1
|
Miao X, Li S, Liu Y, Li J, Dong X, Du M, Jiang P. The dynamic changes of flavor characteristics of sea cucumber ( Apostichopus japonicus) during puffing revealed by GC-MS combined with HS-GC-IMS. Food Chem X 2024; 23:101709. [PMID: 39211767 PMCID: PMC11357860 DOI: 10.1016/j.fochx.2024.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
To improve the ease of eating sea cucumbers, we investigated the impact of puffing temperature (190 °C - 250 °C) and time (1-5 min) on their quality and flavor. As temperature and time increased, sea cucumber puffing significantly enhanced. The microstructure of the puffed sea cucumber exhibited a uniform porous structure at 230 °C for 4 min. However, further puffing treatment caused the void to collapse. A total of 81 volatile organic compounds (VOCs) were identified using HS-GC-IMS, and 18 VOCs with Relative odor activity value (ROAV) ≥1 were identified. The content of fishy compounds, such as dimethyl sulfide, 1-octanal, and 1-nonanal in sea cucumbers gradually decreased with increasing temperature and time. Combined with GC-MS analysis indicating that the flavor of sea cucumbers puffed at 250 °C for 5 min was superior. Our findings suggest new avenues for sea cucumber processing and address the limited research on puffing techniques for protein-based raw materials.
Collapse
Affiliation(s)
- Xiaoqing Miao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shuang Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yang Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiuping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Pengfei Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Miao XQ, Huang JB, Li Y, Dong XP, Sun N, Jiang PF. Dynamic changes in quality and flavor compounds of pork tendons during puffing process. NPJ Sci Food 2024; 8:87. [PMID: 39468102 PMCID: PMC11519629 DOI: 10.1038/s41538-024-00325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
To improve the portability of dried pork tendons for consumption, this study investigated the effects of different puffing temperatures (190 °C - 250 °C) and times (1-7 min) on the quality and flavor of pork tendons. As the temperature and time increased, the expansion ratio of pork tendons exhibited a gradual increase. The microstructure of the puffed pork tendons exhibited a uniform porous structure at 230 °C and 250 °C for 6 min. However, further puffing treatment destroyed the spatial structure. GC-IMS identified 68 volatile organic compounds (VOCs), and a total of 16 key VOCs including 2-trans-4-trans-decadienal were screened by GC-MS. Nonanal, 1-octen-3-ol, 2-amylfuran and 2-ethylfuran proved to have a significant effect on the flavor of the puffed pork tendon. The combined puffing performance and flavor analysis revealed that puffing at 230 °C for 6 min was the preferred parameter for puffed pork tendons.
Collapse
Affiliation(s)
- Xiao-Qing Miao
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Jia-Bo Huang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Ya Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Xiu-Ping Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Na Sun
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Peng-Fei Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
3
|
Zhang HL, Wang ZX, Wang KL, Du J, He JB, Zhang WN. Lipid concomitant γ-oryzanol decreased oil absorbency of French fries by changing the microstructure of French fries and physical properties of frying oil. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3246-3255. [PMID: 38081762 DOI: 10.1002/jsfa.13211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND The aim of this research was to evaluate the possibility of lipid concomitant γ-oryzanol reducing oil absorbency of fried foods and the underlying mechanism. Therefore, the influence of γ-oryzanol on moisture and oil content, and distribution and micromorphology of French fries and the viscosity, fatty acid composition and total polar compounds content of rice bran oil (RBO) after frying were studied. RESULTS Our results showed that the incorporation of low concentration of γ-oryzanol [low addition group (LAG)] (5.754 g/kg) decreased the oil absorbency and porous structure of French fries during frying. Additionally, LAG incorporation inhibited the degradation of linoleic acid, decreased the growth rate of saturated fatty acids, total polar compounds and viscosity of frying oil. CONCLUSIONS Consequently, it was recommended to incorporate a small amount of γ-oryzanol in frying oil because it could inhibit oil absorption behavior of French fries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hai-Long Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan, China
| | - Zhi-Xian Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Kun-Li Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jing Du
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Jun-Bo He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan, China
| | - Wei-Nong Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, China
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
- Engineering Research Center of Lipid-based Fine Chemicals of Hubei Province, Wuhan, China
| |
Collapse
|
4
|
van der Sman R, Schenk E. Causal factors concerning the texture of French fries manufactured at industrial scale. Curr Res Food Sci 2024; 8:100706. [PMID: 38435276 PMCID: PMC10909613 DOI: 10.1016/j.crfs.2024.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
In this paper, we review the physical/chemical phenomena, contributing to the final texture of French fries, as occurs in the whole industrial production chain of frozen par-fried fries. Our discussion is organized following a multiscale hierarchy of these causal factors, where we distinguish the molecular, cellular, microstructural, and product levels. Using the same multiscale framework, we also discuss currently available theoretical knowledge, and experimental methods probing the relevant physical/chemical phenomena. We have identified knowledge gaps, and experimental methods are evaluated in terms of the effort and value of their results. With our overviews, we hope to give promising research directions such to arrive at a multiscale model, encompassing all causal factors relevant to the final texture. This multiscale model is the ultimate tool to evaluate process innovations for effects on final textural quality, which can be balanced against the impacts on sustainability and economics.
Collapse
Affiliation(s)
- R.G.M. van der Sman
- Wageningen Food & Biobased Research, Wageningen University & Research, the Netherlands
| | | |
Collapse
|
5
|
Lima LEDM, Maciel BLL, Passos TS. Oil Frying Processes and Alternative Flour Coatings: Physicochemical, Nutritional, and Sensory Parameters of Meat Products. Foods 2024; 13:512. [PMID: 38397489 PMCID: PMC10888343 DOI: 10.3390/foods13040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 02/25/2024] Open
Abstract
The frying process changes can be desirable and undesirable, involving the physicochemical, nutritional, and sensory aspects, depending on the food and oil properties and the frying process. In this context, alternative flours emerge as a strategy for adding value to the food since they are rich in fiber, vitamins, and minerals, contributing to the variability of ingredients and the full use of food, including residues such as seeds and husks. This narrative review aims to gather current scientific data addressing the alternative flour coatings on breaded meat, mainly chicken, products to evaluate the effects on fried products' nutritional value, physicochemical parameters, and sensory attributes. Scopus, Science Direct, Springer, and Web of Science search bases were used. This review showed that alternative flours (from cereals, legumes, fruits, and vegetables) used as coatings increase water retention and reduce oil absorption during frying, increase fibers and micronutrient content, which are not present in sufficient quantities in commonly used flours due to the refining process. These flours also reduce gluten consumption by sensitive individuals in addition to favoring the development of desirable sensory characteristics to attract consumers. Therefore, frying processes in oil promote a reduction in humidity, an increase in oil absorption and energy content, and a decrease in vitamin content. In this context, coatings based on alternative flours can reduce these adverse effects of the frying process.
Collapse
Affiliation(s)
- Luzia Ellen de Mendonça Lima
- Department of Nutrition, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Bruna Leal Lima Maciel
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Thaís Souza Passos
- Nutrition Postgraduate Program, Health Sciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| |
Collapse
|
6
|
Tan K, Lim L, Peng Y, Cheong KL. Effects of food processing on the lipid nutritional quality of commercially important fish and shellfish. Food Chem X 2023; 20:101034. [PMID: 38144794 PMCID: PMC10739925 DOI: 10.1016/j.fochx.2023.101034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Fish and shellfish are important sources of high quality lipids, especially omega-3 long-chain polyunsaturated fatty acids. In most countries, seafood is eaten cooked to eliminate any potential parasites and pathogens. In addition, cold storage plays an important role in extending the shelf life of seafood. However, both cooking and storage processes can cause alterations in the lipid content and fatty acid profile of fish and shellfish. Although the lipid nutritional quality of fish and shellfish have recently been reviewed, these reviews mainly focus on raw seafood, and information on the impact of food processing on the lipid nutritional quality of fish and shellfish still lacks coherence. Therefore, this study was carried out to provides a critical reviews on the effects of food processing, especially cooking and cold storge, on the lipid nutritional quality of fish and shellfish. Overall, from the perspective of lipid nutritional quality, baking and steaming are the most recommended cooking methods for fish and shellfish, respectively, while it is strongly not recommended to fry seafood with margarine. For cold storage, 3 days and 2 weeks are the most recommended storage periods for refrigeration and frozen storage, respectively. This article can provides consumers with useful information to choose food preparation and storage methods based on their personal interest in specific lipid nutritional quality indicators.
Collapse
Affiliation(s)
- Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leongseng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ya Peng
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
7
|
Tan K, Huang L, Tan K, Lim L, Peng Y, Cheong KL. Effects of culinary treatments on the lipid nutritional quality of fish and shellfish. Food Chem X 2023; 19:100856. [PMID: 37780264 PMCID: PMC10534239 DOI: 10.1016/j.fochx.2023.100856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Coronary heart disease (CHD) is one of the leading causes of death worldwide. Seafood, especially fish and shellfish, is a healthy food that reduces the risk of CHD. In many regions, seafood is consumed cooked to eliminate potentially pathogenic microorganisms. Although there have been many reports of culinary preparations causing changes in the fatty acid profile of fish and shellfish, this information has not been well organized, and most of it is not associated to CHD. Therefore, this study was conducted to study the effect of culinary treatments of seafood on lipid nutritional quality in relation to promotion/prevention of CHD. In this study, fatty acid profiles of fish and shellfish prepared with different culinary preparations were obtained from published literature. Lipid nutritional quality indices related to promoting/preventing CHD were calculated and analyzed to reveal the effects of culinary treatment on the lipid nutritional quality of fish and shellfish in promoting/preventing of CHD. The information in this article is very useful and can fill the knowledge gap of the effects of culinary preparation on the lipid nutritional quality of fish and shellfish. Such information is very useful for guiding consumers to choose better ways to cook fish and shellfish to reduce the risk of CHD.
Collapse
Affiliation(s)
- Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leiheng Huang
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kianann Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Leongseng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Ya Peng
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
8
|
Yang Z, Li X, Yu M, Jiang S, Qi H. Effects of Different Processing Methods on the Quality and Physicochemical Characteristics of Laminaria japonica. Foods 2023; 12:1619. [PMID: 37107414 PMCID: PMC10137765 DOI: 10.3390/foods12081619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The effects of four domestic cooking methods, including blanching, steaming, boiling, and baking treatments, on processing properties, bioactive compound, pigments, flavor components, and tissue structure of Laminaria japonica were investigated. The results showed that the color and structure of kelp changed most obviously after baking; steaming was most beneficial in reducing the color change of the kelp (ΔE < 1), while boiling was most effective in maintaining the texture of the kelp (its hardness and chewiness were close to that of raw kelp); eight volatile compounds were detected in raw kelp, four and six compounds were detected in blanched and boiled kelp, while eleven and thirty kinds of compounds were detected in steamed and baked kelp, respectively. In addition, the contents of phloroglucinol and fucoxanthin in kelp after the four processing methods were significantly reduced (p < 0.05). However, of all the methods, steaming and boiling were the best at preserving these two bioactive substances (phloroglucinol and fucoxanthin) in kelp. Therefore, steaming and boiling seemed more appropriate to maintain the original quality of the kelp. Generally, to improve the sensory characteristics of each meal of Laminaria japonica and to maximize the retention of active nutrients, several different processing methods are provided according to the respective effects.
Collapse
Affiliation(s)
- Zuomiao Yang
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing, Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xueting Li
- Haide College, Ocean University of China, Qingdao 266003, China
| | - Meiqi Yu
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing, Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Shan Jiang
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing, Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hang Qi
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing, Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
9
|
Progress in Extrusion-Based Food Printing Technology for Enhanced Printability and Printing Efficiency of Typical Personalized Foods: A Review. Foods 2022; 11:foods11244111. [PMID: 36553853 PMCID: PMC9777955 DOI: 10.3390/foods11244111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Three-dimensional printing technology enables the personalization and on-demand production of edible products of individual specifications. Four-dimensional printing technology expands the application scope of 3D printing technology, which controllably changes the quality attributes of 3D printing products over time. The concept of 5D/6D printing technology is also gradually developing in the food field. However, the functional value of food printing technology remains largely unrealized on a commercial scale due to limitations of printability and printing efficiency. This review focuses on recent developments in breaking through these barriers. The key factors and improvement methods ranging from ink properties and printer design required for successful printing of personalized foods (including easy-to-swallow foods, specially shaped foods, and foods with controlled release of functional ingredients) are identified and discussed. Novel evaluation methods for printability and printing precision are outlined. Furthermore, the design of printing equipment to increase printing efficiency is discussed along with some suggestions for cost-effective commercial printing.
Collapse
|
10
|
Selection of 12 vegetable oils influences the prevalence of polycyclic aromatic hydrocarbons, fatty acids, tocol homologs and total polar components during deep frying. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Wang X, Chen L, McClements DJ, Jin Z. Recent advances in crispness retention of microwaveable frozen pre-fried foods. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Kumar S, Chandra A, Nema PK, Sharanagat VS, Kumar S, Gaibimei P. Optimization of the frying process in relation to quality characteristics of Khaja (A traditional sweet). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4352-4361. [PMID: 36193472 PMCID: PMC9525483 DOI: 10.1007/s13197-022-05509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
The present study was focused on the optimization of process parameters and quality characterization of Khaja. A full factorial design 53 was applied using different levels of fat proportions (5-25%), frying temperature (160-200 °C), and frying time (1-5 min). The response optimizer function in Minitab 18 software was used to select five samples with the highest desirability which were then subjected to sensory analysis. The lightness of the samples decreased significantly (P ˂ 0.05) from 68.59 to 43.33 whereas, redness increased significantly (P ˂ 0.05) from 0.26 to 11.48 with increasing levels of all independent variables. Water activity and moisture content of the samples decreased significantly (P ˂ 0.05) from 0.75 to 0.21 and 14.41-1.40%wb respectively, whereas total fat content increased significantly (P ˂ 0.05) from 25.05 to 45.7% with increasing levels of independent variables. The hardness of the samples significantly (P ˂ 0.05) varied from 60.45 to 7.69 N. The sensory analysis revealed that the sample with 20% fat proportion, fried at 180 °C for 4 min, scored maximum in overall acceptability. The microstructural images revealed the structural damage and formation of pores in fried samples. The fatty acid analysis showed higher saturated fatty acids in market samples than in optimized samples. The results of the study concluded that fat proportion and frying parameters (temperature and time) are crucial for a better understanding of the deep-frying process of Khaja in order to achieve good quality. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05509-x.
Collapse
Affiliation(s)
- Sourabh Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131028 India
| | - Abhishek Chandra
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131028 India
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, 248007 India
| | - Prabhat K. Nema
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131028 India
| | - Vijay Singh Sharanagat
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131028 India
| | - Sachin Kumar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana 131028 India
| | - Palmei Gaibimei
- Processing and Product Development Division, ICAR- Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand 834010 India
| |
Collapse
|
13
|
Zhang S, Li Q, Zhao Y, Qin Z, Zheng M, Liu H, Liu J. Preparation and characterization of low oil absorption corn starch by ultrasonic combined with freeze–thaw treatment. Food Chem X 2022; 15:100410. [PMID: 36211764 PMCID: PMC9532773 DOI: 10.1016/j.fochx.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Combined ultrasonic and freeze–thaw pretreatment significantly reduced oil absorption of corn starch. The combined treatment increased the density of corn starch granules. The combined treatment increased the short-range order of cornstarch. Modified starch could be used in low-fat fried food processing industry.
This study investigated the effects of ultrasonic, freeze–thaw, and combined pretreatments on corn starch oil absorption. Low-field nuclear magnetic resonance (LF NMR) was used to study the oil absorption changes after frying of corn starch (CS) subjected to different treatments. The structural characteristics of samples were evaluated using various techniques. Scanning electron microscopy, contact angle, and particle size analysis showed that corn starch subjected to combined ultrasonic and freeze–thaw treatment generated larger, coarser particles with a denser structure. Furthermore, X-ray diffraction, Fourier transform infrared spectroscopy, and differential scanning calorimetry showed that combined treatment improved the order and thermal stability of CS molecules, thereby inhibiting oil absorption during frying. The results showed that combined ultrasonic and freeze–thaw pretreatment significantly reduced the oil absorption of corn starch before and after frying.
Collapse
|
14
|
Obadi M, Li Y, Xu B. Identifying key factors and strategies for reducing oil content in fried instant noodles. J Food Sci 2022; 87:4329-4347. [PMID: 36076362 DOI: 10.1111/1750-3841.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022]
Abstract
Fried instant noodles have become a popular instant food in recent years, favored by consumers for their unique flavor and taste. Unfortunately, the oil content of instant noodles is generally high, so the rise of fat-related diseases poses a major health issue. From the perspective of the cost of instant noodle manufacturers and the health of consumers, it is of great significance to reduce the oil content of instant noodles. The aim of this review article is to provide an overview of the main factors, such as raw materials and production processes, affecting oil content in instant noodles in order to suggest specific strategies to reduce the oil content in the end product. From the literature reviewed, adding acetylated potato starch/carboxymethyl cellulose, hydroxypropyl methylcellulose, or preharvest-dropped apple powder in the noodle formulation could be a better choice to reduce oil uptake by 5%-20%. Instant noodles with lower oil content can be produced using novel alternative frying technologies, including microwave and vacuum frying. The proper management of the production processes and the implementation of enhancement strategies may result in a reduction of oil content in the end product.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuntong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Jishou University, Jishou, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Zhang C, Lyu X, Zhao W, Yang R. Radio frequency as an innovative method to produce low-fat French fries. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5181-5189. [PMID: 35289937 DOI: 10.1002/jsfa.11870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A large amount of evidence shows that excessive fat intake can increase the risk of obesity, type 2 diabetes, non-alcoholic fatty liver disease, and cardiovascular disease. The main purpose of this study was to use radio frequency (RF) technology to prepare low-fat French fries. RESULTS RF treatment for 10 min significantly decreased the force required to cut potatoes and inhibited the enzymatic browning of fresh-cut potatoes. Moreover, RF treatment increased the hardness, gumminess, and chewiness of French fries from 388.55 g, 85.67, and 33.27 to 776.93 g, 159.36, and 70.11, respectively. Furthermore, RF treatment for 10 min reduced the oil content of French fries by 28.0% compared to that of the control group. This result was related to the pre-gelatinized potato starch content after RF treatment. Pre-gelatinized starch forms a 'protective film', that prevents oil from entering the fries during frying. CONCLUSION Moderate RF treatment (10 min) reduced the oil content of French fries without making their texture significantly different from that of commercial French fries. These findings may provide a new perspective for the application of RF technology in the development of low-fat fried foods. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
16
|
Jiang S, Yu M, Wang Y, Yin W, Jiang P, Qiu B, Qi H. Traditional Cooking Methods Affect Color, Texture and Bioactive Nutrients of Undaria pinnatifida. Foods 2022; 11:1078. [PMID: 35454666 PMCID: PMC9028335 DOI: 10.3390/foods11081078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Undaria pinnatifida (U. pinnatifida) is an edible brown seaweed with high health value. The objective of this study was to evaluate the effect of traditional cooking methods (i.e., blanching, steaming, boiling and baking) on the color, texture and bioactive nutrients of U. pinnatifida, so as to screen out the traditional cooking methods more suitable for U. pinnatifida. In this study, methods of blanching and boiling resulted in better reduction in total color difference (0.91 ± 0.58 and 0.79 ± 0.34, respectively) and retention of chlorophyll A (62.99 ± 1.27 µg/g FW and 51.35 ± 1.69 µg/g FW), along with better elevation of fucoxanthin content (increased by 11.05% and 18.32%, respectively). Baking method got the best retention of total phenol content (1.62 ± 0.11 mg GAE/g DW), followed by methods of boiling and blanching (1.51 ± 0.07 mg GAE/g DW and 1.43 ± 0.05 mg GAE/g DW). Among these cooking methods, blanching and boiling seemed to be the more suitable for U. pinnatifida compared to other methods. These results could help to determine the better cooking methods for U. pinnatifida products and provide a scientific and theoretical basis for improving human dietary health.
Collapse
Affiliation(s)
- Shan Jiang
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (S.J.); (M.Y.); (Y.W.); (P.J.)
| | - Meiqi Yu
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (S.J.); (M.Y.); (Y.W.); (P.J.)
| | - Yingzhen Wang
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (S.J.); (M.Y.); (Y.W.); (P.J.)
| | - Wei Yin
- Dalian Gaishi Food Co., Ltd., Dalian 116047, China;
| | - Pengfei Jiang
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (S.J.); (M.Y.); (Y.W.); (P.J.)
| | - Bixiang Qiu
- Fujian Yida Food Co., Ltd., Fuzhou 350500, China;
| | - Hang Qi
- National Engineering Research Center of Seafood, Liaoning Provincial Aquatic Products Deep Processing Technology Research Center, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (S.J.); (M.Y.); (Y.W.); (P.J.)
| |
Collapse
|
17
|
Fan L, Ruan D, Shen J, Hu Z, Liu C, Chen X, Xia W, Xu Y. The role of water and oil migration in juiciness loss of stuffed fish ball with the fillings of pig fat/meat as affected by freeze-thaw cycles and cooking process. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Improvement of low-acyl gellan gum on gelation and microstructural properties of protein hydrolysates from male gonad of scallop (Patinopecten yessoensis). Food Chem 2022; 371:131114. [PMID: 34638013 DOI: 10.1016/j.foodchem.2021.131114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to examine the gelation and microstructural properties of scallop male gonad hydrolysates (SMGHs) in the presence of low-acyl gellan gum (GG) at different mass ratios. The rheological results showed that both elastic modulus and thermal stability of SMGHs were significantly improved by the addition of GG. Meanwhile, the relaxation time T23 was significantly reduced in SMGHs/GG by low-field nuclear magnetic resonance, indicating a strong interaction between SMGHs and GG. Fourier transform infrared spectroscopy indicated the blueshift of amide I and II peaks in SMGHs/GG further demonstrated the electrostatic interaction between SMGHs and GG. The network structure of SMGHs/GG binary complexes was more compact and the surface was smoother than that of SMGHs by cryo-scanning electron microscopy. Furthermore, increasing the content of GG in the SMGHs/GG binary complex significantly reinforced the gel strength and promoted the gelation process.
Collapse
|
19
|
Zhang C, Ye J, Lyu X, Zhao W, Mao J, Yang R. Effects of pulse electric field pretreatment on the frying quality and pore characteristics of potato chips. Food Chem 2022; 369:130516. [PMID: 34479014 DOI: 10.1016/j.foodchem.2021.130516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 01/24/2023]
Abstract
The main purpose of this work was to investigate the effect of pulsed electric field (PEF) treatment on the oil absorption capacity of potato chips, evaluated via changes to microstructure and pore characteristics. Our results showed that as electric field strength increased from 0 kV/cm (no pretreatment) to 5 kV/cm, the oil content of potato chips decreased by up to 20.6%. Furthermore, at higher the electric field strengths (5 ~ 20 kV/cm), most of the potato cell walls collapsed, and dense pores could be observed in the horizontal profile of the chips. Moreover, some smaller pores (10-50 nm) in the potato chips were disrupted and merged into larger pores (50-100 nm), thus increasing the total volume and average diameter of the pores, accelerating moisture evaporation and reducing oil absorption during frying. Our findings provide a novel perspective on the application of PEF towards the development of lower-fat and healthier fried foods.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Institute of Food Biotechnology, Jiangnan University, Rugao, Jiangsu 226500, People's Republic of China
| | - Jianfen Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jinsheng Mao
- Institute of Food Biotechnology, Jiangnan University, Rugao, Jiangsu 226500, People's Republic of China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China; Institute of Food Biotechnology, Jiangnan University, Rugao, Jiangsu 226500, People's Republic of China.
| |
Collapse
|
20
|
Emulsion Surimi Gel with Tunable Gel Properties and Improved Thermal Stability by Modulating Oil Types and Emulsification Degree. Foods 2022; 11:foods11020179. [PMID: 35053911 PMCID: PMC8774618 DOI: 10.3390/foods11020179] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
High resistance to heating treatments is a prerequisite for ready-to-eat (RTE) surimi products. In this study, emulsion-formulated surimi gels were prepared, and the effects of oil types and emulsification degrees on the thermal stability of surimi gel were investigated. The results showed the gel properties of surimi gels were modulated by oil types and emulsification degrees. In detail, the rising pre-emulsification ratio caused the increase of the emulsifying activity index (EAI) and decrease of emulsifying stability index (ESI) for both emulsions. The larger droplet sizes of perilla seed oil than soybean oil may be responsible for their emulsifying stability difference. The gel strength, water retention, dynamic modulus and texture properties of both kinds of surimi gels displayed a firstly increased and then decreased tendency with the rising pre-emulsification ratios. The peak values were obtained as perilla seed oil emulsion with emulsification ratio of 20% group (P1) and soybean oil emulsion with emulsification ratio of 40% group (S2), respectively. Anyway, all emulsion gels showed higher thermal stability than the control group regardless of oil types. Similar curves were also obtained for the changes of hydrogen bond, ionic bond and hydrophobic interactions. Overall, perilla seed oil emulsion with emulsification ratio of 20% (P1 group) contributed to the improved thermal stability of surimi gels.
Collapse
|
21
|
Comparative analysis of the effects of novel electric field frying and conventional frying on the quality of frying oil and oil absorption of fried shrimps. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Sadeghi R, Lin Y, Price WJ, Thornton MK, Hui-Mei Lin A. Instrumental indicators of desirable texture attributes of French fries. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Jiang Q, Zhang M, Mujumdar AS. Novel evaluation technology for the demand characteristics of 3D food printing materials: a review. Crit Rev Food Sci Nutr 2021; 62:4669-4683. [PMID: 33523706 DOI: 10.1080/10408398.2021.1878099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a recently developed way of food manufacturing - 3D printing - is bringing about a revolution in the food industry. Rheological and mechanical properties of food material being printed are the determinants of their printability. Therefore, it is important to analyze the requirements of different 3D printing technologies on material properties and to evaluate the performance of the printed materials. In this review, the printing characteristics and classification of food materials are discussed. The four commonly used 3D printing techniques e.g. extrusion-based printing, selective sintering printing (SLS), binder jetting, and inkjet printing, are outlined along with suitable material characteristics required for each printing technique. Finally, recent technologies for evaluation of 3D printed products including low field nuclear magnetic resonance (LF-NMR), computer numerical simulation, applied reference material, morphological identification, and some novel instrumental analysis techniques are highlighted.
Collapse
Affiliation(s)
- Qiyong Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Evaluation of the Bioactive Compounds Found in Tomato Seed Oil and Tomato Peels Influenced by Industrial Heat Treatments. Foods 2021; 10:foods10010110. [PMID: 33430280 PMCID: PMC7825722 DOI: 10.3390/foods10010110] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
The circular economy action plan involves principles related to food waste reduction and integration of recovered nutrients to the market. In this context, the present study aims to highlight the valuable bioactive components found in tomato processing by-products (carotenoids, phenolic compounds and fatty acids) influenced by industrial pre-treatments, particularly cold break (CB) process at 65–75 °C and hot break (HB) process at 85–95 °C. The fatty acid profile of the tomato seed oil was examined by gas chromatography coupled to mass spectrometry (GC-MS), individual carotenoid and phenolic compositions were determined by high performance liquid chromatography (HPLC) and the viscoelastic properties were evaluated by rheological measurements. The physicochemical properties revealed appropriate characteristics of the tomato seed oil to fit the standards of generally accepted edible oils, for both CB and HB derived samples, however, significant qualitative and quantitative differences were detected in their phenolic composition and carotenoids content. Lycopene (37.43 ± 1.01 mg/100 mL) was a major carotenoid in the examined samples, linoleic acid was the main fatty acid (61.73%) detected in the tomato seed oil and syringic acid appeared to be one of two major phenolic acids detected in the samples of CB process. Our findings extend the boundaries of tomato processing industry by validating that tomato seed oil is a bioactive rich edible oil with additional health benefits, which can be integrated in functional food products.
Collapse
|