1
|
Lv X, Wu W, Liu S, Ding L, Ren A, An L, Bai F, Li J, Li X, Yi S. Dynamic changes in the gel properties, microbial community, and volatile flavor profile of Spanish mackerel ( Scomberomorus niphonius) sausages inoculated with Lactiplantibacillus plantarum CY1-2. Food Funct 2024; 15:11060-11071. [PMID: 39422191 DOI: 10.1039/d4fo03841j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Spanish mackerel is an important economic fish species in China, but corruption undermines its overall economic value. Fermentation serves as a crucial technique for preserving perishable fish in developing countries. This study aimed to examine the dynamic changes in the gel properties, physicochemical properties, microbial diversity, and volatile flavor compounds (VFCs) of Spanish mackerel sausages inoculated with Lactiplantibacillus plantarum CY1-2 during fermentation. The correlation between key microorganisms and VFCs was explored using a two-way orthogonal partial least squares analysis. The results showed that the group inoculated with strain CY1-2 exhibited significant improvements compared with the control group after 40 h of fermentation. Specifically, gel strength increased by 207.7%, total free amino acids increased by 37.49%, DPPH and ABTS radical scavenging rates increased by 34.12% and 58.73%, and TVB-N levels decreased by 54.2%, respectively. In addition, using gas chromatography-mass spectrometry, 36 VFCs were detected in fermented sausages, including 9 aldehydes, 9 hydrocarbons, 7 alcohols, 4 acids, 2 ketones, and 5 esters. High-throughput sequencing demonstrated that the bacterial profiles were altered in sausages inoculated with strain CY1-2 during fermentation. Enhydrobacter dominated initially but was quickly replaced by Macrococcus after 8 h of fermentation, while Lactobacillus became the dominant genus after 40 h. Correlation analysis revealed that Lactobacillus and Staphylococcus played important roles in the production of VFCs in the fermented sausages. Notably, Lactobacillus was positively associated with 2-undecanone, pentadecane, and hexanal. This study confirmed that strain CY1-2 inoculation could enable the production of high-quality fermented fish sausages.
Collapse
Affiliation(s)
- Xinran Lv
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Wenyu Wu
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
- Xinjiang Hetian College, Hetian, Xinjiang Uygur Autonomous Region, 848000, China
| | - Shuilin Liu
- Dalian Customs Technology Center, Dalian, Liaoning Province, 116000, China
| | - Lili Ding
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Anqi Ren
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Le An
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Fengling Bai
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
2
|
Yin X, Li J, Zhu L, Zhang H. Advances in the formation mechanism of set-type plant-based yogurt gel: a review. Crit Rev Food Sci Nutr 2024; 64:9412-9431. [PMID: 37203992 DOI: 10.1080/10408398.2023.2212764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-based yogurt has several advantages over traditional yogurt, such as being lactose and cholesterol-free, making it more suitable for individuals with cardiovascular and gastrointestinal diseases. The formation mechanism of the gel in plant-based yogurt needs more attention because it is associated with the gel properties of yogurt. Most plant proteins, except for soybean protein, have poor functional abilities, such as solubility and gelling properties, which limits their application in most food items. This often results in undesirable mechanical quality of plant-based products, particularly plant-based yogurt gels, including grainy texture, high syneresis, and poor consistency. In this review, we summarize the common formation mechanism of plant-based yogurt gel. The main ingredients, including protein and non-protein components, as well as their interactions involved in the gel are discussed to understand their effects on gel formation and properties. The main interventions and their effects on gel properties are highlighted, which have been shown to improve the properties of plant-based yogurt gels effectively. Each type of intervention method may exhibit desirable advantages in different processes. This review provides new opportunities and theoretical guidance for efficiently improving the gel properties of plant-based yogurt for future consumption.
Collapse
Affiliation(s)
- Xinya Yin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinxin Li
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Li C, Cui Q, Li L, Huang H, Chen S, Zhao Y, Wang Y. Formation and improvement mechanism of physical property and volatile flavor of fermented tilapia surimi by newly isolated lactic acid bacteria based on two dimensional correlation networks. Food Chem 2024; 440:138260. [PMID: 38150898 DOI: 10.1016/j.foodchem.2023.138260] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Fermentation is an effective way to improve the gel properties of freshwater fish surimi. In this study, two newly isolated Lactiplantibacillus plantarum H30-2 and Pediococcus acidilactici H30-21 were used to improve the physical properties and volatile flavor of fermented tilapia surimi. L. plantarum H30-2 quickly improved the whiteness, gel strength, hardness, and chewiness within 18 h. Among 172 volatile compounds analyzed by HS-SPME-GC-MS, most pleasant core flavor compounds (OAV ≥ 1) were improved by L. plantarum H30-2. L. plantarum H30-2 could always adapt to the surimi environment while P. acidilactici H30-21 could not. Two dimensional correlation networks showed that Lactiplantibacillus and Lactococcus were responsible for the quality formation in surimi during natural fermentation or with starters, while the quality improvement after L. plantarum H30-2 addition mainly resulted from the increasing Lactiplantibacillus and its higher acetic acid production. L. plantarum H30-2 can be developed as a special starter using for tilapia surimi fermentation.
Collapse
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China.
| | - Qiaoyan Cui
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hui Huang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China
| |
Collapse
|
4
|
Guo L, Wang X, Ren Y, Zhang X, Li Q, Zhang C, Qian JY. Outcomes of structure, function and flavor of pea protein isolate treated by AC, DC and pulsed electric fields. Food Res Int 2024; 176:113817. [PMID: 38163685 DOI: 10.1016/j.foodres.2023.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Based on the standpoint of low carbon footprint processing and less denaturation of plant protein ingredient, the effects of pulsed electric field (PEF), direct current electric field (DCEF), and alternating current electric field (ACEF) treatments on the structure, functional properties and volatile compounds of pea protein isolate were investigated. The results showed that the electric fields (EFs) caused both blueshifts (max. ∼8 cm-1) and redshifts (max. ∼7 cm-1) in the IR spectra and blueshifts (max. ∼5 nm) in the UV spectra. PEF caused an increase of emulsifying activity index and a decrease of emulsion stability index to DCEF and ACEF. A total of 27 volatile compounds were identified and the EFs could cause emerging of new volatiles and disappearing of inherent volatiles potentially to modify the flavor of products. Alterations were significantly observed among the types of EF, but seldomly among the operating parameter levels in the same EF.
Collapse
Affiliation(s)
- Lunan Guo
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Xijing Wang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Yiping Ren
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Xiunan Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Qian Li
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Huayang Xilu 196, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
5
|
Zang J, Pan X, Zhang Y, Tu Y, Xu H, Tang D, Zhang Q, Chen J, Yin Z. Mechanistic insights into gel formation of egg-based yoghurt: The dynamic changes in physicochemical properties, microstructure, and intermolecular interactions during fermentation. Food Res Int 2023; 172:113097. [PMID: 37689869 DOI: 10.1016/j.foodres.2023.113097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
This study aimed to elucidate the mechanism of acid-induced gelation in egg-based yoghurt by investigating the dynamic changes in physicochemical properties, texture, rheology, and microstructure of the gel during fermentation, combined with the role of intermolecular forces in gel formation. Results showed that protein aggregation and cross-linking increased as pH decreased during fermentation. Gel hardness increased with fermentation, eventually reaching 11.36 g, while maintaining low fracturability. Water holding capacity (WHC) decreased from 91.77% to 73.13% during fermentation. Rheological testing demonstrated a significant increase in viscosity and dynamic moduli (G' and G''), consistent with the observation of a more compact microstructure by scanning electron microscopy (SEM) and particle size analysis. Furthermore, dynamic changes of surface hydrophobicity, sulfhydryl content, and intermolecular forces suggested that hydrophobic interactions were likely the main driving force for gel formation, as well as that hydrophobic interactions and disulfide bonds played an important role in the maintenance and construction of the gel network structure. Although ionic bonds and hydrogen bonds also had an effect on the gel formation of egg-based yoghurt, their contributions were not significant. The study provided new insights for the development of novel egg-based fermentation foods and the research of acid-induced protein gels, and also contributed to the deep exploitation and utilization of poultry eggs.
Collapse
Affiliation(s)
- Jianwei Zang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyang Pan
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanyuan Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haixia Xu
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Product Processing, Guangzhou 510610, China
| | - Qingfeng Zhang
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiguang Chen
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional Foods, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
6
|
Effect of Protein Thermal Denaturation on the Texture Profile Evolution of Beijing Roast Duck. Foods 2022; 11:foods11050664. [PMID: 35267297 PMCID: PMC8909173 DOI: 10.3390/foods11050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
To investigate the mechanism of the texture formed by protein thermal denaturation, the profile and formation of texture and thermal denaturation of protein were evaluated using texture profile analysis (TPA) and transmission electron microscopy (TEM) combined with differential scanning calorimeter (DSC). Results indicated that the surface temperature of Beijing roast duck increased from 23.9 to 174.4 °C, while the center temperature rose from 20.6 to 99.3 °C during roasting. Shear force decreased significantly during the first 20 min, and the texture profile largely changed at 20 and 40 min. Firstly, Band I was broken and twisted, Band A was overstruck, and Z-line was diffused and finally disappeared, resulting in a blurred myofibril structure. The sarcomere considerably contracted within 30 min. Secondly, the main myofibrillar proteins were denatured at 20 and 40 min, respectively. The formation of hydrophobic interactions and the reduction of ionic bonds were observed. Thirdly, roasting induced protein thermal denaturation, which was correlated with interprotein forces, texture profile, and the shear force. Muscle fibers were damaged and shrunken, accompanied by the formation of hydrophobic interactions and the reduction of ionic bonds. The turning points were at 20 and 40 min, and the main proteins were denatured, leading to the formation of tenderness of Beijing roast duck.
Collapse
|
7
|
Contribution of microbial community to flavor formation in tilapia sausage during fermentation with Pediococcus pentosaceus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Yang M, Li N, Tong L, Fan B, Wang L, Wang F, Liu L. Comparison of physicochemical properties and volatile flavor compounds of pea protein and mung bean protein-based yogurt. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Effects of High Hydrostatic Pressure Treatment: Characterization of Eel (Anguilla japonica) Surimi, Structure, and Angiotensin-Converting Enzyme Inhibitory Activity of Myofibrillar Protein. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Li C, Zhao Y, Wang Y, Li L, Yang X, Chen S, Zhao Y, Zhou W. Microbial community changes induced by Pediococcus pentosaceus improve the physicochemical properties and safety in fermented tilapia sausage. Food Res Int 2021; 147:110476. [PMID: 34399472 DOI: 10.1016/j.foodres.2021.110476] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Abstract
Amine-negative lactic acid bacteria can prevent excess biogenic amines from accumulating in sausage. In this study, the amine-negative Pediococcus pentosaceus 30-7 and 30-15 with good fermentation properties and biogenic amine removal ability were isolated for tilapia sausage production. P. pentosaceus 30-7 improved the physical characteristics such as gel strength and hardness in tilapia sausage, while P. pentosaceus 30-15 significantly enhanced the contents of umami and sweet free amino acids. The microbial metabolic network revealed that the dominant microbial community in the fermentation process including Pediococcus and Lactococcus contributed to the physicochemical formation of sausage. The significant decrease of biogenic amine contents after addition of P. pentosaceus strains mainly resulted from their ability to remove biogenic amines and to inhibit the growth of amine-producing Enterobacter, Citrobacter, and Streptococcus. This study provides an effective method for directionally improving the physicochemical properties and safety in fermented tilapia sausage.
Collapse
Affiliation(s)
- Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yue Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Laihao Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Xianqing Yang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wenguo Zhou
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, PR China; Fu Jian Anjoy Foods Co., Ltd., Xiamen 361022, PR China.
| |
Collapse
|
11
|
Novel insight into physicochemical and flavor formation in naturally fermented tilapia sausage based on microbial metabolic network. Food Res Int 2021; 141:110122. [PMID: 33641989 DOI: 10.1016/j.foodres.2021.110122] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022]
Abstract
The quality and flavor formation in fermented fish sausages are based on the complex metabolism of microbial community. In this study, the dynamic changes of physicochemical characteristics, volatile compounds, and microbial communities in the naturally fermented tilapia sausage were studied during the fermentation process. The main physical indexes (gel strength, whiteness, and hardness), dominant flavor free amino acids (glycine, alanine, and glutamic acid) and characteristic volatile flavor compounds (hexanal, heptanal, octanal, benzaldehyde, (E)-2-octenal, 4-ethylbenzaldehyde, (E)-2-heptenal, (E,E)-2,4-decadienal, 1-octen-3-ol, 2-pentylfuran, and 2-ethyl-furan) were significantly enhanced after fermentation, and were positively correlated with Lactococcus, Pediococcus, Enterococcus, and Lactobacillus. The microbial metabolic network showed that Lactococcus, Pediococcus, and Enterococcus played a significant role in the formation of physicochemical and flavor characteristics, while the accumulation of biogenic amines might result from the metabolism of Enterococcus, Enterobacter, and Citrobacter. Isolation of lactic acid bacteria in Lactococcus and Pediococcus might be suitable to improve the fermented tilapia sausage. Microbial metabolic network has revealed the physicochemical and flavor formation of tilapia sausage and can provide guidance for future research on screening of starters.
Collapse
|
12
|
Xu Y, Zang J, Regenstein JM, Xia W. Technological roles of microorganisms in fish fermentation: a review. Crit Rev Food Sci Nutr 2020; 61:1000-1012. [PMID: 32292041 DOI: 10.1080/10408398.2020.1750342] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fermentation is an important way to process and preserve fish. It not only gives the product a unique flavor and texture, but it also contributes to increased nutritional value and better functional properties. The production of fermented fish relies on naturally occurring enzymes (in the muscle or the intestinal tract) as well as microbial metabolic activity. This review focuses on the role of microorganisms on texture change, flavor formation, and biogenic amines accumulation in fermented fish. In addition, the production conditions and the major biochemical changes in fermented fish products are also introduced to help understand the factors influencing the quality of fermented fish. Moreover, prospects for further research of fermented fish are discussed.
Collapse
Affiliation(s)
- Yanshun Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jinhong Zang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
13
|
Yang X, Su Y, Li L. Study of soybean gel induced by Lactobacillus plantarum: Protein structure and intermolecular interaction. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Zhao Y, Cao D, Shao Y, Xiong C, Li J, Tu Y. Changes in physico-chemical properties, microstructures, molecular forces and gastric digestive properties of preserved egg white during pickling with the regulation of different metal compounds. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Effects of tea polyphenol and Ca(OH)2 on the intermolecular forces and mechanical, rheological, and microstructural characteristics of duck egg white gel. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Li K, Liu JY, Fu L, Zhao YY, Bai YH. Comparative study of thermal gelation properties and molecular forces of actomyosin extracted from normal and pale, soft and exudative-like chicken breast meat. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:721-733. [PMID: 30208698 PMCID: PMC6502726 DOI: 10.5713/ajas.18.0389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/11/2018] [Accepted: 08/28/2018] [Indexed: 12/02/2022]
Abstract
OBJECTIVE The objectives of this study were to investigate the thermal gelation properties and molecular forces of actomyosin extracted from two classes of chicken breast meat qualities (normal and pale, soft and exudative [PSE]-like) during heating process to further improve the understanding of the variations of functional properties between normal and PSE-like chicken breast meat. METHODS Actomyosin was extracted from normal and PSE-like chicken breast meat and the gel strength, water-holding capacity (WHC), protein loss, particle size and distribution, dynamic rheology and protein thermal stability were determined, then turbidity, active sulfhydryl group contents, hydrophobicity and molecular forces during thermal-induced gelling formation were comparatively studied. RESULTS Sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that protein profiles of actomyosin extracted from normal and PSE-like meat were not significantly different (p>0.05). Compared with normal actomyosin, PSE-like actomyosin had lower gel strength, WHC, particle size, less protein content involved in thermal gelation forming (p<0.05), and reduced onset temperature (To), thermal transition temperature (Td), storage modulus (G') and loss modulus (G″). The turbidity, reactive sulfhydryl group of PSE-like actomyosin were higher when heated from 40°C to 60°C. Further heating to 80°C had lower transition from reactive sulfhydryl group into a disulfide bond and surface hydrophobicity. Molecular forces showed that hydrophobic interaction was the main force for heat-induced gel formation while both ionic and hydrogen bonds were different significantly between normal and PSE-like actomyosin (p<0.05). CONCLUSION These changes in chemical groups and inter-molecular bonds affected protein-protein interaction and protein-water interaction and contributed to the inferior thermal gelation properties of PSE-like meat.
Collapse
Affiliation(s)
- Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Jun-Ya Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Lei Fu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Ying-Ying Zhao
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| | - Yan-Hong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, China
| |
Collapse
|
17
|
Li Z, Liu H, Ma R, Tang B, Pan D, Peng Y, Ling X, Wang Y, Wu X, Che L, He N. Changes to the tropomyosin structure alter the angiotensin-converting enzyme inhibitory activity and texture profiles of eel balls under high hydrostatic pressure. Food Funct 2019; 9:6535-6543. [PMID: 30475376 DOI: 10.1039/c8fo01495g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes in the structure of tropomyosin (TM) altered the texture profiles of eel balls and the inhibitory activity of the angiotensin-converting enzyme (ACE). The secondary and tertiary structure of TM was determined after high hydrostatic pressure (HHP) treatment. The correlation between the spatial structure of TM and the texture profiles of eel balls was developed and discussed. The β-sheet was converted to a β-turn and a random coil when treated at HHP (200-400 MPa), meanwhile the α-helix unfolded and was converted into a β-sheet, β-turn and a random coil with treatment at 500 and 600 MPa. The surface hydrophobicity (H0) was increased and the sulfhydryl (SH) content decreased with an increase in the pressure. The results indicated that the texture profiles of eel balls showed a negative relationship with the α-helix, β-sheet and SH content. The texture profiles of eel balls were greatly enhanced after treatment at 500 and 600 MPa, leading to the improved surface network of the eel ball products. The ACE inhibitory activity of TM after HHP treatment exhibited a positive relationship with the β-sheet content in the protein. The ACE inhibitory activity was preserved under 600 MPa.
Collapse
Affiliation(s)
- Zhenglong Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Effects of different proteases on the emulsifying capacity, rheological and structure characteristics of preserved egg white hydrolysates. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Sun Y, Ma L, Ma M, Zheng H, Zhang X, Cai L, Li J, Zhang Y. Texture characteristics of chilled prepared Mandarin fish (Siniperca chuatsi) during storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1451343] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yi Sun
- College of Food Science, Southwest University, Chongqing, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, China
| | - Mingsi Ma
- College of Food Science, Southwest University, Chongqing, China
| | - Hong Zheng
- College of Food Science, Southwest University, Chongqing, China
| | - Xiaojie Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Luyun Cai
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, Jinzhou, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Zhao Y, Chen Z, Li J, Xu M, Shao Y, Tu Y. Changes of microstructure characteristics and intermolecular interactions of preserved egg white gel during pickling. Food Chem 2016; 203:323-330. [DOI: 10.1016/j.foodchem.2016.02.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
21
|
Jia D, Huang Q, Xiong S. Chemical interactions and gel properties of black carp actomyosin affected by MTGase and their relationships. Food Chem 2016; 196:1180-7. [DOI: 10.1016/j.foodchem.2015.10.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/07/2015] [Accepted: 10/08/2015] [Indexed: 11/30/2022]
|
22
|
|
23
|
Chen Z, Li J, Tu Y, Zhao Y, Luo X, Wang J, Wang M. Changes in gel characteristics of egg white under strong alkali treatment. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.10.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
XU Y, JIANG Q, XIA W. Acid-induced Gel Formation of Silver Carp (Hypophthalmichthys molitrix) Myofibrils as Affected by Salt Concentration. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2013. [DOI: 10.3136/fstr.19.295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Xu Y, Xia W, Jiang Q. Aggregation and structural changes of silver carp actomyosin as affected by mild acidification with d-gluconic acid δ-lactone. Food Chem 2012; 134:1005-10. [DOI: 10.1016/j.foodchem.2012.02.216] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/06/2012] [Accepted: 02/21/2012] [Indexed: 11/30/2022]
|
26
|
|