1
|
Asmus AE, Gaire TN, Heimer KM, Belk KE, Singer RS, Johnson TJ, Noyes NR. Fresh pork microbiota is temporally dynamic and compositionally diverse across meat, contact surfaces, and processing lines in a pork processing facility. Appl Environ Microbiol 2025; 91:e0004425. [PMID: 40178255 PMCID: PMC12016530 DOI: 10.1128/aem.00044-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
The goal of this study was to analyze the microbial profiles of meat and contact surfaces from two different processing lines in a pork processing plant, using a 16S rRNA gene amplicon sequencing workflow specifically designed to investigate fresh meat and environmental samples throughout a commercial production schedule. Results indicated that the microbiota differed between the meat and contact surface, both across the two processing lines and within each individual processing line. Differences in the microbiota composition were also strongly associated with both the specific processing dates and the time of day during processing. Much of this variation was associated with distinct amplicon sequence variants unique to each processing date and each processing line throughout the day. The abundance of key taxa associated with food safety and spoilage was also temporally dynamic across a production shift and was different between the meat and contact surface. Overall, the results of this study indicate significant differences in the microbial profiles of the meat and contact surfaces between two processing lines within the same plant. These differences are likely influenced by daily variation in processing and sanitation procedures, as well as differences in the design of the processing lines, which appear to affect the microbiotas of both the meat and contact surfaces.IMPORTANCEThis study provides critical knowledge that can be used as a foundation for tailored processes to improve fresh pork safety and quality, potentially customized to individual processing lines, time points within a shift, and/or production days. Additionally, this study provides a list of potential biological markers associated with food safety and quality that could be used by processors to develop and validate intervention strategies specific to different processing lines.
Collapse
Affiliation(s)
- A. E. Asmus
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
- Hormel Foods Corporation, Austin, Minnesota, USA
| | - T. N. Gaire
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - K. M. Heimer
- Hormel Foods Corporation, Austin, Minnesota, USA
| | - K. E. Belk
- Department of Animal Science, Colorado State University, Fort Collins, Colorado, USA
| | - R. S. Singer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - T. J. Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - N. R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
2
|
Snyder AB, Martin N, Wiedmann M. Microbial food spoilage: impact, causative agents and control strategies. Nat Rev Microbiol 2024; 22:528-542. [PMID: 38570695 DOI: 10.1038/s41579-024-01037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Microbial food spoilage is a major contributor to food waste and, hence, to the negative environmental sustainability impacts of food production and processing. Globally, it is estimated that 15-20% of food is wasted, with waste, by definition, occurring after primary production and harvesting (for example, in households and food service establishments). Although the causative agents of food spoilage are diverse, many microorganisms are major contributors across different types of foods. For example, the genus Pseudomonas causes spoilage in various raw and ready-to-eat foods. Aerobic sporeformers (for example, members of the genera Bacillus, Paenibacillus and Alicyclobacillus) cause spoilage across various foods and beverages, whereas anaerobic sporeformers (for example, Clostridiales) cause spoilage in a range of products that present low-oxygen environments. Fungi are also important spoilage microorganisms, including in products that are not susceptible to bacterial spoilage due to their low water activity or low pH. Strategies that can reduce spoilage include improved control of spoilage microorganisms in raw material and environmental sources as well as application of microbicidal or microbiostatic strategies (for example, to products and packaging). Emerging tools (for example, systems models and improved genomic tools) represent an opportunity for rational design of systems, processes and products that minimize microbial food spoilage.
Collapse
Affiliation(s)
| | - Nicole Martin
- Department of Food Science, Cornell University, Ithaca, NY, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Corradini MG, Homez-Jara AK, Chen C. Virtualization and digital twins of the food supply chain for enhanced food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:71-91. [PMID: 39103218 DOI: 10.1016/bs.afnr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Meeting food safety requirements without jeopardizing quality attributes or sustainability involves adopting a holistic perspective of food products, their manufacturing processes and their storage and distribution practices. The virtualization of the food supply chain offers opportunities to evaluate, simulate, and predict challenges and mishaps potentially contributing to present and future food safety risks. Food systems virtualization poses several requirements: (1) a comprehensive framework composed of instrumental, digital, and computational methods to evaluate internal and external factors that impact food safety; (2) nondestructive and real-time sensing methods, such as spectroscopic-based techniques, to facilitate mapping and tracking food safety and quality indicators; (3) a dynamic platform supported by the Internet of Things (IoT) interconnectivity to integrate information, perform online data analysis and exchange information on product history, outbreaks, exposure to risky situations, etc.; and (4) comprehensive and complementary mathematical modeling techniques (including but not limited to chemical reactions and microbial inactivation and growth kinetics) based on extensive data sets to make realistic simulations and predictions possible. Despite current limitations in data integration and technical skills for virtualization to reach its full potential, its increasing adoption as an interactive and dynamic tool for food systems evaluation can improve resource utilization and rational design of products, processes and logistics for enhanced food safety. Virtualization offers affordable and reliable options to assist stakeholders in decision-making and personnel training. This chapter focuses on definitions and requirements for developing and applying virtual food systems, including digital twins, and their role and future trends in enhancing food safety.
Collapse
Affiliation(s)
- Maria G Corradini
- Department of Food Science & Arrell Food Institute, University of Guelph, Guelph, ON, Canada.
| | | | - Chang Chen
- Department of Food Science, Cornell AgriTech, Cornell University, Geneva, NY, United States
| |
Collapse
|
4
|
Liao C, Wang L, Quon G. Microbiome-based classification models for fresh produce safety and quality evaluation. Microbiol Spectr 2024; 12:e0344823. [PMID: 38445872 PMCID: PMC10986475 DOI: 10.1128/spectrum.03448-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/17/2024] [Indexed: 03/07/2024] Open
Abstract
Small sample sizes and loss of sequencing reads during the microbiome data preprocessing can limit the statistical power of differentiating fresh produce phenotypes and prevent the detection of important bacterial species associated with produce contamination or quality reduction. Here, we explored a machine learning-based k-mer hash analysis strategy to identify DNA signatures predictive of produce safety (PS) and produce quality (PQ) and compared it against the amplicon sequence variant (ASV) strategy that uses a typical denoising step and ASV-based taxonomy strategy. Random forest-based classifiers for PS and PQ using 7-mer hash data sets had significantly higher classification accuracy than those using the ASV data sets. We also demonstrated that the proposed combination of integrating multiple data sets and leveraging a 7-mer hash strategy leads to better classification performance for PS and PQ compared to the ASV method but presents lower PS classification accuracy compared to the feature-selected ASV-based taxonomy strategy. Due to the current limitation of generating taxonomy using the 7-mer hash strategy, the ASV-based taxonomy strategy with remarkably less computing time and memory usage is more efficient for PS and PQ classification and applicable for important taxa identification. Results generated from this study lay the foundation for future studies that wish and need to incorporate and/or compare different microbiome sequencing data sets for the application of machine learning in the area of microbial safety and quality of food. IMPORTANCE Identification of generalizable indicators for produce safety (PS) and produce quality (PQ) improves the detection of produce contamination and quality decline. However, effective sequencing read loss during microbiome data preprocessing and the limited sample size of individual studies restrain statistical power to identify important features contributing to differentiating PS and PQ phenotypes. We applied machine learning-based models using individual and integrated k-mer hash and amplicon sequence variant (ASV) data sets for PS and PQ classification and evaluated their classification performance and found that random forest (RF)-based models using integrated 7-mer hash data sets achieved significantly higher PS and PQ classification accuracy. Due to the limitation of taxonomic analysis for the 7-mer hash, we also developed RF-based models using feature-selected ASV-based taxonomic data sets, which performed better PS classification than those using the integrated 7-mer hash data set. The RF feature selection method identified 480 PS indicators and 263 PQ indicators with a positive contribution to the PS and PQ classification.
Collapse
Affiliation(s)
- Chao Liao
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Luxin Wang
- Department of Food Science and Technology, University of California Davis, Davis, California, USA
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, USA
| |
Collapse
|
5
|
Palevich F, Gardner A, Ross C, Mills J, Brightwell G, Palevich N. Multiple genome sequences of lactic acid bacteria, Carnobacterium divergens and Carnobacterium maltaromaticum strains, isolated from vacuum-packaged lamb meat. Microbiol Resour Announc 2024; 13:e0105823. [PMID: 38197696 PMCID: PMC10868225 DOI: 10.1128/mra.01058-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Here, we report the whole-genome sequences of 11 Carnobacterium divergens and 2 Carnobacterium maltaromaticum bacteria isolated from vacuum-packed chill-stored lamb meat in New Zealand. Examination of these lactic acid bacteria (LAB) genomes will improve our knowledge of their potential antimicrobial activities and spoilage mechanisms of importance to the meat industry.
Collapse
Affiliation(s)
- Faith Palevich
- Food System Integrity, Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| | - Amanda Gardner
- Food System Integrity, Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| | - Colleen Ross
- Food System Integrity, Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| | - John Mills
- Food System Integrity, Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| | - Gale Brightwell
- Food System Integrity, Hopkirk Research Institute, AgResearch Ltd, Palmerston North, New Zealand
| | - Nikola Palevich
- Rumen Microbiology, Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| |
Collapse
|
6
|
Guo L, Wambui J, Wang C, Muchaamba F, Fernandez-Cantos MV, Broos J, Tasara T, Kuipers OP, Stephan R. Cesin, a short natural variant of nisin, displays potent antimicrobial activity against major pathogens despite lacking two C-terminal macrocycles. Microbiol Spectr 2023; 11:e0531922. [PMID: 37754751 PMCID: PMC10581189 DOI: 10.1128/spectrum.05319-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 08/06/2023] [Indexed: 09/28/2023] Open
Abstract
Nisin is a widely used lantibiotic owing to its potent antimicrobial activity and its food-grade status. Its mode of action includes cell wall synthesis inhibition and pore formation, which are attributed to the lipid II binding and pore-forming domains, respectively. We discovered cesin, a short natural variant of nisin, produced by the psychrophilic anaerobe Clostridium estertheticum. Unlike other natural nisin variants, cesin lacks the two terminal macrocycles constituting the pore-forming domain. The current study aimed at heterologous expression and characterization of the antimicrobial activity and physicochemical properties of cesin. Following the successful heterologous expression of cesin in Lactococcus lactis, the lantibiotic demonstrated a broad and potent antimicrobial profile comparable to that of nisin. Determination of its mode of action using lipid II and lipoteichoic acid binding assays linked the potent antimicrobial activity to lipid II binding and electrostatic interactions with teichoic acids. Fluorescence microscopy showed that cesin lacks pore-forming ability in its natural form. Stability tests have shown the lantibiotic is highly stable at different pH values and temperature conditions, but that it can be degraded by trypsin. However, a bioengineered analog, cesin R15G, overcame the trypsin degradation, while keeping full antimicrobial activity. This study shows that cesin is a novel (small) nisin variant that efficiently kills target bacteria by inhibiting cell wall synthesis without pore formation. IMPORTANCE The current increase in antibiotic-resistant pathogens necessitates the discovery and application of novel antimicrobials. In this regard, we recently discovered cesin, which is a short natural variant of nisin produced by the psychrophilic Clostridium estertheticum. However, its suitability as an antimicrobial compound was in doubt due to its structural resemblance to nisin(1-22), a bioengineered short variant of nisin with low antimicrobial activity. Here, we show by heterologous expression, purification, and characterization that the potency of cesin is not only much higher than that of nisin(1-22), but that it is even comparable to the full-length nisin, despite lacking two C-terminal rings that are essential for nisin's activity. We show that cesin is a suitable scaffold for bioengineering to improve its applicability, such as resistance to trypsin. This study demonstrates the suitability of cesin for future application in food and/or for health as a potent and stable antimicrobial compound.
Collapse
Affiliation(s)
- Longcheng Guo
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chenhui Wang
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Jaap Broos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Sharma A, Gupta S, Paul K. Codon usage behavior distinguishes pathogenic Clostridium species from the non-pathogenic species. Gene 2023; 873:147394. [PMID: 37137382 DOI: 10.1016/j.gene.2023.147394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 05/05/2023]
Abstract
Genus Clostridium is of the largest genus in class Clostridia. It is comprised of spore-forming, anaerobic, gram-positive organisms. The members of this genus include human pathogens to free-living nitrogen fixing bacteria. In the present study, we have performed a comparison of the choice of preferred codons, codon usage patterns, dinucleotide and amino acid usage pattern of 76 species of Genus Clostridium. We found the pathogenic clostridium species to have smaller AT-rich genomes as compared to opportunistic and non-pathogenic clostridium species. The choice of preferred and optimal codons was also influenced by genomic GC/AT content of the respective clostridium species. The pathogenic clostridium species displayed a strict bias in the codon usage, employing 35 of the 61 codons encoding for 20 amino acids. Comparison of amino acid usage revealed an increased usage of amino acids with lower biosynthetic cost by pathogenic clostridium species as compared to opportunistic and non-pathogenic clostridium species. Smaller genome, strict codon usage bias and amino acid usage lead to lower protein energetic cost for the clostridial pathogens. Overall, we found the pathogenic members of genus Clostridium to prefer small, AT-rich codons to reduce biosynthetic costs and match the cellular environment of its AT-rich human host.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, Punjab 144012, India
| | - Shelly Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab 144012, India.
| |
Collapse
|
8
|
Toomik E, Rood L, Bowman JP, Kocharunchitt C. Microbial spoilage mechanisms of vacuum-packed lamb meat: A review. Int J Food Microbiol 2023; 387:110056. [PMID: 36563532 DOI: 10.1016/j.ijfoodmicro.2022.110056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Lamb meat is an important export commodity, however chilled vacuum-packed (VP) lamb has approximately half the shelf-life of beef under the same storage conditions. This makes the industry more vulnerable to financial losses due to long shipping times and unexpected spoilage. Understanding the spoilage mechanisms of chilled VP lamb in relation to VP beef is important for developing effective strategies to extend the shelf-life of lamb. This review has discussed various key factors (i.e., pH, fat, and presence of bone) that have effects on microbial spoilage of VP lamb contributing to its shorter shelf-life relative to VP beef. A range of bacterial organisms and their metabolisms in relevance to lamb spoilage are also discussed. The data gap in the literature regarding the potential mechanisms of spoilage in VP red meat is highlighted. This review has provided the current understanding of key factors affecting the shelf-life of VP lamb relative to VP beef. It has also identified key areas of research to further understand the spoilage mechanisms of VP lamb. These include investigating the potential influence of fat and bone (including bone marrow) on the shelf-life, as well as assessing changes in the meat metabolome as the spoilage microbial community is developing using an integrated approach. Such new knowledge would aid the development of effective approaches to extend the shelf-life of VP lamb.
Collapse
Affiliation(s)
- Elerin Toomik
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia.
| | - Laura Rood
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - John P Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Chawalit Kocharunchitt
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| |
Collapse
|
9
|
Multi-Omic Profiling, Structural Characterization, and Potent Inhibitor Screening of Evasion-Related Proteins of a Parasitic Nematode, Haemonchus contortus, Surviving Vaccine Treatment. Biomedicines 2023; 11:biomedicines11020411. [PMID: 36830947 PMCID: PMC9952990 DOI: 10.3390/biomedicines11020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
The emergence of drug-resistant parasitic nematodes in both humans and livestock calls for development of alternative and cost-effective control strategies. Barbervax® is the only registered vaccine for the economically important ruminant strongylid Haemonchus contortus. In this study, we compared the microbiome, genome-wide diversity, and transcriptome of H. contortus adult male populations that survived vaccination with an experimental vaccine after inoculation in sheep. Our genome-wide SNP analysis revealed 16 putative candidate vaccine evasion genes. However, we did not identify any evidence for changes in microbial community profiling based on the 16S rRNA gene sequencing results of the vaccine-surviving parasite populations. A total of fifty-eight genes were identified as significantly differentially expressed, with six genes being long non-coding (lnc) RNAs and none being putative candidate SNP-associated genes. The genes that highly upregulated in surviving parasites from vaccinated animals were associated with GO terms belonging to predominantly molecular functions and a few biological processes that may have facilitated evasion or potentially lessened the effect of the vaccine. These included five targets: astacin (ASTL), carbonate dehydratase (CA2), phospholipase A2 (PLA2), glutamine synthetase (GLUL), and fatty acid-binding protein (FABP3). Our tertiary structure predictions and modelling analyses were used to perform in silico searches of all published and commercially available inhibitor molecules or substrate analogs with potential broad-spectrum efficacy against nematodes of human and veterinary importance.
Collapse
|
10
|
Rood L, Bowman JP, Ross T, Corkrey R, Pagnon J, Kaur M, Kocharunchitt C. Spoilage potential of bacterial species from chilled vacuum-packed lamb. Food Microbiol 2022; 107:104093. [DOI: 10.1016/j.fm.2022.104093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
|
11
|
Podrzaj L, Burtscher J, Domig KJ. Comparative Genomics Provides Insights Into Genetic Diversity of Clostridium tyrobutyricum and Potential Implications for Late Blowing Defects in Cheese. Front Microbiol 2022; 13:889551. [PMID: 35722315 PMCID: PMC9201417 DOI: 10.3389/fmicb.2022.889551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Clostridium tyrobutyricum has been recognized as the main cause of late blowing defects (LBD) in cheese leading to considerable economic losses for the dairy industry. Although differences in spoilage ability among strains of this species have been acknowledged, potential links to the genetic diversity and functional traits remain unknown. In the present study, we aimed to investigate and characterize genomic variation, pan-genomic diversity and key traits of C. tyrobutyricum by comparing the genomes of 28 strains. A comparative genomics analysis revealed an “open” pangenome comprising 9,748 genes and a core genome of 1,179 genes shared by all test strains. Among those core genes, the majority of genes encode proteins related to translation, ribosomal structure and biogenesis, energy production and conversion, and amino acid metabolism. A large part of the accessory genome is composed of sets of unique, strain-specific genes ranging from about 5 to more than 980 genes. Furthermore, functional analysis revealed several strain-specific genes related to replication, recombination and repair, cell wall, membrane and envelope biogenesis, and defense mechanisms that might facilitate survival under stressful environmental conditions. Phylogenomic analysis divided strains into two clades: clade I contained human, mud, and silage isolates, whereas clade II comprised cheese and milk isolates. Notably, these two groups of isolates showed differences in certain hypothetical proteins, transcriptional regulators and ABC transporters involved in resistance to oxidative stress. To the best of our knowledge, this is the first study to provide comparative genomics of C. tyrobutyricum strains related to LBD. Importantly, the findings presented in this study highlight the broad genetic diversity of C. tyrobutyricum, which might help us understand the diversity in spoilage potential of C. tyrobutyricum in cheese and provide some clues for further exploring the gene modules responsible for the spoilage ability of this species.
Collapse
Affiliation(s)
- Lucija Podrzaj
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johanna Burtscher
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Konrad J Domig
- Department of Food Science and Technology, Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
12
|
Comparative Genomics Unveils the Habitat Adaptation and Metabolic Profiles of
Clostridium
in an Artificial Ecosystem for Liquor Production. mSystems 2022; 7:e0029722. [PMID: 35491831 PMCID: PMC9238394 DOI: 10.1128/msystems.00297-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pit mud is a typical artificial ecosystem for Chinese liquor production.
Clostridium
inhabiting pit mud plays essential roles in the flavor formation of strong-flavor baijiu. The relative abundance of
Clostridium
increased with pit mud quality, further influencing the quality of baijiu.
Collapse
|
13
|
Wambui J, Stevens MJA, Cernela N, Stephan R. Unraveling the Genotypic and Phenotypic Diversity of the Psychrophilic Clostridium estertheticum Complex, a Meat Spoilage Agent. Front Microbiol 2022; 13:856810. [PMID: 35418954 PMCID: PMC8996182 DOI: 10.3389/fmicb.2022.856810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The spoilage of vacuum-packed meat by Clostridium estertheticum complex (CEC), which is accompanied by or without production of copious amounts of gas, has been linked to the acetone–butyrate–ethanol fermentation, but the mechanism behind the variable gas production has not been fully elucidated. The reconstruction and comparison of intra- and interspecies metabolic pathways linked to meat spoilage at the genomic level can unravel the genetic basis for the variable phenotype. However, this is hindered by unavailability of CEC genomes, which in addition, has hampered the determination of genetic diversity and its drivers within CEC. Therefore, the current study aimed at determining the diversity of CEC through comprehensive comparative genomics. Fifty CEC genomes from 11 CEC species were compared. Recombination and gene gain/loss events were identified as important sources of natural variation within CEC, with the latter being pronounced in genomospecies2 that has lost genes related to flagellar assembly and signaling. Pan-genome analysis revealed variations in carbohydrate metabolic and hydrogenases genes within the complex. Variable inter- and intraspecies gas production in meat by C. estertheticum and Clostridium tagluense were associated with the distribution of the [NiFe]-hydrogenase hyp gene cluster whose absence or presence was associated with occurrence or lack of pack distention, respectively. Through comparative genomics, we have shown CEC species exhibit high genetic diversity that can be partly attributed to recombination and gene gain/loss events. We have also shown genetic basis for variable gas production in meat can be attributed to the presence/absence of the hyp gene cluster.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Burgess SA, Palevich FP, Gardner A, Mills J, Brightwell G, Palevich N. Occurrence of genes encoding spore germination in Clostridium species that cause meat spoilage. Microb Genom 2022; 8. [PMID: 35166653 PMCID: PMC8942025 DOI: 10.1099/mgen.0.000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Members of the genus Clostridium are frequently associated with meat spoilage. The ability for low numbers of spores of certain Clostridium species to germinate in cold-stored vacuum-packed meat can result in blown pack spoilage. However, little is known about the germination process of these clostridia, despite this characteristic being important for their ability to cause spoilage. This study sought to determine the genomic conditions for germination of 37 representative Clostridium strains from seven species (C. estertheticum, C. tagluense, C. frigoris, C. gasigenes, C. putrefaciens, C. aligidicarnis and C. frigdicarnis) by comparison with previously characterized germination genes from C. perfringens, C. sporogenes and C. botulinum. All the genomes analysed contained at least one gerX operon. Seven different gerX operon configuration types were identified across genomes from C. estertheticum, C. tagluense and C. gasigenes. Differences arose between the C. gasigenes genomes and those belonging to C. tagluense/C. estertheticum in the number and type of genes coding for cortex lytic enzymes, suggesting the germination pathway of C. gasigenes is different. However, the core components of the germination pathway were conserved in all the Clostridium genomes analysed, suggesting that these species undergo the same major steps as Bacillus subtilis for germination to occur.
Collapse
Affiliation(s)
- Sara A Burgess
- Molecular Epidemiology and Veterinary Public Health Laboratory (mEpiLab), Infectious Disease Research Centre, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Faith P Palevich
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Amanda Gardner
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - John Mills
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand.,New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Nikola Palevich
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
15
|
Draft Genome Sequence of Clostridium bowmanii DSM 14206 T, Isolated from an Antarctic Microbial Mat. Microbiol Resour Announc 2022; 11:e0103521. [PMID: 34989621 PMCID: PMC8759372 DOI: 10.1128/mra.01035-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium bowmanii type strain DSM 14206 (ATCC BAA-581) was isolated from a microbial mat sample retrieved from Lake Fryxell, Antarctica. This report describes the generation and annotation of the 4.9-Mb draft genome sequence of C. bowmanii DSM 14206T.
Collapse
|
16
|
Wambui J, Stevens MJA, Sieber S, Cernela N, Perreten V, Stephan R. Targeted Genome Mining Reveals the Psychrophilic Clostridium estertheticum Complex as a Potential Source for Novel Bacteriocins, Including Cesin A and Estercticin A. Front Microbiol 2022; 12:801467. [PMID: 35095812 PMCID: PMC8792950 DOI: 10.3389/fmicb.2021.801467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial resistance in pathogenic bacteria is considered a major public health issue necessitating the discovery of alternative antimicrobial compounds. In this regard, targeted genome mining in bacteria occupying under-explored ecological niches has the potential to reveal such compounds, including bacteriocins. In this study, we determined the bacteriocin biosynthetic potential of the psychrophilic Clostridium estertheticum complex (CEC) through a combination of genome mining and phenotypic screening assays. The genome mining was performed in 40 CEC genomes using antiSMASH. The production of bacteriocin-like compounds was phenotypically validated through agar well (primary screening) and disk diffusion (secondary screening) assays using cell free supernatants (CFS) and partially purified extracts, respectively. Stability of four selected CFS against proteolytic enzymes, temperature and pH was determined while one CFS was analyzed by HRMS and MS/MS to identify potential bacteriocins. Twenty novel bacteriocin biosynthetic gene clusters (BBGC), which were classified into eight (six lantibiotics and two sactipeptides) distinct groups, were discovered in 18 genomes belonging to C. estertheticum (n = 12), C. tagluense (n = 3) and genomospecies2 (n = 3). Primary screening linked six BBGC with narrow antimicrobial activity against closely related clostridia species. All four preselected CFS retained activity after exposure to different proteolytic, temperature and pH conditions. Secondary screening linked BBGC1 and BBGC7 encoding a lantibiotic and sactipeptide, respectively, with activity against Bacillus cereus while lantibiotic-encoding BBGC2 and BBGC3 were linked with activity against B. cereus, Staphylococcus aureus (methicillin-resistant), Escherichia coli and Pseudomonas aeruginosa. MS/MS analysis revealed that C. estertheticum CF004 produces cesin A, a short natural variant of nisin, and HRMS indicated the production of a novel sactipeptide named estercticin A. Therefore, we have shown the CEC, in particular C. estertheticum, is a source of novel and stable bacteriocins that have activities against clinically relevant pathogens.
Collapse
Affiliation(s)
- Joseph Wambui
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
- *Correspondence: Joseph Wambui,
| | - Marc J. A. Stevens
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Roger Stephan
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Advances in understanding the predominance, phenotypes, and mechanisms of bacteria related to meat spoilage. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Comparative genomic analysis of hyper-ammonia producing Acetoanaerobium sticklandii DSM 519 with purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genomics 2021; 113:4196-4205. [PMID: 34780936 DOI: 10.1016/j.ygeno.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Acetoanaerobium sticklandii DSM519 (CST) is a hype-ammonia producing non-pathogenic anaerobe that can use amino acids as important carbon and energy sources through the Stickland reactions. Biochemical aspects of this organism have been extensively studied, but systematic studies addressing its metabolic discrepancy remain scant. In this perspective, we have intensively analyzed its genomic and metabolic characteristics to comprehend the evolutionary conservation of amino acid catabolism by a comparative genomic approach. The whole-genome data indicated that CST has shown a phylogenomic similarity with hyper-ammonia producing, purinolytic, and proteolytic pathogenic Clostridia. CST has shown to common genomic context sharing across the purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genome syntenic analysis described that syntenic orthologs might be originated from the recent ancestor at a slow evolution rate and syntenic-out paralogs evolved from either CDF or CAC via α-event and β-event. Collinearity of either gene orders or gene families was adjusted with syntenic out-paralogs across these genomes. The genome-wide metabolic analysis predicted 11 unique putative metabolic subsystems from the CST genome for amino acid catabolism and hydrogen production. The in silico analysis of our study revealed that a characteristic system for amino acid catabolism-directed biofuel synthesis might have slowly evolved and established as a core genomic content of CST.
Collapse
|
19
|
Wambui J, Cernela N, Stevens MJA, Stephan R. Whole Genome Sequence-Based Identification of Clostridium estertheticum Complex Strains Supports the Need for Taxonomic Reclassification Within the Species Clostridium estertheticum. Front Microbiol 2021; 12:727022. [PMID: 34589074 PMCID: PMC8473909 DOI: 10.3389/fmicb.2021.727022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Isolates within the Clostridium estertheticum complex (CEC) have routinely been identified through the 16S rRNA sequence, but the high interspecies sequence similarity reduces the resolution necessary for species level identification and often results in ambiguous taxonomic classification. The current study identified CEC isolates from meat juice (MJS) and bovine fecal samples (BFS) and determined the phylogeny of species within the CEC through whole genome sequence (WGS)-based analyses. About 1,054 MJS were screened for CEC using quantitative real-time PCR (qPCR). Strains were isolated from 33 MJS and 34 BFS qPCR-positive samples, respectively. Pan- and core-genome phylogenomics were used to determine the species identity of the isolates. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were used to validate the species identity. The phylogeny of species within the CEC was determined through a combination of these methods. Twenty-eight clostridia strains were isolated from MJS and BFS samples out of which 13 belonged to CEC. At 95% ANI and 70% dDDH thresholds for speciation, six CEC isolates were identified as genomospecies2 (n=3), Clostridium tagluense (n=2) and genomospecies3 (n=1). Lower thresholds of 94% ANI and 58% dDDH were required for the classification of seven CEC isolates into species C. estertheticum and prevent an overlap between species C. estertheticum and Clostridium frigoriphilum. Combination of the two species and abolishment of current subspecies classification within the species C. estertheticum are proposed. These data demonstrate the suitability of phylogenomics to identify CEC isolates and determine the phylogeny within CEC.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Effects of different doses of electron beam irradiation on bacterial community of Portunus trituberculatus. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Bacterial Diversity Profiling of the New Zealand Parasitic Blowfly Lucilia sericata Based on 16S rRNA Gene Amplicon Sequencing. Microbiol Resour Announc 2021; 10:10/19/e00257-21. [PMID: 33986085 PMCID: PMC8142571 DOI: 10.1128/mra.00257-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Lucilia sericata, collected from Ashhurst, New Zealand (May 2020). The two dominant genera among adult male and female L. sericata were Serratia and Morganella (phylum Proteobacteria), while the larvae were also dominated by the genera Lactobacillus, Carnobacterium, and Lactococcus (phylum Firmicutes). Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Lucilia sericata, collected from Ashhurst, New Zealand (May 2020). The two dominant genera among adult male and female L. sericata were Serratia and Morganella (phylum Proteobacteria), while the larvae were also dominated by the genera Lactobacillus, Carnobacterium, and Lactococcus (phylum Firmicutes).
Collapse
|
22
|
16S rRNA Gene Amplicon Profiling of the New Zealand Parasitic Blowfly Calliphora vicina. Microbiol Resour Announc 2021; 10:10/18/e00289-21. [PMID: 33958401 PMCID: PMC8103871 DOI: 10.1128/mra.00289-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Calliphora vicina, collected from Ashhurst, New Zealand (May 2020). The three dominant genera among the adult male and female C. vicina were Serratia and Morganella (phylum Proteobacteria) and Carnobacterium (phylum Firmicutes), while the larvae were also dominated by the genera Lactobacillus (phylum Firmicutes). Here, we present a 16S rRNA gene amplicon sequence data set and profiles demonstrating the bacterial diversity of larval and adult Calliphora vicina, collected from Ashhurst, New Zealand (May 2020). The three dominant genera among the adult male and female C. vicina blowflies were Serratia and Morganella (phylum Proteobacteria) and Carnobacterium (phylum Firmicutes), while the larvae were also dominated by the genera Lactobacillus (phylum Firmicutes).
Collapse
|
23
|
Vieira KCDO, Silva HRAD, Rocha IPM, Barboza E, Eller LKW. Foodborne pathogens in the omics era. Crit Rev Food Sci Nutr 2021; 62:6726-6741. [PMID: 33783282 DOI: 10.1080/10408398.2021.1905603] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Outbreaks and deaths related to Foodborne Diseases (FBD) occur constantly in the world, as a result of the consumption of contaminated foodstuffs with pathogens such as Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, Salmonella spp, Clostridium spp. and Campylobacter spp. The purpose of this review is to discuss the main omic techniques applied in foodborne pathogen and to demonstrate their functionalities through the food chain and to guarantee the food safety. The main techniques presented are genomic, transcriptomic, secretomic, proteomic, and metabolomic, which together, in the field of food and nutrition, are known as "Foodomics." This review had highlighted the potential of omics to integrate variables that contribute to food safety and to enable us to understand their application on foodborne diseases. The appropriate use of these techniques had driven the definition of critical parameters to achieve successful results in the improvement of consumers health, costs and to obtain safe and high-quality products.
Collapse
Affiliation(s)
| | | | | | - Emmanuel Barboza
- Health Sciences Faculty, University of Western Sao Paulo, Presidente Prudente, Sao Paulo, Brazil
| | | |
Collapse
|