher than that of TSRW. There were significant differences in volatile components between semi-dry HRW and TSRW, especially esters, alcohols and ketones, but no significant differences in organic acids and amino acids. Results obtained could provide reference data for improving the fermentation process and quality of semi-dry HRW.
Collapse
Affiliation(s)
- Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Fengxi Ruan
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Min Qian
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaoyuan Huang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Xiangluan Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Yanxin Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Hao Dong
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| |
Collapse
|
23
|
Ma Y, Peng S, Mi L, Li M, Jiang Z, Wang J. Correlation between fungi and volatile compounds during different fermentation modes at the industrial scale of Merlot wines. Food Res Int 2023; 174:113638. [PMID: 37981360 DOI: 10.1016/j.foodres.2023.113638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/21/2023]
Abstract
Elucidation of the relationship between fungal community development and dynamic changes in volatile components during fermentation is of great significance in controlling wine production. However, such studies on an industrial scale are rarely reported. In this study, fungal community succession during spontaneous fermentation (SPF) and inoculation fermentation (INF) of Merlot wine was monitored by a research strategy combining culture-dependent and culture-independent methods. The volatile compounds were monitored during SPF and INF by headspace solid-phase micro-extraction coupled with gas chromatography-mass spectrometry technology. The Spearman correlation coefficient was also used to investigate the interplay between fungal communities and volatile compounds. We found that fungal community diversity in SPF decreased as fermentation progressed but was significantly higher than that of INF. Starmerella and Kazachstania were the dominant non-Saccharomyces genera in Merlot wine during SPF. However, the presence of commercial yeasts and sulphur dioxide led to a sharp decrease or the disappearance of non-Saccharomyces genera during INF. Spearman correlation analysis revealed that all major volatiles were positively correlated with most functional microbiotas except P. fermentans, S. bacillaris, E. necator, and D. exigua in INF. In SPF, most non-Saccharomyces were negatively correlated with core volatiles, whereas K. humilis, M. laxa, P. kluyveri, and A. japonicus were positively correlated with the major volatiles, especially some higher alcohols (isopentol, heptanol) and terpenes (linalool, citronellol). S. cerevisiae was positively correlated with most of the main volatile substances except ethyl isovalerate and isoamyl acetate. These findings provide a reference for comprehending the diverse fermentation methods employed in the wine industry and improving the quality of Merlot wines.
Collapse
Affiliation(s)
- Yuwen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Lan Mi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Min Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Zhanzhan Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China.
| |
Collapse
|
24
|
Xu JZ, Zhang YY, Zhang WG. Correlation between changes in flavor compounds and microbial community ecological succession in the liquid fermentation of rice wine. World J Microbiol Biotechnol 2023; 40:17. [PMID: 37981595 DOI: 10.1007/s11274-023-03844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
Microorganisms play an important role in regulating flavor compounds in rice wine, whereas we often don't understand how did they affect flavor compounds. Here, the relations between flavor compounds and microbial community ecological succession were investigated by monitoring flavor compounds and microbial community throughout the fermentation stage of rice wine. The composition of microbial community showed a dynamic change, but 13 dominant bacterial genera and 4 dominant fungal genera were detected throughout the fermentation stages. Saccharomyces presented a strong negative correlation with fungi genera but had positive associations with bacteria genera. Similarly, flavor compounds in rice wine were also showed the dynamic change, and 112 volatile compounds and 17 free amino acids were identified in the whole stages. The alcohol-ester ratio was decreased in the LTF stage, indicating that low temperature boosts ester formation. The potential correlation between flavor compounds and microbial community indicated that Delftia, Chryseobacterium, Rhizopus and Wickerhamomyces were the core functional microorganisms in rice wine. These findings clarified the correlation between changes in flavor compounds and in microbial community in the liquid fermentation of rice wine, and these results have some reference value for the quality improvement and technological optimization in liquid fermentation of rice wine.
Collapse
Affiliation(s)
- Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 # Lihu Road, WuXi, 214122, People's Republic of China.
| | - Yang-Yang Zhang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 # Lihu Road, WuXi, 214122, People's Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 # Lihu Road, WuXi, 214122, People's Republic of China
| |
Collapse
|
25
|
Wu L, Zhao L, Tao Y, Zhang D, He A, Ma X, Zhang H, Li G, Rong L, Li R. Improving the aroma profile of inoculated fermented sausages by constructing a synthetic core microbial community. J Food Sci 2023; 88:4388-4402. [PMID: 37750814 DOI: 10.1111/1750-3841.16764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023]
Abstract
Commercial starter cultures play a critical role in the industrial production of fermented sausages. However, commercial starter cultures could not reproduce the metabolic actions of diverse microorganisms and the aroma profile of the traditional spontaneously fermented sausages. Identifying the core microbial community in spontaneously fermented sausages will facilitate the construction of a synthetic microbial community for reproducing metabolic actions and flavor compounds in spontaneously fermented sausages. This study aimed to reveal the core microbial community of spontaneously fermented sausages based on their relative abundance, flavor-producing ability, and co-occurrence performance. We identified five promising genera to construct the synthetic core microbial community, these were Lactobacillus, Staphylococcus, Macrococcus, Streptococcus, and Pediococcus. Sausages inoculated with a synthetic core microbial community presented higher quality of aroma profile than the fermented sausages inoculated with a commercial starter culture. Some important volatile flavor compounds of spontaneously fermented sausage, such as (-)-β-pinene, β-caryophyllene, 3-methyl-1-butanol, α-terpineol, ethyl 2-methylpropanoate, and ethyl 3-methylbutanoate which are associated with floral, fruity, sweet, and fresh aromas, were also detected in fermented sausage inoculated with synthetic microbial community. This indicated that the synthetic core microbial community efficiently reproduced flavor metabolism. Overall, this study provides a practical strategy to design a synthetic microbial community applicable to different scientific fields.
Collapse
Affiliation(s)
- Liu Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Linyu Zhao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Yingmei Tao
- Gansu Polytechnic College of Animal Husbandry & Engineering, Wuwei, Gansu, China
- Sichuan University of Science & Engineering, Yibin, Sichuan, China
| | - Di Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - An He
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | | | - Huan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Liangyan Rong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| | - Ruren Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, China
| |
Collapse
|
26
|
Chen G, Yuan Y, Tang S, Yang Z, Wu Q, Liang Z, Chen S, Li W, Lv X, Ni L. Comparative analysis of microbial communities and volatile flavor components in the brewing of Hongqu rice wines fermented with different starters. Curr Res Food Sci 2023; 7:100628. [PMID: 38021257 PMCID: PMC10660030 DOI: 10.1016/j.crfs.2023.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
As one of the quintessential representatives of Chinese rice wine, Hongqu rice wine is brewed with glutinous rice as the main raw material and Hongqu (Gutian Qu or Wuyi Qu) as the fermentation starter. The present study aimed to investigate the impact of Hongqu on the volatile compositions and the microbial communities in the traditional production of Gutian Hongqu rice wine (GT) and Wuyi Hongqu rice wine (WY). Through the OPLS-DA analysis, 3-methylbutan-1-ol, isobutanol, ethyl lactate, ethyl acetate, octanoic acid, diethyl succinate, phenylethyl alcohol, hexanoic acid and n-decanoic acid were identified as the characteristic volatile flavor components between GT and WY. Microbiome analysis revealed significant enrichments of Lactobacillus, Pediococcus, Aspergillus and Hyphopichia in WY brewing, whereas Monascus, Saccharomyces, Pantoea, and Burkholderia-Caballeronia-Paraburkholderia were significantly enriched in GT brewing. Additionally, correlation analysis showed that Saccharomyces, Lactobacillus, Weissella and Pediococcus were significantly positively correlated wih most characteristic volatile components. Conversely, Picha, Monascus, Franconibacter and Kosakonia showed significant negative correlations with most of the characteristic volatile components. Furthermore, bioinformatical analysis indicated that the gene abundances for enzymes including glucan 1,4-alpha-glucosidase, carboxylesterase, alcohol dehydrogenase, dihydroxy-acid dehydratase and branched-chain-amino-acid transaminase were significantly higher in WY compared to GT. This finding explains the higher content of higher alcohols and characteristic esters in WY relative to GT. Collectively, this study provides a theoretical basis for improving the flavor profile of Hongqu rice wine and establishing a solid scientific foundation for the sustainable development of Hongqu rice wine industry.
Collapse
Affiliation(s)
- Guimei Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yujie Yuan
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Suwen Tang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Qi Wu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Shiyun Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Wenlong Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| | - Xucong Lv
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
- Fujian Huizelong Alcohol Co., Ltd, Pingnan County, Ningde, Fujian, 352303, PR China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, PR China
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian, 362200, PR China
| |
Collapse
|
27
|
Peng Q, Zheng H, Li S, Meng K, Yu H, Zhang Y, Yang X, Li L, Xu Z, Xie G, Liu S, Elsheery NI, Wu P. Analysis on driving factors of microbial community succession in Jiuyao of Shaoxing Huangjiu (Chinese yellow rice wine). Food Res Int 2023; 172:113144. [PMID: 37689907 DOI: 10.1016/j.foodres.2023.113144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/11/2023]
Abstract
The microbial ecosystem of fermented food is greatly disturbed by human activities.Jiuyao is important saccharification starter for brewing huangjiu. The interaction between environmental factors and microorganisms significantly affected the microbial community structure at different stages of Jiuyao manufacturing. This study combined environmental factor analysis and high-throughput sequencing technology to comprehensively analyze the specific changes of microbial community and environmental factors in each fermentation stage of Jiuyao production and their correlation. The results showed that the activities of liquefaction enzyme, glycosylation enzyme and acid protease reached the highest value on the 8 th day (192 h) after the beginning of fermentation, and the cellulase activity reached the highest value at the end of fermentation. Pediococcus(37.5 %-58.2 %), Weissella(9.2 %-27.0 %) and Pelomonas(0.1 %-12.1 %) were the main microbial genera in the genus bacteria, and Saccharomycopsis(37.1 %-52.0 %), Rhizopus(12.5 %-31.0 %) and Saccharomyces(4.0 %-20.5 %) were the main microbial genera in the genus fungi. The results of correlation analysis showed that the microbial communities in Jiuyao were closely related to environmental factors. Most microbial communities were positively correlated with temperature, but negatively correlated with ambient humidity, CO2 concentration, acidity and water content of Jiuyao. In addition, the transcription levels of enzymes related to microbial glucose metabolism in Jiuyao were higher in the late stage of Jiuyao fermentation. Interestingly, these enzymes had high transcription levels in fungi such as Saccharomycopsis, Rhizopus and Saccharomyces, as well as in bacteria such as Pediococcus and Lactobacillus. This study provides a reference for revealing the succession rule of microbial community structure caused by environmental factors during the preparation of Jiuyao in Shaoxing Huangjiu.
Collapse
Affiliation(s)
- Qi Peng
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China; National Engineering Research Center for Chinese CRW (Branch Center), Shaoxing 312000, China
| | - Huajun Zheng
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Shanshan Li
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Kai Meng
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Hefeng Yu
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Yuhao Zhang
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Xinyi Yang
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Linyuan Li
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Zhuoqin Xu
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Shuangping Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Nabil I Elsheery
- Agriculture Botany Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
28
|
Luo LJ, Song L, Han Y, Zhen P, Han DY, Zhao X, Zhou X, Wei YH, Yu HX, Han PJ, Bai FY. Microbial communities and their correlation with flavor compound formation during the mechanized production of light-flavor Baijiu. Food Res Int 2023; 172:113139. [PMID: 37689903 DOI: 10.1016/j.foodres.2023.113139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 09/11/2023]
Abstract
Light-flavor Baijiu fermentation is a typical spontaneous solid-state fermentation process fueled by a variety of microorganisms. Mechanized processes have been increasingly employed in Baijiu production to replace traditional manual operation processes, however, the microbiological and physicochemical dynamics in mechanized processes remain largely unknown. Here, we investigated the microbial community succession and flavor compound formation during a whole mechanized fermentation process of light-flavor Baijiu using the conventional dilution plating method, PacBio single-molecule real-time (SMRT) sequencing and headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The results showed that largely different fungal and bacterial communities were involved in the soaking and fermentation processes. A clear succession from Pantoea agglomerans to Bacillus (B.) smithii and B. coagulans in dominant bacterial species and from Cladosporium exasperatum to Saccharomyces cerevisiae and Lichtheimia ramosa in dominant fungal species occurred in the soaking processes. In the fermentation process, the most dominant bacterial species was shifted from Pantoea agglomerans to Lactobacillus (La.) acetotolerans and the most dominant fungal species were shifted from Lichtheimia ramose and Rhizopus arrhizus to Saccharomyces cerevisiae. The bacterial and fungal species positively associated with acidity and the formation of ethanol and different flavor compounds were specified. The microbial species exhibited strong co-occurrence or co-exclusion relationships were also identified. The results are helpful for the improvement of mechanized fermentation process of light-flavor Baijiu production.
Collapse
Affiliation(s)
- Lu-Jun Luo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Liang Song
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ying Han
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Pan Zhen
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xin Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hui-Xin Yu
- Technology Center, Shanxi Xinghuacun Fen Wine Factory Co. Ltd., Fenyang, Shanxi 032205, PR China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
29
|
Peng Q, Zhang L, Huang X, Wu J, Cheng Y, Xie G, Feng X, Chen X. Environmental Factors Affecting the Diversity and Composition of Environmental Microorganisms in the Shaoxing Rice Wine Producing Area. Foods 2023; 12:3564. [PMID: 37835217 PMCID: PMC10572700 DOI: 10.3390/foods12193564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023] Open
Abstract
Shaoxing rice wine is a notable exemplar of Chinese rice wine. Its superior quality is strongly correlated with the indigenous natural environment. The results indicated that Firmicutes (75%), Actinobacteria (15%), Proteobacteria (5%), and Bacteroidetes (3%) comprised the prevailing bacterial groups. Among the main bacterial genera, Lactobacillus was the most abundant, accounting for 49.4%, followed by Lactococcus (11.9%), Saccharopolyspora (13.1%), Leuconostoc (4.1%), and Thermoactinomyces (1.1%). The dominant fungal phyla were Ascomycota and Zygomycota. Among the dominant genera, Saccharomyces (59.3%) prevailed as the most abundant, followed by Saccharomycopsis (10.7%), Aspergillus (7.1%), Thermomyces (6.2%), Rhizopus (4.9%), Rhizomucor (2.2%), and Mucor (1.3%). The findings demonstrate that the structure of the bacterial and fungal communities remains stable in the environment, with their diversity strongly influenced by climatic conditions. The continuous fluctuations in environmental factors, such as temperature, air pressure, humidity, rainfall, and light, significantly impact the composition and diversity of microbial populations, particularly the dominant bacterial community.
Collapse
Affiliation(s)
- Qi Peng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China; (Q.P.); (L.Z.); (X.F.); (X.C.)
| | - Lili Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China; (Q.P.); (L.Z.); (X.F.); (X.C.)
| | - Xiaoli Huang
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing 312000, China; (X.H.); (J.W.); (Y.C.)
| | - Jianjiang Wu
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing 312000, China; (X.H.); (J.W.); (Y.C.)
| | - Yujun Cheng
- Shaoxing Testing Institute of Quality and Technical Supervision, Shaoxing 312000, China; (X.H.); (J.W.); (Y.C.)
| | - Guangfa Xie
- Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Xinxin Feng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China; (Q.P.); (L.Z.); (X.F.); (X.C.)
| | - Xueping Chen
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China; (Q.P.); (L.Z.); (X.F.); (X.C.)
| |
Collapse
|
30
|
Mao X, Yue SJ, Xu DQ, Fu RJ, Han JZ, Zhou HM, Tang YP. Research Progress on Flavor and Quality of Chinese Rice Wine in the Brewing Process. ACS OMEGA 2023; 8:32311-32330. [PMID: 37720734 PMCID: PMC10500577 DOI: 10.1021/acsomega.3c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023]
Abstract
Chinese rice wine (CRW) is a traditional and unique alcoholic beverage in China, favored by many consumers for its rich aroma, unique taste, and complex ingredients. Its flavor is primarily composed of volatile and nonvolatile compounds. These flavor compounds are partly derived from grains and starters (Qu), while the other part is produced by microbial metabolism and chemical reactions during the brewing process. Additionally, ethyl carbamate (EC) in CRW, a hazardous chemical, necessitates controlling its concentration during brewing. In recent years, numerous new brewing techniques for CRW have emerged. Therefore, this paper aims to collect aroma descriptions and thresholds of flavor compounds in CRW, summarize the relationship between the brewing process of CRW and flavor formation, outline methods for reducing the concentration of EC in the brewing process of CRW, and summarize the four stages (pretreatment of grains, fermentation, sterilization, and aging process) of new techniques. Furthermore, we will compare the advantages and disadvantages of different approaches, with the expectation of providing a valuable reference for improving the quality of CRW.
Collapse
Affiliation(s)
- Xi Mao
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Jian-Zhang Han
- Xi’an
DaKou Wine Company Ltd., Xi’an 710300, Shaanxi Province, China
| | - Hao-Ming Zhou
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key
Laboratory of Shaanxi Administration of Traditional Chinese Medicine
for TCM Compatibility, and State Key Laboratory of Research &
Development of Characteristic Qin Medicine Resources (Cultivation),
and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New
Drugs Research, Shaanxi University of Chinese
Medicine, Xi’an 712046, Shaanxi Province, China
| |
Collapse
|
31
|
Yang Z, Li W, Yuan Y, Liang Z, Yan Y, Chen Y, Ni L, Lv X. Metagenomic Insights into the Regulatory Effects of Microbial Community on the Formation of Biogenic Amines and Volatile Flavor Components during the Brewing of Hongqu Rice Wine. Foods 2023; 12:3075. [PMID: 37628073 PMCID: PMC10453061 DOI: 10.3390/foods12163075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
As one of the typical representatives of Chinese rice wine (Huangjiu), Hongqu rice wine is produced with glutinous rice as the main raw material and Hongqu as the fermentation starter. The complex microbial flora in the brewing process may have a great influence on the formation of the flavor quality and drinking safety of Hongqu rice wine. Previous studies have shown that high biogenic amine (BA) content in rice wine has potential physiological toxicity and has become a bottleneck problem restricting the development of the rice wine industry. This study aimed to evaluate the regulatory effects of the microbial community on the formation of BAs and volatile flavor components during the brewing of Hongqu rice wine. The results demonstrated that histamine, putrescine, cadaverine, tyramine, tryptamine, spermine, and spermidine were the main BAs in Hongqu rice wine. The contents of putrescine, cadaverine, histamine, tyramine, and spermidine in Hongqu rice wine of HBAs (with higher BAs content) were significantly higher than those in LBAs (with lower BAs content). GC-MS testing results showed that there were significant differences in the composition of volatile organic compounds (VOCs) between HBAs and LBAs. Among them, VOCs such as 2-methoxy-4-vinylphenol, ethyl caprate, phenethyl acetate, ethyl lactate, ethyl myristate, ethyl palmitate, ethyl n-octadecanoate, ethyl oleate, and ethyl linoleate were identified as the characteristic volatile components with significant differences between HBAs and LBAs. Microbiome analysis based on metagenomic sequencing revealed that unclassified_g_Pantoea, Klebsiella pneumoniae, Panobacter disperse, unclassified_f_Enterobacteriaceae, Leuconostoc mesenteroides, and Saccharomyces cerevisiae were the dominant microbial species in the HBA brewing process, while Weissella confuse, Pediococcus acidilactici, Saccharomyces cerevisiae, and Aspergillus niger were the dominant microbial species in the LBA brewing process. Furthermore, correlation heatmap analysis demonstrated that BAs were positively related to Lactobacillus curvatus, Lactococcus lactis, and Leuconostoc mesenteroides. Bioinformatical analysis based on the KEGG database revealed that the microbial genes encoding enzymes involved in BAs' synthesis were more abundant in HBAs, and the abundances of microbial genes encoding enzymes related to BAs' degradation and the metabolism of characteristic volatile components were higher in LBAs. Overall, this work provides important scientific data for enhancing the flavor quality of Hongqu rice wine and lays a solid foundation for the healthy development of the Hongqu rice wine industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xucong Lv
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Z.Y.); (W.L.); (Y.Y.); (Z.L.); (Y.Y.); (Y.C.); (L.N.)
| |
Collapse
|
32
|
Qian M, Ruan F, Zhao W, Dong H, Bai W, Li X, Huang X, Li Y. The dynamics of physicochemical properties, microbial community, and flavor metabolites during the fermentation of semi-dry Hakka rice wine and traditional sweet rice wine. Food Chem 2023; 416:135844. [PMID: 36893639 DOI: 10.1016/j.foodchem.2023.135844] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
The dynamics of physicochemical properties, microbial community and flavor metabolites during fermentation of two typical Hakka rice wine were investigated. Results showed that total sugar content was 136.83 g/L in sweet rice wine, which almost 8 times higher than that in semi-dry rice wine. Its amino acid contents especially bitterness amino acids were also higher than those in semi-dry rice wine. Most organic acids in Hakka rice wine had the tendency of increase in initial stage of fermentation, following a decrease and finally being almost stable. A total of 131 volatiles including esters, alcohols, aldehydes, acids, ketones were detected. Pediococcus, Bacillus, Acinetobacter, Pantoea, Enterobacter and Lactobacillus were the dominant bacterial genera and Monascus, Saccharomyces, Rhizopus were the dominant fungal genera, which are strongly associated with the significant changes in flavor metabolites during Hakka rice wine fermentation. The obtained findings provided reference data for the optimization of Hakka rice wine fermentation.
Collapse
Affiliation(s)
- Min Qian
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Fengxi Ruan
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Hao Dong
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Xiangluan Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaoyuan Huang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yanxin Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| |
Collapse
|
33
|
Qian M, Ruan F, Zhao W, Dong H, Bai W, Li X, Liu X, Li Y. Comparison Study of the Physicochemical Properties, Amino Acids, and Volatile Metabolites of Guangdong Hakka Huangjiu. Foods 2023; 12:2915. [PMID: 37569185 PMCID: PMC10417750 DOI: 10.3390/foods12152915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The physicochemical properties, amino acids, and volatile metabolites of 20 types of Guangdong Hakka Huangjiu were systematically compared in this study. Lower sugar contents were detected in LPSH, ZJHL-1, and GDSY-1, but the total sugar contents of the other types of Guangdong Hakka Huangjiu were more than 100 g/L (which belonged to the sweet type). Among them, a lower alcohol content was found in GDSY-1 (8.36 %vol). There was a significant difference in the organic acid and amino acid composition among the 20 Guangdong Hakka Huangjiu samples, especially the amino acid composition. However, bitter amino acids as the major amino acids accounted for more than 50% of the total amino acids. A substantial variation in volatile profiles was also observed among all types of Guangzhou Hakka Huangjiu. Interestingly, MZSK-1 had different volatile profiles from other Guangzhou Hakka Huangjiu samples. According to gas chromatography olfactometry (GC-O), most of the aroma-active ingredients identified in Guangdong Hakka Huangjiu were endowed with a pleasant aroma of "fruity".
Collapse
Affiliation(s)
- Min Qian
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (M.Q.); (F.R.); (W.B.); (X.L.); (X.L.); (Y.L.)
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Fengxi Ruan
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (M.Q.); (F.R.); (W.B.); (X.L.); (X.L.); (Y.L.)
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (M.Q.); (F.R.); (W.B.); (X.L.); (X.L.); (Y.L.)
| | - Hao Dong
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (M.Q.); (F.R.); (W.B.); (X.L.); (X.L.); (Y.L.)
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiangluan Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (M.Q.); (F.R.); (W.B.); (X.L.); (X.L.); (Y.L.)
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaoyan Liu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (M.Q.); (F.R.); (W.B.); (X.L.); (X.L.); (Y.L.)
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Yanxin Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (M.Q.); (F.R.); (W.B.); (X.L.); (X.L.); (Y.L.)
| |
Collapse
|
34
|
Wang K, Wu H, Wang J, Ren Q. Microbiota Composition during Fermentation of Broomcorn Millet Huangjiu and Their Effects on Flavor Quality. Foods 2023; 12:2680. [PMID: 37509772 PMCID: PMC10379140 DOI: 10.3390/foods12142680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Broomcorn millet Huangjiu brewing is usually divided into primary fermentation and post-fermentation. Microbial succession is the major factor influencing the development of the typical Huangjiu flavor. Here, we report the changes in flavor substances and microbial community during the primary fermentation of broomcorn millet Huangjiu. Results indicated that a total of 161 volatile flavor compounds were measured during primary fermentation, and estragole was detected for the first time in broomcorn millet Huangjiu. A total of 82 bacteria genera were identified. Pediococcus, Pantoea, and Weissella were the dominant genera. Saccharomyces and Rhizopus were dominant among the 30 fungal genera. Correlation analysis showed that 102 microorganisms were involved in major flavor substance production during primary fermentation, Lactobacillus, Photobacterium, Hyphodontia, Aquicella, Erysipelothrix, Idiomarina, Paraphaeosphaeria, and Sulfuritalea were most associated with flavoring substances. Four bacteria, Lactobacillus (R1), Photobacterium (R2), Idiomarina (R3), and Pediococcus (R4), were isolated and identified from wheat Qu, which were added to wine Qu to prepare four kinds of fortified Qu (QR1, QR2, QR3, QR4). QR1 and QR2 fermentation can enhance the quality of Huangjiu. This work reveals the correlation between microorganisms and volatile flavor compounds and is beneficial for regulating the micro-ecosystem and flavor of the broomcorn millet Huangjiu.
Collapse
Affiliation(s)
- Ke Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Huijun Wu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxuan Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Qing Ren
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
35
|
Chen Z, Liu L, Du H, Lu K, Chen C, Xue Q, Hu Y. Microbial community succession and their relationship with the flavor formation during the natural fermentation of Mouding sufu. Food Chem X 2023; 18:100686. [PMID: 37168719 PMCID: PMC10164778 DOI: 10.1016/j.fochx.2023.100686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
Mouding sufu, a traditional fermented soybean product in China, has been recognized by the public in the southwestern regions of China. To reveal the microbial community succession and their relationship with the flavor formation during the natural fermentation of Mouding sufu, microbial community, non-volatile flavor compounds and volatile flavor compounds were analyzed by high-throughput sequencing, high-performance liquid chromatography, gas chromatography ion migration spectroscopy, respectively. The results showed that Lactobacillus and Klebsiella were the most abundant bacterial genus, whereas the main fungal genera were unclassified-f-Dipodascaeae and Issatchenkia. In addition, Glutamic acid, Aspartic acid, Alanine, Valine, Lysine, Histidine, lactic acid, succinic acid, and acetic acid were the main non-volatile flavor substances. Furthermore, the taste activity values of glutamic acid, aspartic acid and lactic acid reached 132, 68.9, 18.18 at H60, respectively, meaning that umami and sour were the key taste compounds. Simultaneously, ethyl 3-methylbutanoate-M, ethyl propanoate, methyl 2-methylbutanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate-D, ethyl isobutyrate, linalool-M, linalool-D, cis-4-heptenal, 2-methylpropanal were the characteristic volatile flavor of Mouding sufu. Finally, correlation analysis showed that g__Erwinia and g__Acremonium correlated with most of the key aroma compounds. 20 bacteria and 21 fungi were identified as core functional microbe for Mouding sufu production.
Collapse
Affiliation(s)
- Zhongai Chen
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
- Institute of Food Processing, Guizhou Academy of Agricultural Sciences, NO. 1 Jinnong Road, Huaxi District, Guiyang 550006, China
| | - Lijing Liu
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Huan Du
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Kaixiang Lu
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Cong Chen
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
| | - Qiaoli Xue
- Editorial Department of Journal of Yunnan Agricultural University, Yunnan Agricultural University, Kunming 650000, China
- Corresponding authors.
| | - Yongjin Hu
- College of Food Science and Technology, Yunnan Agricultural University, NO. 452 Fengyuan Road, Panlong District, Kunming, Yunnan 650000, China
- Corresponding authors.
| |
Collapse
|
36
|
Li J, He Z, Yan L, He Y, Yang J. Analysis of the microbial community structure and flavor components succession during salt-reducing pickling process of zhacai (preserved mustard tuber). Food Sci Nutr 2023; 11:3154-3170. [PMID: 37324844 PMCID: PMC10261794 DOI: 10.1002/fsn3.3297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/17/2023] Open
Abstract
The salt-reducing pickling method has been applied to the industrial production of zhacai. In order to reveal the succession of the microbial community structure and flavor components during the pickling process, this study used PacBio Sequel to sequence the full length of 16S rRNA (bacteria, 1400 bp) and ITS (fungi, 1200 bp) genes, and detected flavor components simultaneously, including organic acids, volatile flavor components (VFC), monosaccharides, and amino acids. Eleven phyla and 148 genera were identified in the bacterial community, and 2 phyla and 60 genera in the fungal community. During the four stages of pickling, the dominant bacterial genera were Leuconostoc, Lactobacillus, Leuconostoc, and Lactobacillus, while the dominant fungal genera were Aspergillus, Kazachstania, Debaryomyces, and Debaryomyces, respectively. There were 32 main flavor components (5 organic acids, 19 VFCs, 3 monosaccharides, and 5 amino acids). Correlation heat mapping and bidirectional orthogonal partial least squares (O2PLS) analysis showed that the flora having close relation to flavor components included 14 genera of bacteria (Leuconostoc, Clostridium, Devosia, Lactococcus, Pectobacterium, Sphingobacterium, Serratia, Stenotrophomonas, Halanaerobium, Tetragenococcus, Chromohalobacter, Klebsiella, Acidovorax, and Acinetobacter) and 3 genera of fungi (Filobasidium, Malassezia, and Aspergillus). This study provides detailed data regarding the microbial community and flavor components during the salt-reducing pickling process of zhacai, which can be used as a reference for the development and improvement of salt-reducing pickling methods.
Collapse
Affiliation(s)
- Jing Li
- College of Food ScienceSouthwest UniversityChongqingChina
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and ChongqingChongqingChina
| | - Zhifei He
- College of Food ScienceSouthwest UniversityChongqingChina
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and ChongqingChongqingChina
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality InspectionChongqingChina
| | - Yunchuan He
- Chongqing Fuling Zhacai Group Co. LTD. Er Du Village First GroupChongqingChina
| | - Jixia Yang
- College of Food ScienceSouthwest UniversityChongqingChina
- Chongqing Key Laboratory of Speciality Food Co‐Built by Sichuan and ChongqingChongqingChina
| |
Collapse
|
37
|
Tian S, Li Y, Li Y, Du G. Effect of two starters (Jiu Yao) on Chinese rice wine microbial community and flavour. Int J Food Sci Technol 2023. [DOI: 10.1111/ijfs.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Shufang Tian
- College of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Yanbin Li
- College of Biological and Food Engineering Anhui Polytechnic University Wuhu 241000 China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Yudong Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Guocheng Du
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road Wuxi Jiangsu 214122 China
| |
Collapse
|
38
|
Zhao Y, Liu S, Yang Q, Liu X, Xu Y, Zhou Z, Han X, Mao J. Effects of simultaneous inoculation of non-Saccharomyces yeasts and Saccharomyces cerevisiae jiangnan1# on overall quality, flavor compounds, and sensory analysis of huangjiu. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
39
|
Yu H, Li Q, Guo W, Chen C, Ai L, Tian H. Dynamic analysis of volatile metabolites and microbial community and their correlations during the fermentation process of traditional Huangjiu (Chinese rice wine) produced around Winter Solstice. Food Chem X 2023; 18:100620. [PMID: 36993869 PMCID: PMC10041457 DOI: 10.1016/j.fochx.2023.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Traditional Huangjiu produced around Winter Solstice has higher quality and a more harmonious aroma. To investigate the variations of volatile metabolites and microbial communities during fermentation, gas chromatography-ion migration chromatography (GC-IMS), gas chromatography-mass spectroscopy (GC-MS) and high-throughput sequencing were employed. Aroma compounds results showed that alcohols and phenols increased before 45 days of fermentation and then decreased after 45 days, while esters gradually increased. Fungal genera Saccharomyces, Aspergillu, and Rhizomucor were dominant, whereas Staphylococcus, Pediococcus and Weissella were the dominant bacterial genera in the late stage. In addition, 11 genera such as Lactobacillus, Saccharopolyspora and Aspergillus (|r| > 0.6, p < 0.05) may contributed to traditional Huangjiu ecosystem stability. Moreover, correlation analysis indicated the dominant microorganisms (Saccharopolyspora, Staphylococcus, Lactobacillus, Saccharomyces and Aspergillus) were positively correlated with key compounds. These results provided theoretical guidance for further study on the flavor regulation of traditional Huangjiu via microbial community level and microbial augmentation.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qiaowei Li
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wei Guo
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
- Corresponding author at: Department of Food Science and Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
40
|
Xu Y, Wu M, Zhao D, Zheng J, Dai M, Li X, Li W, Zhang C, Sun B. Simulated Fermentation of Strong-Flavor Baijiu through Functional Microbial Combination to Realize the Stable Synthesis of Important Flavor Chemicals. Foods 2023; 12:foods12030644. [PMID: 36766173 PMCID: PMC9913964 DOI: 10.3390/foods12030644] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The solid-state fermentation of Baijiu is complicated by the co-fermentation of many microorganisms. The instability of the composition and abundance of the microorganisms in the fermentation process leads to fluctuations of product quality, which is one of the bottleneck problems faced by the Strong-flavor Baijiu industry. In this study, we established a combination of functional microorganisms for the stable fermentation of the main flavor compounds of Baijiu, including medium and long-chain fatty acid ethyl esters such as hexanoic acid, ethyl ester; butanoic acid, ethyl ester; octanoic acid, ethyl ester; acetic acid, ethyl ester; 9,12-octadecadienoic acid, ethyl ester; and decanoic acid, ethyl ester in the fermented grains. Our study investigated the effects of microbial combinations on the fermentation from three aspects: microbial composition, microbial interactions, and microbial association with flavor compounds. The results showed that the added functional microorganisms (Lactobacillus, Clostridium, Caproiciproducens, Saccharomyces, and Aspergillus) became the dominant species in the fermentation system and formed positive interactions with other microorganisms, while the negative interactions between microorganisms were significantly reduced in the fermentation systems that contained both Daqu and functional microorganisms. The redundancy analysis showed that the functional microorganisms (Lactobacillus, Saccharomyces, Clostridium, Cloacibacterium, Chaenothecopsis, Anaerosporobacter, and Sporolactobacillus) showed strong positive correlations with the main flavor compounds (hexanoic acid, ethyl ester; lactic acid, ethyl ester; butanoic acid, ethyl ester; acetic acid, ethyl ester; and octanoic acid, ethyl ester). These results indicated that it was feasible to produce Baijiu with a functional microbial combination, and that this could promote stable Baijiu production.
Collapse
Affiliation(s)
- Youqiang Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (Y.X.); (X.L.)
| | - Mengqin Wu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd., Yibin 644000, China
| | - Mengqi Dai
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (Y.X.); (X.L.)
| | - Weiwei Li
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chengnan Zhang
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 102401, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
41
|
Liang L, Ma Y, Jiang Z, Sam FE, Peng S, Li M, Wang J. Dynamic analysis of microbial communities and flavor properties in Merlot wines produced from inoculation and spontaneous fermentation. Food Res Int 2023; 164:112379. [PMID: 36737964 DOI: 10.1016/j.foodres.2022.112379] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The microbiota is of great importance in forming flavor compounds and improving sensory characteristics during wine fermentation. Understanding microbial succession is critical for controlling its contribution to wine flavor with predictable sensory quality. In this study, microbial community composition and characteristic flavor compounds were identified during the inoculation fermentation (IF) and spontaneous fermentation (SF) to provide a basis for exploring the relationship between these microorganisms and volatile components. The results demonstrated that SF had higher fungal community diversity and lower bacterial community diversity than IF. Eleven (11) fungal and 10 bacterial genera (relative abundance > 0.1 %) were considered beneficial microbiota. Saccharomyces, Hanseniaspora, and Alternaria were the leading fungal genera in SF. Massilia, Nesterenkonia, and Halomonas were the predominant bacteria in IF, while Tatumella and Ochrobactrum were mainly from SF. In addition, the microbial community composition was reshaped via correlational analysis between microbiota succession and physicochemical properties, mainly attributed to the changes in environmental factors during fermentation. The SF wines had more aromatic higher alcohols, acetate esters, and terpenes. Also, the sensory evaluation showed that the SF wines were characterized by more fruity, floral, intense, and typical aromas. The associations between the microbial community and the volatile components indicated that the dominant species largely determined the characteristic flavor compounds during fermentation.
Collapse
Affiliation(s)
- Lihong Liang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Yuwen Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Zhanzhan Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Faisal Eudes Sam
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China; College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Peng
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Min Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; Gansu Key Laboratory of Viticulture and Enology, Lanzhou 730070, China.
| |
Collapse
|
42
|
Yang Y, Xia Y, Yan X, Li S, Ni L, Zhang H, Ni B, Ai L. Insights into whereby raw wheat Qu contributes to the flavor quality of Huangjiu during brewing. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
43
|
Jia Y, Liu Y, Hu W, Cai W, Zheng Z, Luo C, Li D. Development of Candida autochthonous starter for cigar fermentation via dissecting the microbiome. Front Microbiol 2023; 14:1138877. [PMID: 36910204 PMCID: PMC9998997 DOI: 10.3389/fmicb.2023.1138877] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction The main goal of tobacco fermentation technology is to minimize the alkaloid content while improving flavor substance content. Methods This study revealed the microbial community structure and their metabolic functions during cigar leaf fermentation by high-throughput sequencing and correlation analysis, and evaluated the fermentation performance of functional microbes based on in vitro isolation and bioaugmentation fermentation. Results The relative abundance of Staphylococcus and Aspergillus increased first but then decreased during the fermentation, and would occupy the dominant position of bacterial and fungal communities, respectively, on the 21st day. Correlation analysis predicted that Aspergillus, Staphylococcus and Filobasidium could contribute to the formation of saccharide compounds, Bacillus might have degradation effects on nitrogenous substances. In particular, Candida, as a co-occurring taxa and biomarker in the later stage of fermentation, could not only degrade nitrogenous substrates and synthesize flavor substances, but also contribute to maintaining the stability of microbial community. Moreover, based on in vitro isolation and bioaugmentation inoculation, it was found that Candida parapsilosis and Candida metapsilosis could significantly reduce the alkaloids content and increase the content of flavor components in tobacco leaves. Discussion This study found and validated the critical role of Candida in the fermentation of cigar tobacco leaves through high-throughput sequencing and bioaugmentation inoculation, which would help guide the development of microbial starters and directional regulation of cigar tobacco quality.
Collapse
Affiliation(s)
- Yun Jia
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanrong Hu
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Wen Cai
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Zhaojun Zheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cheng Luo
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| | - Dongliang Li
- Cigar Fermentation Technology Key Laboratory of China Tobacco, China Tobacco Industrial Co., Ltd., Chengdu, China
| |
Collapse
|
44
|
Shi R, Gong P, Liu Y, Luo Q, Chen W, Wang C. Linoleic acid functions as a quorum-sensing molecule in Monascus purpureus-Saccharomyces cerevisiae co-culture. Yeast 2023; 40:42-52. [PMID: 36514193 DOI: 10.1002/yea.3831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/10/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
When Monascus purpureus was co-cultured with Saccharomyces cerevisiae, we noted significant changes in the secondary metabolism and morphological development of Monascus. In yeast co-culture, although the pH was not different from that of a control, the Monascus mycelial biomass increased during fermentation, and the Monacolin K yield was significantly enhanced (up to 58.87% higher). However, pigment production did not increase. Co-culture with S. cerevisiae significantly increased the expression levels of genes related to Monacolin K production (mokA-mokI), especially mokE, mokF, and mokG. Linoleic acid, that has been implicated in playing a regulating role in the secondary metabolism and morphology of Monascus, was hypothesized to be the effector. Linoleic acid was detected in the co-culture, and its levels changed during fermentation. Addition of linoleic acid increased Monacolin K production and caused similar morphological changes in Monascus spores and mycelia. Exogenous linoleic acid also significantly upregulated the transcription levels of all nine genes involved in the biosynthesis of Monacolin K (up to 69.50% higher), consistent with the enhanced Monacolin K yield. Taken together, our results showed the effect of S. cerevisiae co-culture on M. purpureus and suggested linoleic acid as a specific quorum-sensing molecule in Saccharomyces-Monascus co-culture.
Collapse
Affiliation(s)
- Ruoyu Shi
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China.,Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming, China
| | - Pengfei Gong
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Yutong Liu
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Qiaoqiao Luo
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Wei Chen
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| | - Chengtao Wang
- School of Food and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
45
|
Assessment of the contributions of Saccharomyces cerevisiae, Hansenula sp. and Pichia kudriavzevii to volatile organic compounds and sensory characteristics of waxy rice wine. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
46
|
Miao Z, Hao H, Yan R, Wang X, Wang B, Sun J, Li Z, Zhang Y, Sun B. Individualization of Chinese alcoholic beverages: Feasibility towards a regulation of organic acids. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Huang R, Yu H, Dong C, Shen L, Qin Y, Liu Y, Jiang J, Song Y. Correlations between microbial diversity, monomeric phenols, and biological parameters during spontaneous fermentation of Cabernet Sauvignon grapes obtained from rain-shelter cultivation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
48
|
Lv J, Ye Y, Zhong Y, Liu W, Chen M, Guo A, Lv J, Ma H. Microbial diversity and functional genes of red vinasse acid based on metagenome analysis. Front Microbiol 2022; 13:1025886. [PMID: 36312974 PMCID: PMC9611532 DOI: 10.3389/fmicb.2022.1025886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Red vinasse acid has a distinct flavor and a vivid red color that are directly tied to the intricate metabolic activities of microorganisms that produce it. In this study, metagenomic technology was used to mine its functional genes and examine the microbial diversity of red vinasse acid. The findings revealed the identification of 2,609 species, 782 genera, and 63 phyla of microorganisms, and the dominant genus was Lactobacillus. Amino acid metabolism and carbohydrate metabolism were significant activities among the 16,093 and 49,652 genes that were annotated in the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. In gluconeogenesis, red vinasse acid encodes 194 genes controlling the transporter protein systems of different sugars and has key enzyme genes that catalyze the conversion of intracellular sugars into glycolytic intermediates. In amino acid flavor formation, red vinasse acid contains 32 control genes for branched-chain aminotransferase (BCAT), 27 control genes for aromatic-amino-acid transaminase (ArAT), 60 control genes for keto acid invertase, 123 control genes for alcohol/aldehyde dehydrogenase, and 27 control genes for acetyl esterase, which have the basis for the formation of strong flavor substances from amino acids.
Collapse
Affiliation(s)
- Jianman Lv
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaolu Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuan Zhong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wukang Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meilin Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Jun Lv, ; Ailing Guo,
| | - Jun Lv
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Jun Lv, ; Ailing Guo,
| | - Huawei Ma
- Aquatic Preservation and Processing Technology, Guangxi Academy of Fishery Science, Nanning, China
| |
Collapse
|
49
|
Tang H, Li P, Chen L, Ma JK, Guo HH, Huang XC, Zhong RM, Jing SQ, Jiang LW. The formation mechanisms of key flavor substances in stinky tofu brine based on metabolism of aromatic amino acids. Food Chem 2022; 392:133253. [DOI: 10.1016/j.foodchem.2022.133253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2022] [Accepted: 05/17/2022] [Indexed: 11/04/2022]
|
50
|
Ma D, Liu S, Han X, Nan M, Xu Y, Qian B, Wang L, Mao J. Complete genome sequence, metabolic model construction, and huangjiu application of Saccharopolyspora rosea A22, a thermophilic, high amylase and glucoamylase actinomycetes. Front Microbiol 2022; 13:995978. [PMID: 36246298 PMCID: PMC9554608 DOI: 10.3389/fmicb.2022.995978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Saccharopolyspora is an important microorganism in the fermentation process of wheat qu and huangjiu, yet the mechanisms by which it performs specific functions in huangjiu remain unclear. A strain with high amylase and glucoamylase activities was isolated from wheat qu and identified as Saccharopolyspora rosea (S. rosea) A22. We initially reported the whole genome sequence of S. rosea A22, which comprised a circular chromosome 6,562,638 bp in size with a GC content of 71.71%, and 6,118 protein-coding genes. A functional genomic analysis highlighted regulatory genes involved in adaptive mechanisms to harsh conditions, and in vitro experiments revealed that the growth of S. rosea A22 could be regulated in response to the stress condition. Based on whole-genome sequencing, the first genome-scale metabolic model of S. rosea A22 named iSR1310 was constructed to predict the growth ability on different media with 91% accuracy. Finally, S. rosea A22 was applied to huangjiu fermentation by inoculating raw wheat qu, and the results showed that the total higher alcohol content was reduced by 12.64% compared with the control group. This study has elucidated the tolerance mechanisms and enzyme-producing properties of S. rosea A22 at the genetic level, providing new insights into its application to huangjiu.
Collapse
Affiliation(s)
- Donglin Ma
- State Key Laboratory of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuangping Liu
- State Key Laboratory of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing Huangjiu Industry Innovation Service Complex, Shaoxing, China
- *Correspondence: Shuangping Liu,
| | - Xiao Han
- State Key Laboratory of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing Huangjiu Industry Innovation Service Complex, Shaoxing, China
| | - Mujia Nan
- Basic Department, University of Tibetan Medicine, Lhasa, China
| | - Yuezheng Xu
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing Huangjiu Industry Innovation Service Complex, Shaoxing, China
| | - Bin Qian
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing Huangjiu Industry Innovation Service Complex, Shaoxing, China
| | - Lan Wang
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing Huangjiu Industry Innovation Service Complex, Shaoxing, China
| | - Jian Mao
- State Key Laboratory of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing Huangjiu Industry Innovation Service Complex, Shaoxing, China
- Jian Mao,
| |
Collapse
|