1
|
Shang W, Wei G, Li H, Zhao G, Wang D. Advances in High-Resolution Mass Spectrometry-Based Metabolomics: Applications in Food Analysis and Biomarker Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3305-3325. [PMID: 39874461 DOI: 10.1021/acs.jafc.4c10295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Consumer concerns regarding food nutrition and quality are becoming increasingly prevalent. High-resolution mass spectrometry (HRMS)-based metabolomics stands as a cutting-edge and widely embraced technique in the realm of food component analysis and detection. It boasts the capability to identify character metabolites at exceedingly low abundances, which remain undetectable by conventional platforms. It can also enable real-time monitoring of the flux of targeted compounds in metabolic synthesis and decomposition. With the emergence of artificial intelligence and machine learning, it has become more convenient to process the vast data sets of metabolomics and identify biomarkers. The review summarizes the latest applications of HRMS-based metabolomics platforms in traditional foods, novel foods, and pharmaceutical-food homologous matrices. It compares the suitability of HRMS to nuclear magnetic resonance (NMR) in metabolomics across three dimensions and discusses the principles and application scenarios of various mass spectrometry technologies.
Collapse
Affiliation(s)
- Wenqi Shang
- Yibin Academy of Southwest University, Yibin 644000, China
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guozheng Wei
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Haibo Li
- Guizhou Fanjingshan Forest Ecosystem National Observation and Research Station,Guizhou 554400, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- Yibin Academy of Southwest University, Yibin 644000, China
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Zheng K, Guo L, Cao Y, Yin Y, Gao H, Zhang X, Jiang J, Li J, Huang X, Li K, He S. High-concentrate diet decreases lamb fatty acid contents by regulating bile acid composition. Food Chem X 2024; 24:101871. [PMID: 39974716 PMCID: PMC11838137 DOI: 10.1016/j.fochx.2024.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 02/21/2025] Open
Abstract
Feeding sheep with high-concentrate diet (HCD) to shorten production cycle is a well-developed feeding strategy to increase lamb production. Here, metabolomics were performed to explore the mechanism that HCD changes lamb nutrition composition. Differential metabolites were enriched in primary bile acid biosynthesis. Significantly higher content of bile acids including taurodeoxycholic acid sodium salt (TDCA), taurochenodeoxycholic acid sodium salt (TCDCA) and taurocholic acid (TCA) was observed in lamb of HCD, while the content of lithocholic acid (LCA), cholic acid (CA), chenodeoxycholic acid (CDCA) and Chenodeoxycholic acid-3-beta-D-glucuronide (CDCA-3Gln) were higher in the controls. Furthermore, a significantly decreased content of fatty acids was observed in lamb of HCD group. Finally, primary skeletal cells treated with CA or TCA showed a significant decrease in contents of fatty acids, while TCA showed a stronger effect in decreasing fatty acid contents. Collectively, we suggest that HCD decreases lamb fatty acid contents by regulating bile acid composition.
Collapse
Affiliation(s)
- Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liangyong Guo
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Yang Cao
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China
| | - Hui Gao
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou 310000, China
| | - Xiaowei Zhang
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou 310000, China
| | - Junfang Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinbing Li
- Shangyu District Animal Husbandry and Veterinary Technology Promotion Center, Shaoxing 312300, China
| | - Xin Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kui Li
- Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station of Zhejiang Province, Hangzhou 310000, China
| | - Sangang He
- Institute of Animal Husbandry and Veterinary, Zhejiang, Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Wang R, Wang X, Xiong Y, Cao J, Nussio LG, Ni K, Lin Y, Wang X, Yang F. Dietary Paper Mulberry Silage Supplementation Improves the Growth Performance, Carcass Characteristics, and Meat Quality of Yangzhou Goose. Animals (Basel) 2024; 14:359. [PMID: 38338002 PMCID: PMC10854908 DOI: 10.3390/ani14030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
There have been few investigations into the health benefits and meat quality of supplementing Yangzhou geese with paper mulberry silage. One hundred and twenty 28-day-old Yangzhou geese were selected for the experiment and randomly divided into two groups: a control group (CON) and a paper mulberry silage group (PM), with six replicates in each group. The experiment lasted for a total of 6 weeks. The experiment found that compared with CON, PM had a promoting effect on the average daily weight gain of Yangzhou geese (p = 0.056). Sensory and nutritional analysis of breast muscles revealed a decrease in a* value (p < 0.05) and an increase in protein content (p < 0.05) following PM treatment. Through untargeted metabolomics analysis of breast muscle samples, it was found that 11 different metabolites, including guanidinoacetic acid and other substances, had a positive effect on amino acid metabolism and lipid antioxidant pathways of PM treatment. Overall, the strategy of feeding Yangzhou geese with paper mulberry silage is feasible, which can improve the sensory quality and nutritional value of goose meat. The experiment provides basic data for the application form of goose breeding, so exploring the impact of substances within paper mulberry on goose meat should be focused on in the future.
Collapse
Affiliation(s)
- Ruhui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Yi Xiong
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Jingwen Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Luiz Gustavo Nussio
- Department of Animal Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba 13418-900, Brazil;
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Yanli Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Xuekai Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
| | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (R.W.); (X.W.); (J.C.)
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Xu L, He J, Duan M, Chang Y, Gu T, Tian Y, Cai Z, Jiang C, Zeng T, Lu L. Effects of lactic acid bacteria-derived fermented feed on the taste and quality of duck meat. Food Res Int 2023; 174:113679. [PMID: 37981371 DOI: 10.1016/j.foodres.2023.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
The present study aimed to examine the impact of lactic acid bacteria- fermented feed (FF) on the taste and quality of duck meat, in addition to elucidating the potential metabolomic mechanism at play. The findings revealed that ducks fed with FF exhibited elevated pH levels and reduced cooking loss in their meat when compared to the control group. In addition, the sensory evaluation and e-tongue analysis revealed that the tenderness, juiciness, umami, richness, saltiness, and sweetness of duck meat were all enhanced by feeding FF. Moreover, an examination of the metabolome using 1H nuclear magnetic resonance (1H NMR) identified the principal differential metabolites that exhibited a correlation with taste, which included 2-aminoadipate, glucose, glycine, N-acetylcysteine, niacinamide, proline, and threonine. Furthermore, the differential metabolites that exhibited the greatest enrichment in duck meat could be primarily traced to glutathione metabolism, glycine, serine and threonine metabolism, taurine and hypotaurine metabolism. The potential factors contributing to the effect of FF and basic commercial duck feed (CF) were found to be primarily regulated via the aforementioned metabolic pathways. The study, therefore, offers a viable approach for enhancing the taste and quality of duck meat.
Collapse
Affiliation(s)
- Ligen Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China; Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun He
- Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Mingcai Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, China
| | - Yuguang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tiantian Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunqing Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
5
|
Chen X, Cao J, Chang C, Geng A, Wang H, Chu Q, Yan Z, Zhang X, Zhang Y, Liu H, Zhang J. Effects of Age on Compounds, Metabolites and Meat Quality in Beijing-You Chicken Breast Meat. Animals (Basel) 2023; 13:3419. [PMID: 37958174 PMCID: PMC10649441 DOI: 10.3390/ani13213419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The physical properties, free amino acids, and metabolites of Beijing-You chicken (BYC) breast meat aged 90, 120, and 150 days were analyzed to investigate the flavor changes with age. The shear force and intramuscular fat increased from 90 to 120 days significantly. The contents of total free amino acids and essential amino acids decreased from 90 to 120 days significantly. No significant differences were detected between 120 and 150 days. The contents of sweet amino acids, bitter amino acids, and umami amino acids showed no significant differences between different ages. In addition, GC-MS and LC-MS were integrated for metabolite detection in breast meat. A total of 128, 142, and 88 differential metabolites were identified in the comparison groups of 120 d vs. 90 d, 150 d vs. 90 d, and 150 d vs. 120 d. Amino acids and lipids were the main differential metabolites. The pathway analysis showed that arginine biosynthesis, histidine metabolism, purine metabolism, and cysteine and methionine metabolism were the main pathways involved in flavor formation during BYC development. It was also found that the metabolites associated with flavor, such as methionine, cysteine, glucose, anserine, arachidonic acid, and glycerol 1-phosphate, were significantly affected by age.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.C.); (J.C.); (C.C.); (A.G.); (H.W.); (Q.C.); (Z.Y.); (X.Z.); (Y.Z.)
| | - Jian Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (X.C.); (J.C.); (C.C.); (A.G.); (H.W.); (Q.C.); (Z.Y.); (X.Z.); (Y.Z.)
| |
Collapse
|
6
|
Xu X, Liu H, Wang X, Zhang Q, Guo T, Hu L, Xu S. Evaluation of the Longissimus Thoracis et Lumborum Muscle Quality of Chaka and Tibetan Sheep and the Analysis of Possible Mechanisms Regulating Meat Quality. Animals (Basel) 2023; 13:2494. [PMID: 37570302 PMCID: PMC10417249 DOI: 10.3390/ani13152494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to comprehensively evaluate the characteristics in the longissimus thoracis et lumborum (LTL) muscle of Chaka (CK) sheep and Tibetan (TB) sheep, and transcriptomics-metabolomics association analysis was used to find the possible genes, differential metabolites, and significant differential metabolic pathways that lead to meat quality differences. Based on the researched results, the nutritional quality of meat, including the contents of ether extract (11.95% vs. 10.56%), unsaturated fatty acid (51.20% vs. 47.69%), and polyunsaturated fatty acid (5.71% vs. 3.97%), were better in TB sheep than in CK sheep, while the CK sheep has better muscle fiber characteristics, such as the total number (62 vs. 45) and muscle fiber density (1426.54 mm2 vs. 1158.77 mm2) and flavor. Omics research has shown that the key differential metabolites and metabolic pathways were dominated by amino acid metabolism, particularly the glutathione metabolism, taurine and hypotaurine metabolism, and lipid metabolism-related pathways, such as glycerophospholipid metabolism and the sphingolipid signaling pathway. The intermediate metabolite sn-Glycerol 3-phosphoethanolamine played a key role in determining sheep meat quality, which was regulated by GPAT2, PLPP2, AGPAT1, PNPLA2, and GPAT4 and correlated with meat color, texture, and flavor. Overall, these results will provide effective information and more evidence to support further exploration of valuable biomarkers of meat quality.
Collapse
Affiliation(s)
- Xianli Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| | - Xungang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| | - Qian Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| | - Tongqing Guo
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (X.X.); (T.G.)
| |
Collapse
|
7
|
Zhang S, Li Q, Wen S, Sun L, Chen R, Zhang Z, Cao J, Lai Z, Li Z, Lai X, Wu P, Sun S, Chen Z. Metabolomics reveals the effects of different storage times on the acidity quality and metabolites of large-leaf black tea. Food Chem 2023; 426:136601. [PMID: 37329793 DOI: 10.1016/j.foodchem.2023.136601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Most aged tea has superior sensory qualities and good health benefits. The content of organic acids determines of the quality and biological effects of aged tea, but there are no reports of the effect of storage on the composition and relative proportion of acidic compounds in black tea. This study analyzed and compared the sourness and metabolite profile of black tea produced in 2015, 2017, 2019 and 2021 using pH determination and UPLC-MS/MS. In total, 28 acidic substances were detected, with 17 organic acids predominating. The pH of black tea decreased significantly during storage from pH 4.64 to pH 4.25 with significantly increased in l-ascorbic acid, salicylic acid, benzoic acid and 4-hydroxybenzoic acid. The metabolic pathways ascorbate biosynthesis, salicylate degradation, toluene degradation, etc. were mainly enriched. These findings provide a theoretical basis to regulate the acidity of aged black tea.
Collapse
Affiliation(s)
- Suwan Zhang
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ping Wu
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhongzheng Chen
- College of Food Science/Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Ma Y, Han L, Raza SHA, Gui L, Zhang X, Hou S, Sun S, Yuan Z, Wang Z, Yang B, Hassan MM, Alghsham RS, Al Abdulmonem W, Alkhalil SS. Exploring the effects of palm kernel meal feeding on the meat quality and rumen microorganisms of Qinghai Tibetan sheep. Food Sci Nutr 2023; 11:3516-3534. [PMID: 37324863 PMCID: PMC10261763 DOI: 10.1002/fsn3.3340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 10/03/2023] Open
Abstract
Palm kernel meal (PKM) has been shown to be a high-quality protein source in ruminant feeds. This study focused on the effects of feed, supplemented with different amounts of PKM (ZL-0 as blank group, and ZL-15, ZL-18, and ZL-21 as treatment group), on the quality and flavor profile of Tibetan sheep meat. Furthermore, the deposition of beneficial metabolites in Tibetan sheep and the composition of rumen microorganisms on underlying regulatory mechanisms of meat quality were studied based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry as well as 16S rDNA sequencing. The results of the study showed that Tibetan sheep in the ZL-18 group exhibited superior eating quality and flavor profile while depositing more protein and fat relative to the other groups. The ZL-18 group also changed significantly in terms of the concentration and metabolic pathways of meat metabolites, as revealed by metabolomics. Metabolomics and correlation analyses finally showed that PKM feed mainly affected carbohydrate metabolism in muscle, which in turn affects meat pH, tenderness, and flavor. In addition, 18% of PKM increased the abundance of Christensenellaceae R-7 group, Ruminococcaceae UCG-013, Lachnospiraceae UCG-002, and Family XIII AD3011 group in the rumen but decreased the abundance of Prevotella 1; the above bacteria groups regulate meat quality by regulating rumen metabolites (succinic acid, DL-glutamic acid, etc.). Overall, the addition of PKM may improve the quality and flavor of the meat by affecting muscle metabolism and microorganisms in the rumen.
Collapse
Affiliation(s)
- Ying Ma
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Lijuan Han
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation‐Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry ProductsSouth China Agricultural UniversityGuangzhou510642China
- College of Animal Science and Technology, Northwest A&F UniversityYangling712100ShaanxiPeople's Republic of China
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Xue Zhang
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Shengzhen Hou
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Shengnan Sun
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Zhenzhen Yuan
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Zhiyou Wang
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Baochun Yang
- College of Agriculture and Animal Husbandry, Qinghai University XiningXining810016People's Republic of China
| | - Mohamed M. Hassan
- Department of BiologyCollege of Science, Taif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Ruqaih S. Alghsham
- Department of PathologyCollege of Medicine, Qassim UniversityQassimSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of PathologyCollege of Medicine, Qassim UniversityP.O. Box 6655Buraidah51452Kingdom of Saudi Arabia
| | - Samia S. Alkhalil
- Department of Clinical Laboratory SciencesCollege of Applied Medical Sciences, Shaqra UniversityAlquwayiyahRiyadhSaudi Arabia
| |
Collapse
|
9
|
Feed Supplementation Detection during the Last Productive Stage of the Acorn-Fed Iberian Pig through a Faecal Volatilome Analysis. Animals (Basel) 2023; 13:ani13020226. [PMID: 36670765 PMCID: PMC9854645 DOI: 10.3390/ani13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
The acorn-fed Iberian pig is known worldwide due to the quality of the resulting products commercialized after a natural and free grazing period of fattening in the dehesa agroforestry ecosystem. The quality regulation of the pig breed reserves "acorn" denomination for only those products obtained from animals exclusively fed grazing acorns and other natural resources; however, sometimes, feed supplementation of the pig's diet is fraudulently employed to reach an earlier slaughtering weight and to increase pig stocking rate, a strategy called postre (meaning "feed supplement"). In this sense, although many studies focused on Iberian pig diet have been published, the field detection of feed use for acorn-fed pig during the last finishing stage foraging in the dehesa, a practice which clashes with the official regulation, has not been explored yet. The present study employs a volatilome analysis (gas chromatography coupled to ion mobility spectrometry) of a non-invasive biological sample (faeces) to discriminate the grazing diet of only natural resources, that acorn-fed Iberian pigs are supposed to have, from those pigs that are also supplemented with feed. The results obtained show the suitability of the methodology used and the usefulness of the information obtained from faeces samples to discriminate and detect the fraudulent use of feed for acorn-fed Iberian pig fattening: a classification success ranging between 86.4% and 100% was obtained for the two chemometric approaches evaluated. These, together with the results of discriminant models, are discussed, in addition to the importance that the methodology optimized implies for the Iberian pig sector and market, which is also introduced. This methodology could be adapted to control organic farming animals or other upstanding livestock production systems which are supposed to be fully dependent on a natural grazing diet.
Collapse
|
10
|
bi Y, Shan Q, Luo R, Bai S, ji C, Wang Y, Gao S, Guo J, Hu X, Dong F. Dynamic changes in water mobility and taste substances of cooked Tan lamb meat after chilled storage. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Zhang X, Liu C, Kong Y, Li F, Yue X. Effects of intramuscular fat on meat quality and its regulation mechanism in Tan sheep. Front Nutr 2022; 9:908355. [PMID: 35967801 PMCID: PMC9366309 DOI: 10.3389/fnut.2022.908355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Intramuscular fat (IMF) contributes importantly to various aspects of meat quality, and genetic regulation is an effective pathway to improve IMF deposition in sheep. In this study, we systematically explored the effect of IMF content on meat quality in Tan sheep and investigated the regulatory mechanism of flavor precursors metabolism and IMF deposition. The results revealed that IMF significantly affected meat color, total muscle fiber numbers, and muscle fiber types in Tan sheep. Widely-targeted metabolomic analysis showed that amino acids were the main differential flavor precursors between lambs with different IMF content. Importantly, the comparison of fatty acid profiles revealed that saturated fatty acids and monounsaturated fatty acids are beneficial for IMF deposition. Furthermore, integrated analysis between metabolome and transcriptome indicated that MME is a key gene resulting in the reduction of amino acids in lambs with high IMF content; and the joint analysis between fatty acid profiles and transcript profiles showed that ADIPOQ, FABP4, PLIN1, PPARGC1A, SLC2A1 accelerated IMF deposition through positive regulation of saturated fatty acids and monounsaturated fatty acids metabolism. These results revealed key changes in meat quality affected by IMF content and the corresponding genetic mechanism, which may provide a new insight for understanding the IMF differential deposition and for improving meat quality in Tan sheep.
Collapse
Affiliation(s)
- Xueying Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chongyang Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yuanyuan Kong
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fadi Li
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiangpeng Yue
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Bi YZ, Luo YL, Luo RM, Ji C, Gao S, Bai S, Wang YR, Dong FJ, Hu XL, Guo JJ. High freezing rate improves flavor fidelity effect of hand grab mutton after short-term frozen storage. Front Nutr 2022; 9:959824. [PMID: 35958244 PMCID: PMC9361012 DOI: 10.3389/fnut.2022.959824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
Taking the eutectic point as the final freezing temperature, the differences of flavor substances of in hand grab mutton (HGM) frozen at three rates of 0. 26 cm/h (−18°C), 0.56 cm/h (−40°C) and 2.00 cm/h (−80°C) were determined and analyzed. The results showed that the flavor of HGM decreased significantly after freezing. With the increase of freezing rate, the contents of aldehydes, alcohols, ketones, acids, esters, others, free amino acids and 5′-nucleotides were higher, and the content of specific substances was also generally increased. All samples from unfrozen and frozen HGM could be divided into four groups using an electronic nose based on different flavor characteristics. Seven common key aroma components were determined by relative odor activity value (ROAV), including hexanal, heptanal, octanal, nonanal, (E)-oct-2-enal, (2E,4E)-deca-2,4-dienal and oct-1-en-3-ol. The higher the freezing rate, the greater the ROAVs. Taste activity values calculated by all taste substances were far <1, and the direct contribution of the substances to the taste of HGM was not significant. The equivalent umami concentration of HGM frozen at −80°C was the highest. These findings indicated that higher freezing rate was more conducive to the retention of flavor substances in HGM, and the flavor fidelity effect of freezing at −80°C was particularly remarkable.
Collapse
Affiliation(s)
- Yong-Zhao Bi
- School of Food & Wine, Ningxia University, Yinchuan, China.,National R & D Center for Mutton Processing, Yinchuan, China
| | - Yu-Long Luo
- School of Food & Wine, Ningxia University, Yinchuan, China.,National R & D Center for Mutton Processing, Yinchuan, China
| | - Rui-Ming Luo
- School of Food & Wine, Ningxia University, Yinchuan, China.,National R & D Center for Mutton Processing, Yinchuan, China
| | - Chen Ji
- National R & D Center for Mutton Processing, Yinchuan, China.,School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuang Gao
- National R & D Center for Mutton Processing, Yinchuan, China.,School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuang Bai
- National R & D Center for Mutton Processing, Yinchuan, China.,School of Agriculture, Ningxia University, Yinchuan, China
| | - Yong-Rui Wang
- National R & D Center for Mutton Processing, Yinchuan, China.,School of Agriculture, Ningxia University, Yinchuan, China
| | - Fu-Jia Dong
- School of Food & Wine, Ningxia University, Yinchuan, China.,National R & D Center for Mutton Processing, Yinchuan, China
| | - Xiao-Lei Hu
- School of Food & Wine, Ningxia University, Yinchuan, China.,National R & D Center for Mutton Processing, Yinchuan, China
| | - Jia-Jun Guo
- School of Food & Wine, Ningxia University, Yinchuan, China
| |
Collapse
|