1
|
Tong Y, Wang Z, Tong Q, Liu Y. Effects of Lactic Acid Bacteria Fermentation and In Vitro Simulated Digestion on the Bioactivities of Purple Sweet Potato Juice. Foods 2024; 13:4094. [PMID: 39767036 PMCID: PMC11675301 DOI: 10.3390/foods13244094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The effects of lactic acid bacteria fermentation and in vitro simulated digestion on phenolic bioavailability, phenolic bioavailability, and antioxidant activity of purple sweet potato juice (PSPJ) were investigated. The PSPJ was fermented by Lactobacillus rhamnosus and Streptococcus thermophilus. The viable bacterial count, phenolic components, antioxidant activity, phenolic bioaccessibility, and phenolic bioavailability of PSPJ were analyzed during the simulated digestion process in vitro. The data displayed that lactic acid bacteria fermentation increased total α-glucosidase inhibition, total flavonoid content, and ratephenolic content. The antioxidant activities were improved after in vitro simulated digestion due to the biotransformation of phenolic substances by lactic acid bacteria fermentation. The bioaccessibility and bioavailability of phenols in PSPJ were improved with fermentation of lactic acid bacteria. Furthermore, the viable bacteria count of the two strains was significantly improved (>7 log CFU/mL) after simulated digestion in vitro.
Collapse
Affiliation(s)
- Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.W.); (Q.T.); (Y.L.)
- Synergetic Innovation Center, Jiangnan University, Wuxi 214122, China
| | - Zeqing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.W.); (Q.T.); (Y.L.)
- Synergetic Innovation Center, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.W.); (Q.T.); (Y.L.)
- Synergetic Innovation Center, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yutong Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.W.); (Q.T.); (Y.L.)
- Synergetic Innovation Center, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Gad AI, Orabi MM, Abou-Taleb KA, Abdelghani DY, Amin SA. In vitro digestive system simulation and anticancer activity of soymilk fermented by probiotics and synbiotics immobilised on agro-industrial residues. Sci Rep 2024; 14:18518. [PMID: 39122808 PMCID: PMC11316043 DOI: 10.1038/s41598-024-68086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, a variety of probiotic strains, including Lactiplantibacillus plantarum, Lacticaseibacillus casei, Lactobacillus acidophilus, Streptococcus thermophilus, Bifidobacterium longum, Limosilactobacillus reuteri, Lactobacillus delbrueckii subsp. bulgaricus, Lacticaseibacillus rhamnosus, and Bifidobacterium bifidum, were utilized for soymilk fermentation both as free cells and as synbiotics on agro-industrial residuals such as okara, whey protein, banana peels, apple pomace, sugarcane bagasse, orange peels, and lemon peels. Among these, Lacticaseibacillus rhamnosus emerged as the most significant strain for soymilk fermentation, exhibiting a viability of 10.47 log cfu/mL, a pH of 4.41, total acidity of 1.12%, and organic acid contents (lactic and acetic acid) of 11.20 and 7.50 g/L, respectively. As a synbiotic Lacticaseibacillus rhamnosus immobilised on okara, showed even more impressive results, with a viability of 12.98 log cfu/mL, a pH of 4.31, total acidity of 1.27%, and organic acid contents of 13.90 and 9.30 g/L, respectively. Over a 12-h fermentation period, cell viability values increased by 10.47-fold in free cells and 11.19-fold in synbiotics. Synbiotic supplementation of fermented soymilk proved more beneficial than free cells in terms of viability, acidity, and organic acid content. Furthermore, when synbiotic fermented soymilk was freeze-dried to simulate the digestive system in vitro, synbiotics and freeze-dried cells demonstrated superior gastrointestinal tract survival compared to free cells. Both the probiotic bacteria and the synbiotics exhibited cytotoxicity against colon and liver cancer cell lines, with half-maximal inhibitory concentrations ranging from 41.96 to 61.52 μL/well.
Collapse
Affiliation(s)
- Abdallah I Gad
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, P.O. Box 68, Cairo, 11241, Egypt
| | - Mona M Orabi
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, P.O. Box 68, Cairo, 11241, Egypt
| | - Khadiga A Abou-Taleb
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, P.O. Box 68, Cairo, 11241, Egypt.
| | - Dina Y Abdelghani
- Department of Special Food and Nutrition, Agriculture Research Center, Food Technology Research Institute, Giza, Egypt.
| | - Shimaa A Amin
- Agricultural Microbiology Department, Faculty of Agriculture, Ain Shams University, Hadayek Shobra, P.O. Box 68, Cairo, 11241, Egypt
| |
Collapse
|
3
|
Zhang S, Li Q, Huang Z, Wang G, Zheng X, Liu J. Exploring community succession and metabolic changes in corn gluten meal-bran mixed wastes during fermentation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121684. [PMID: 38981273 DOI: 10.1016/j.jenvman.2024.121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Addressing the challenge of sustainable agricultural processing waste management is crucial. Protein sources are essential for livestock farming, and one viable solution is the microbial fermentation of agricultural by-products. In this study, the microorganisms utilized for fermentation were Pichia fermentans PFZS and Limmosilactobacillus fermentum LFZS. The results demonstrated that the fermented corn gluten meal-bran mixture (FCBM) effectively degraded high molecular weight proteins, resulting in increases of approximately 23.3%, 367.6%, and 159.3% in crude protein (CP), trichloroacetic acid-soluble protein (TCA-SP), and free amino acid (FAA), respectively. Additionally, there was a significant enhancement in the content of beneficial metabolites, including total phenols, carotenoids, and microorganisms. FCBM also effectively reduced anti-nutritional factors while boosting antioxidant and anti-inflammatory substances, such as dipeptides and tripeptides. The fermentation process was marked by an increase in beneficial endophytes, which was closely correlated with the enhancement of beneficial metabolites. Overall, FCBM provides a theoretical basis for substituting traditional protein resources in animal husbandry.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qining Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhaoxin Huang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin, 130118, China.
| |
Collapse
|
4
|
Nugroho ADW, van Schalkwijk S, Cebeci S, Jacobs S, Wesselink W, Staring G, Goerdayal S, Prodan A, Stijnman A, Teuling E, Broersen K, Bachmann H. Biopurification using non-growing microorganisms to improve plant protein ingredients. NPJ Sci Food 2024; 8:48. [PMID: 39085288 PMCID: PMC11291906 DOI: 10.1038/s41538-024-00290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/02/2024] [Indexed: 08/02/2024] Open
Abstract
Securing a sustainable global food supply for a growing population requires a shift toward a more plant-based diet. The application of plant-based proteins is therefore increasing, but unpleasant off-flavors complicate their use. Here, we screened 97 microorganisms for their potential to remove off-flavors in a process with limiting amounts of fermentable sugar. This allowed the production of a more neutral-tasting, purified food ingredient while limiting microbial growth and the production of typical fermentation end products. We demonstrate that various lactic acid bacteria (LAB) and yeasts remove "green" aldehydes and ketones. This conversion can be carried out in less than one hour in almond, pea, potato, and oat proteins. Heterofermentative LAB was best at aldehyde and ketone neutralization with minimum de novo formation of microbial volatiles such as ethylacetate (sweet, fruity) or alpha-diketones (butter- and cheese-like). While sensory properties were improved, changes in protein solubility, emulsification, foaming, and in vitro digestibility were limited.
Collapse
Affiliation(s)
- Avis Dwi Wahyu Nugroho
- Systems Biology Lab, A-LIFE, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- CJ Research Centre Europe, Wageningen, The Netherlands
| | | | - Sabri Cebeci
- Microbiology department, NIZO food research B.V, Ede, The Netherlands
| | - Simon Jacobs
- Food department, NIZO food research B.V, Ede, The Netherlands
| | - Wilma Wesselink
- Food department, NIZO food research B.V, Ede, The Netherlands
| | - Guido Staring
- Food department, NIZO food research B.V, Ede, The Netherlands
| | | | - Andrei Prodan
- Microbiology department, NIZO food research B.V, Ede, The Netherlands
- Single Cell Discoveries, Utrecht, The Netherlands
| | - Ann Stijnman
- Food department, NIZO food research B.V, Ede, The Netherlands
| | - Emma Teuling
- Food department, NIZO food research B.V, Ede, The Netherlands
| | - Kerensa Broersen
- Food department, NIZO food research B.V, Ede, The Netherlands
- Applied Stem Cell Technologies, University of Twente, Technical Medical Centre, Enschede, The Netherlands
| | - Herwig Bachmann
- Systems Biology Lab, A-LIFE, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Microbiology department, NIZO food research B.V, Ede, The Netherlands.
| |
Collapse
|
5
|
Lv W, Chen W, Tan S, Ba G, Sun C, Feng F, Sun Q, Xu D. Effects of removing phytic acid on the bioaccessibility of Ca/Fe/Zn and protein digestion in soymilk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5262-5273. [PMID: 38329463 DOI: 10.1002/jsfa.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Soymilk is a high-quality source of protein and minerals, such as calcium (Ca), iron (Fe), and zinc (Zn). However, phytic acid in soymilk restricts mineral and protein availability. We here investigated the effects of removing phytic acid on the physicochemical properties, mineral (Ca, Fe, and Zn) bioaccessibility, and protein digestibility of soymilk. RESULTS Physicochemical property analysis revealed that the removal of phytic acid reduced protein accumulation at the gastric stage, thereby facilitating soymilk matrix digestion. The removal of phytic acid significantly increased Zn bioaccessibility by 18.19% in low-protein soymilk and Ca and Fe bioaccessibility by 31.20% and 30.03%, respectively, in high-protein soymilk. CONCLUSION Removing phytic acid was beneficial for the hydrolysis of high-molecular-weight proteins and increased the soluble protein content in soymilk, which was conducive to protein digestion. This study offers a feasible guide for developing plant-based milk with high nutrient bioaccessibility. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenwen Lv
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Shengjie Tan
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Genna Ba
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Chao Sun
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Fanqing Feng
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Qian Sun
- Liquid Milk Department, Inner Mongolia Yili Industrial Group Co., Ltd, Beijing, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
6
|
Li S, Hu M, Wen W, Zhang P, Yu W, Fan B, Wang F. Effect of different strains on quality characteristics of soy yogurt: Physicochemical, nutritional, safety features, sensory, and formation mechanism. Food Chem X 2024; 22:101359. [PMID: 38623511 PMCID: PMC11016580 DOI: 10.1016/j.fochx.2024.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
The purpose of the study was to explore effect of four different strains on quality characteristics of soy yogurt. The results showed that four strains were all related to the genus Lactobacillus and N1 was Lacticaseibacillus rhamnosus, N2 was Lacticaseibacillus paracasei, N3 was Lacticaseibacillus plantarum, and N4 was Lacticaseibacillus acidophilus. The result analysis of biochemical, sensory, nutritional, functional and safety properties of fermentation process and end products showed that the soy yogurt fermented with L. rhamnosus N1 had the highest isoflavone content and the lowest phytic acid content; the soy yogurt fermented with L. paracasei N2 had the highest content of free amino acids and oligosaccharides, the lowest content of trypsin inhibitors; the soy yogurt fermented with L. plantarum N3 had the lowest oil content; the soy yogurt fermented with L. acidophilus N4 had optimal functional properties. In summary, N4 was suitable as a fermentation strain for soymilk.
Collapse
Affiliation(s)
- Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Pengfei Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Wenhua Yu
- Shandong Wonderful Biotech Co., Ltd, Dongying 257500, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Jiang W, Yang X, Li L. Flavor of extruded meat analogs: A review on composition, influencing factors, and analytical techniques. Curr Res Food Sci 2024; 8:100747. [PMID: 38708099 PMCID: PMC11066600 DOI: 10.1016/j.crfs.2024.100747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024] Open
Abstract
Meat analogs are anticipated to alleviate environmental and animal welfare concerns as the demand for meat rises. High moisture extrusion is commonly employed to produce meat analogs, and its flavor could influence consumers' choice. To improve the development and market demand of extruded meat analogs, flavor precursors and natural spices have been used in high moisture extrusion process to directly improve the flavor profile of extruded meat analogs. Although there have been many studies on the flavor of high moisture extruded meat analogs, flavor composition and influencing factors have not been summarized. Thus, this review systematically provides the main pleasant and unpleasant flavor-active substances with 79 compounds, as well as descriptive the influence of flavor-active compounds, chemical reactions (such as lipid oxidation and the Maillard reaction), and fiber structure formation (based on extrusion process, extrusion parameters, and raw materials) on flavor of extruded meat analogs. Flavor evaluation of extruded meat analogs will toward multiple assessment methods to fully and directly characterize the flavor of extruded meat analogs, especially machine learning techniques may help to predict and regulate the flavor characteristics of extruded meat analogs.
Collapse
Affiliation(s)
- Wanrong Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoyu Yang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
8
|
Fan L, Duan Y, Huang Z, Zhao D, Zhao L, He W, Zhang X, Li M, Lin Y, Chen Y. Storage stability and shelf-life of soymilk obtained via repeated boiling and filtering: A predictive model. Food Sci Nutr 2024; 12:1973-1982. [PMID: 38455188 PMCID: PMC10916630 DOI: 10.1002/fsn3.3893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 11/25/2023] [Indexed: 03/09/2024] Open
Abstract
This study investigated the effects of different processing methods on the quality and nutrition of soymilk, as well as the changes in storage stability (centrifugal sedimentation rate (CSR), viscosity, and particle size) and shelf-life of soymilk at different storage temperatures (25°C, 35°C, 45°C, and 55°C). Results showed that soymilk processed via the repeated boiling-to-filtering method (RBFM) exhibited the highest protein content (3.89 g/100 g), carbohydrate content (1.27 g/100 g), and stability coefficient (0.950). The CSR and particle size of RBFM soymilk increased gradually during storage at different temperatures, while the viscosity and sensory score decreased. The correlation between the CSR and the sensory score of RBFM soymilk was the highest (R 2 = .9868). The CSR was selected as the key indicator to predict the shelf-life of RBFM soymilk. The average residual variation in RBFM soymilk shelf-life based on the predictive model was 10.78%, indicating the strong accuracy of the model for predicting the shelf-life of RBFM soymilk stored at temperatures ranging from 25-45°C. This study provides a theoretical basis and technological support for the development, transportation, and storage of soymilk and soymilk beverage products.
Collapse
Affiliation(s)
- Liu Fan
- College of Food and Chemical Engineering, Hunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangHunanChina
- Kangdeli Intelligent Technology (Zhejiang) CO., LTDJiaxingChina
| | - Yitong Duan
- College of Food and Chemical Engineering, Hunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangHunanChina
| | - Zhanrui Huang
- College of Food and Chemical Engineering, Hunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangHunanChina
| | - Dan Zhao
- College of Food and Chemical Engineering, Hunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangHunanChina
| | - Liangzhong Zhao
- College of Food and Chemical Engineering, Hunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangHunanChina
| | - Wanying He
- College of Food and Chemical Engineering, Hunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangHunanChina
| | - Xuejiao Zhang
- College of Food and Chemical Engineering, Hunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangHunanChina
| | - Ming Li
- College of Food and Chemical Engineering, Hunan Provincial Key Laboratory of Soybean Products Processing and Safety ControlShaoyang UniversityShaoyangHunanChina
| | - Yingyi Lin
- Kangdeli Intelligent Technology (Zhejiang) CO., LTDJiaxingChina
| | - Yu Chen
- Hunan Genda Fiber Tech Mechanical CO., LTDChangshaChina
| |
Collapse
|
9
|
Li Y, Yang H, Yu B, Wang J, Zhu M, Liu J, Zheng Z, Qian Z, Wei L, Lv H, Zhang L, Xu Y. Fermentation improves flavors, bioactive substances, and antioxidant capacity of Bian-Que Triple-Bean Soup by lactic acid bacteria. Front Microbiol 2023; 14:1152654. [PMID: 37533834 PMCID: PMC10390724 DOI: 10.3389/fmicb.2023.1152654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
The ancient traditional Chinese drink Bian-Que Triple-Bean Soup made by fermentation (FTBS) of Lactococcus lactis subsp. lactis YM313 and Lacticaseibacillus casei YQ336 is a potential functional drink. The effect of fermentation on the flavor and biological activity of FTBS was evaluated by analyzing its chemical composition. Five volatile flavors were detected in modified FTBS. Fermentation decreased the proportion of nonanal (beany flavor substances) but significantly increased the total flavone contents, phenol contents and many bioactive small molecule substances in FTBS. The changes of these substances led to the significant improvement of FTBS sensory evaluation, antioxidant activity and prebiotic potential. This research provides a theoretical basis for the application of Lactic acid bacteria (LAB) in the fermentation of edible plant-based foods and transformation from traditional food to industrial production.
Collapse
Affiliation(s)
- Yiming Li
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Huixin Yang
- Comparative Molecular Biosciences Graduate Program, University of Minnesota – Twin Cities, St. Paul, MN, United States
| | - Bin Yu
- Department of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Jiayao Wang
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Manli Zhu
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Jiao Liu
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Zhenjie Zheng
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Zhenning Qian
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Linya Wei
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Huanyong Lv
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Lili Zhang
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| | - Yunhe Xu
- College of Food and Health, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|