1
|
Kavrut E, Bulut M, Çelebi Y, Tekin A, Çetintaş Y, Hayaloğlu AA, Alwazeer D. Effect of hydrogen-producing magnesium-incorporated edible coating on Metabolomic and Volatilomic of beef meatballs. Food Chem 2025; 476:143423. [PMID: 39986070 DOI: 10.1016/j.foodchem.2025.143423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Meat products are highly perishable and have a short shelf life. The effects of using a molecular hydrogen-producing magnesium-incorporated coating (H2-P-Mg) on the color, pHysicochemical properties, deterioration, biogenic amines, free amino acid profile, and volatilomic profile of beef meatballs were evaluated. The meatballs were coated with different films as follows: group A (uncoated), group B (whey protein coating), group C (whey protein coating +7 % thyme extract), group D (whey protein coating +7 % thyme extract + Mg), and group E (whey protein coating + Mg). At the end of storage, group E samples showed higher color scores and lower pH (5.89) and Eh7 (+260 mV) values. At the end of storage, the H2-P-Mg coating (groups D and E) showed an inhibitory effect on TBARS (58-64 %) and biogenic amines (15.38-25.87 %). The concentrations of putrescine, histamine, cadaverine, and tyramine were reduced by about 15, 20, 22, and 26 % in Mg-coated samples compared to the control. Group E showed higher levels of histidine, tyrosine, and lysine. Group D had the lowest levels of ketones and aldehydes. The use of H2-P-Mg as an edible coating can bring numerous nutritional, safety, and technological benefits to meat technology.
Collapse
Affiliation(s)
- Enes Kavrut
- Igdir Vocational School, Hotel, Restaurant and Catering Services Department, 76002, Igdir, Turkey; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Turkey
| | - Menekşe Bulut
- Igdir Vocational School, Hotel, Restaurant and Catering Services Department, 76002, Igdir, Turkey; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Turkey
| | - Yasemin Çelebi
- Department of Food Processing, Eşme Vocational School, Uşak University, Uşak 64600, Turkey.
| | - Ali Tekin
- Department of Food Technology, Vocational School of Keban, Firat University, 23700 Keban, Elazig, Turkey; Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Turkey.
| | - Yunus Çetintaş
- Food Analysis Application and Research Center, Research Laboratories Center, Muğla Sıtkı Koçman University, 48000, Muğla, Turkey.
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Turkey.
| | - Duried Alwazeer
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Turkey; Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76002 Igdir, Turkey.
| |
Collapse
|
2
|
Chen L, Wei C, Liu R, Wu M, Ge Q, Yu H. Enhancement of the flavor compound 3-Methylbutanal and sensory quality in sausages fermented by Lactococcus lactis CGMCC 31087: Leucine and α-Ketoglutaric acid as supplements. Food Chem 2025; 473:143091. [PMID: 39892345 DOI: 10.1016/j.foodchem.2025.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
This study investigated the effects of α-ketoglutaric acid (α-KG) and leucine (Leu) supplementation on 3-methylbutanal abundance by Lactococcus lactis CGMCC 31087. Leu was kept constant, while α-KG concentrations varied across three models: PBS model, minced meat, and fermented sausage. In the PBS model, increasing α-KG (0.1 to 1 mM) raised both 3-methylbutanal and glutamic acid levels, but no further increase in 3-methylbutanal occurred in 10 mM α-KG group. In minced meat, 3-methylbutanal initially rose with α-KG (5-10 mM) but then fell at higher concentrations (20-40 mM). Excessive α-KG lowered pH in both minced meat and sausages, inhibiting microbial growth and Leu utilization. The highest 3-methylbutanal concentration (133.73 μg/kg) in sausages occurred with 3 mM α-KG, enhancing umami taste, aromas, and texture. These findings suggest that an optimal Leu-to-α-KG ratio facilitates 3-methylbutanal production and sensory quality, providing a potential strategy for improving flavor development and accelerating ripening in fermented meat products.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Congjiao Wei
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
3
|
Liu Y, Hu Y, Huang D, Bayinbate B, Zheng S, Xu B. The effects of fermented sausage quality driven by reduction of NaCl: Investigation into the microbial community and flavor profiles. Food Res Int 2025; 204:115867. [PMID: 39986753 DOI: 10.1016/j.foodres.2025.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
The primary objective of this study was to evaluate the impact of NaCl reduction (2.50 %, 2.25 %, 2.00 %, 1.75 %, and 1.50 %) on the physicochemical characteristics, microbial communities, flavor profile, and sensory characteristics of fermented sausage. The water activity increased with the reduction of the NaCl content from 2.50 % to 1.50 %, while the pH value, chewiness, and hardness decreased. High-throughput sequencing results showed that Staphylococcus saprophyticus, Staphylococcus kloosii, Latilactobacillus sakei, and Enterococcus pseudoavium were the dominant bacteria at the end of fermentation, and the 2.00 % NaCl treatment exhibits the highest bacterial diversity. A total of 32 volatile compounds were identified, of which there were 16 main volatile compounds. Sensory evaluation showed lower scores for chewiness, color, and flavor in sausages with less than 1.75 % NaCl. Furthermore, the correlation analysis showed that four bacterial species (Lb. sakei, S. saprophyticus, S. kloosii, and E. pseudoavium) were positively correlated with the major volatile compounds such as nonanal, ethyl propionate, ethyl hexanoate, and 1-hepten-3-one. Overall, it can be concluded that when NaCl content is reduced to less than 1.75 %, compensatory measures are needed to achieve better quality and flavor in fermented sausage. This study offers a thorough understanding of the association between bacterial communities and volatile flavors in low-salt fermented sausage.
Collapse
Affiliation(s)
- Yue Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Anhui 230009, China
| | - Dewei Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Bayierta Bayinbate
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shasha Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Anhui 230009, China.
| |
Collapse
|
4
|
Fan Y, Badar IH, Liu Q, Xia X, Chen Q, Kong B, Sun F. Insights into the flavor contribution, mechanisms of action, and future trends of coagulase-negative staphylococci in fermented meat products: A review. Meat Sci 2025; 221:109732. [PMID: 39708546 DOI: 10.1016/j.meatsci.2024.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
During fermentation, meat is pre-treated and cured to cultivate a diverse microflora, resulting in fermented meat products with distinctive flavors. Coagulase-negative staphylococcus holds a crucial role in all fermented meat products, contributing to the breakdown of proteins, carbohydrates, and fats, and the creation of flavor compounds. Fermentation technology has important research value and significance in fermented meat products. The optimization and improvement of flavor by CNS can be achieved by regulating the fermentation environment, initial microflora and processing conditions. The review explores the ways in which coagulase-negative staphylococci contribute to the flavors in fermented meat products. The mechanism of flavor substance formation and means of regulation in coagulase-negative staphylococci were also investigated. The review concludes by summarizing future development trends and drawing conclusions.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Iftikhar Hussain Badar
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Fan Y, Zhang K, Liu Q, Liu H, Wang H, Sun F, Kong B. Impact and correlation of fermentation temperature on the bacterial community, flavor characteristics, and proteolysis of Harbin dry sausages. Food Chem 2025; 464:141703. [PMID: 39447265 DOI: 10.1016/j.foodchem.2024.141703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Proteins undergo degradation to produce peptides and free amino acids, which in turn promote the production of volatile compounds with important contributions to the taste and aroma. This study investigated the effect of fermentation temperatures (8, 15, and 25 °C) on the bacterial community, flavor profile, and protein degradation of Harbin dry sausages. The physical and chemical properties were improved at 25 °C compared with 8 and 15 °C. Staphylococcus xylosus increased with the increase in fermentation temperature, whereas Latilactobacillus sakei decreased. The degree of protein degradation increased, and the content and proportion of taste peptides and free amino acids increased. Similarly, a higher fermentation temperature led to an increase in volatile compounds, such as aldehydes, alcohols, and esters. In conclusion, there is an inseparable relationship between proteolysis and microbial proteases. The fermentation temperature of 25 °C best contributed to the sensory quality and flavor characteristics of Harbin dry sausages.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kaida Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Chen X, Yan F, Qu D, Wan T, Xi L, Hu CY. Aroma characterization of Sichuan and Cantonese sausages using electronic nose, gas chromatography-mass spectrometry, gas chromatography-olfactometry, odor activity values and metagenomic. Food Chem X 2024; 24:101924. [PMID: 39582659 PMCID: PMC11582465 DOI: 10.1016/j.fochx.2024.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
The interest of Chinese consumers in meat-free sausages has increased considerably due to their health benefits, but the aroma quality is far from reaching the traditional fermented meat sausages. This study evaluated the aroma characterization of Sichuan and Cantonese sausages using electronic nose (E-nose), gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity values (OAVs) and metagenomic. Ninety-eight volatile compounds were identified. Among them, 23 odorants were perceived, and their intensity differed in the two groups of sausages. There was a significant difference in the volatile compound profile between Sichuan and Cantonese cooked sausages. E-nose sensors could differentiate them through specific responses to these volatile compounds. Furthermore, there was a significant difference in microbial communities between Sichuan and Cantonese sausages. For aroma quality improvement of meat-free sausages, studies should focus on controlling the formation of aroma compounds by aroma precursors and using different microorganisms to produce diverse meat aromas. Our results provide a reference for the implementation of these strategies.
Collapse
Affiliation(s)
- Xiaohua Chen
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Qinling-Bashan Mountains Bioresources Comprehensive Development C. I. C., Hanzhong, Shaanxi, China
| | - Fei Yan
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Dong Qu
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Qinba State Key Laboratory of Biological Ecological Environment, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Tian Wan
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Linjie Xi
- Shaanxi Province Key Laboratory of Bioresources, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Ching Yuan Hu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA
| |
Collapse
|
7
|
Sui Y, Liu J, Lu J, Gao Y, Badar IH, Li XA, Chen Q, Kong B, Qin L. Coinoculation of autochthonous starter cultures: A strategy to improve the flavor characteristics and inhibit biogenic amines of Harbin dry sausage. Food Chem X 2024; 23:101655. [PMID: 39157655 PMCID: PMC11327478 DOI: 10.1016/j.fochx.2024.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/26/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024] Open
Abstract
The effects of separately coinoculating Lactiplantibacillus plantarum S8 (LP) with Staphylococcus carnosus L8 (LP + SC), Pichia kudriavzevii M6 (LP + PK), and S. carnosus L8 and P. kudriavzevii M6 (LP + SC + PK) on the flavor characteristics and biogenic amines (BAs) production in Harbin dry sausages were investigated. The coinoculated sausages exhibited higher free amino acids (FAAs) content than the noninoculated and LP sausages. Moreover, inoculated dry sausages exhibited lower BA contents (174.45, 239.43, 190.24, and 206.7 mg/kg for the LP, LP + SC, LP + PK, and LP + PK + SC sausages, respectively) than the noninoculated sausage (339.73 mg/kg). Meanwhile, the LP + PK and LP + SC + PK sausages had the highest contents of esters (996.70 μg/kg) and alcohols (603.46 μg/kg), respectively. A sensory evaluation demonstrated that the LP + SC + PK sausage had the highest fermented odor and the lowest fatty odor. Pearson correlation analysis revealed that FAAs were correlated with most key volatile compounds and BAs. This study provides new insights into flavor development and BA inhibition in dry sausages through coinoculation.
Collapse
Affiliation(s)
- Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiasheng Lu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yuan Gao
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | | | - Xiang-ao Li
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
8
|
Çelebi Y, Kavrut E, Bulut M, Çetintaş Y, Tekin A, Hayaloğlu AA, Alwazeer D. Incorporation of hydrogen-producing magnesium into minced beef meat protects the quality attributes and safety of the product during cold storage. Food Chem 2024; 448:139185. [PMID: 38574715 DOI: 10.1016/j.foodchem.2024.139185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
The impact of hydrogen (H2) producing magnesium (Mg) incorporation into minced beef meat (MBM) on the quality and safety of the product was investigated. The H2-producing Mg (H2-P-Mg)-incorporated MBMs were vacuumed (VP) and stored at 4 °C for 12 days. Other MBMs were vacuumed and gassed with H2 or N2. At the end of storage, the lowest browning index values were for H2 and H2-P-Mg samples. H2- PMg and VP methods generally decreased the counts of mesophilic and psychrotrophic bacteria and yeast molds and restricted the formation of thiobarbituric acid reactive substances and biogenic amines. Heat mapping, PCA, and multivariate analysis methods confirmed chemical analysis results. The volatile compounds were at their highest levels in the control samples at the end of storage, followed by H2, N2, H2-P-Mg, and VP samples. Using the H2-P-Mg method in MBM preparation could protect the quality characteristics and safety of the product during cold storage.
Collapse
Affiliation(s)
- Yasemin Çelebi
- Department of Food Processing, Eşme Vocational School, Uşak University, Uşak 64600, Türkiye
| | - Enes Kavrut
- Igdir Vocational School, Hotel, Restaurant and Catering Services Department, 76002, Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Igdir University, 76002 Igdir, Türkiye; Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye
| | - Yunus Çetintaş
- Food Analysis Application and Research Center, Research Laboratories Center, Muğla Sıtkı Koçman University, 48000 Muğla, Türkiye.
| | - Ali Tekin
- Department of Food Technology, Vocational School of Keban, Firat University, 23700 Keban, Elazig, Türkiye; Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Ali Adnan Hayaloğlu
- Department of Food Engineering, Faculty of Engineering, Inonu University, 44280 Malatya, Türkiye.
| | - Duried Alwazeer
- Innovative Food Technologies Development, Application and Research Center, Igdir University, 76002 Igdir, Türkiye; Department of Nutrition and Dietetics, Faculty of Health Sciences, Igdir University, 76002 Iğdır, Türkiye.
| |
Collapse
|
9
|
Gao F, Zhang K, Wang D, Xia L, Gu Y, Tian J, Jin Y. Effect of Lactobacillus helveticus IMAUJBH1 on fat and volatile flavor substances in fermented mutton sausages. Food Chem X 2024; 21:101205. [PMID: 38370301 PMCID: PMC10869742 DOI: 10.1016/j.fochx.2024.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/13/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024] Open
Abstract
The decomposition and oxidation of fat is essential for the formation and quality of the unique flavor of sausage. To explore the effect of lactic acid bacteria on fat decomposition and oxidation in fermented sausage, free fatty acids and volatile flavor compounds were determined by gas chromatography (GC) and headspace solid-phase microextraction (HS-SPME)-GC-MS, respectively. The results showed that the addition of Lactobacillus helveticus IMAUJBH1 inhibited fat peroxidation and relatively increased the proportion of monounsaturated fatty acids. A total of 47 volatile flavor compounds were detected, including aldehydes, esters, alcohols, and ketones. The content of substances such as hexanal, heptanal, nonanal and 1-octene-3-ol related to lipid oxidation was significantly reduced. The results obtained in this study show that the strain can further affect the flavor of the product by inhibiting the formation of lipid oxidation or peroxide flavor substances to a certain extent.
Collapse
Affiliation(s)
- Fang Gao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Kaiping Zhang
- Department of Cooking and Food Processing, Inner Mongolia Business and Trade Vocational College, Hohhot 010070, China
| | - Daixun Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lingyan Xia
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yue Gu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
- Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the people's Republic of China, Hohhot 010018, China
| |
Collapse
|
10
|
Zheng SS, Wang CY, Hu YY, Yang L, Xu BC. Enhancement of fermented sausage quality driven by mixed starter cultures: Elucidating the perspective of flavor profile and microbial communities. Food Res Int 2024; 178:113951. [PMID: 38309873 DOI: 10.1016/j.foodres.2024.113951] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
The metabolic activities of microorganisms play a crucial role in the quality development of fermented sausage. This study investigated the effect of inoculation with different combinations of starter cultures (Lactiplantibacillus plantarum YR07, Latilactobacillus sakei L.48, Staphylococcus xylosus S.14, and Mammaliicoccus sciuri S.18) on the quality of sausages. Inoculation with mixed starter cultures promoted protein degradation to generate amino acids and the conversion to volatile compounds, which enhanced the flavor development in fermented sausages. The bacterial community analyses demonstrated that the inoculation of mixed starter cultures could inhibit the growth of spoilage and pathogenic bacteria, thereby reducing the total content of biogenic amines. The correlation analysis between the core bacteria and characteristic volatile compounds revealed that fermented sausages inoculated with Lactobacillus and coagulase negative staphylococci exhibited significant positive correlations with the majority of key characteristic volatile compounds. In four treatments, inoculation with L. plantarum YR07 and M. sciuri S.18 greatly promoted the formation of characteristic volatile compounds (3-hydroxy-2-butanone, hexanal, and 1- octen-3ol). Therefore, the combined inoculation of L. plantarum YR07 and M. sciuri S.18 is promising to enhance fermented sausage's flavor profile and safety.
Collapse
Affiliation(s)
- Sha-Sha Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Chun-Yu Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Ying-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Liu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bao-Cai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
11
|
Wang H, Sui Y, Liu J, Kong B, Li H, Qin L, Chen Q. Analysis and comparison of the quality and flavour of traditional and conventional dry sausages collected from northeast China. Food Chem X 2023; 20:100979. [PMID: 38022737 PMCID: PMC10661686 DOI: 10.1016/j.fochx.2023.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
In this study, the physicochemical properties and flavour profile of traditional dry sausages (T-SH, T-DXAL, T-HG, T-MDJ, T-HRB) collected from various wet markets were compared with those of conventional dry sausages (C-QL, C-ND, C-YSD, C-YC, C-HRL) collected from various food companies in northeast China. Traditional dry sausages were characterised by a low moisture content, a low water activity, and a high shear force after a long fermentation time compared with conventional dry sausages. Electronic nose and electronic tongue signals combined with chemometrics methods were applied for a comprehensive qualitative analysis of the odour and taste of dry sausages. A total of 61 volatile compounds were identified using gas chromatography-mass spectrometry, and the multivariate chemometrics analysis confirmed the difference in volatile compounds between traditional and conventional samples. Moreover, the sensory evaluation revealed that conventional dry sausages lacked the characteristic fermented flavour of traditional dry sausages.
Collapse
Affiliation(s)
- Huiping Wang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Huiyao Li
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
12
|
Yu H, Li P, Yin P, Cai J, Jin B, Zhang H, Lu S. Bacterial community succession and volatile compound changes in Xinjiang smoked horsemeat sausage during fermentation. Food Res Int 2023; 174:113656. [PMID: 37986490 DOI: 10.1016/j.foodres.2023.113656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023]
Abstract
This study examined the bacterial community dynamics and their relationship with volatile compounds in Xinjiang smoked horsemeat sausage during fermentation. We employed single-molecule real-time sequencing (SMRT) to identify the bacterial composition, while headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was utilized to detect volatile compounds in the sausage. The findings indicated that Staphylococcus xylosus, Lactococcus garvieae, Latilactobacillus sakei, Lactococcus lactis, and Weissella hellenica were the predominant species during the fermentation. Moreover, we identified 56 volatile substances in the smoked horsemeat sausages, including alcohols, esters, ketones, acids, aldehydes, terpenes, and phenols. Notably, the correlation analysis demonstrated positive associations between the major bacteria and the primary volatile compounds, with notable connections observed for Staphylococcus xylosus, Lactococcus garvieae and Weissella hellenica. These research findings provide a foundation for future endeavors aimed at enhancing the flavor quality of smoked horsemeat sausage.
Collapse
Affiliation(s)
- Honghong Yu
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Pingcan Li
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Pengcheng Yin
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Jixun Cai
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Boyu Jin
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Haopeng Zhang
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| | - Shiling Lu
- Lab. of Meat Processing and Quality Control, College of Food Science, Shihezi University, Xinjiang, China.
| |
Collapse
|
13
|
Xie A, Dong Y, Liu Z, Li Z, Shao J, Li M, Yue X. A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies. Foods 2023; 12:3952. [PMID: 37959070 PMCID: PMC10650231 DOI: 10.3390/foods12213952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
Plant-based drinks have garnered significant attention as viable substitutes for traditional dairy milk, providing options for individuals who are lactose intolerant or allergic to dairy proteins, and those who adhere to vegan or vegetarian diets. In recent years, demand for plant-based drinks has expanded rapidly. Each variety has unique characteristics in terms of flavor, texture, and nutritional composition, offering consumers a diverse range of choices tailored to meet individual preferences and dietary needs. In this review, we aimed to provide a comprehensive overview of the various types of plant-based drinks and explore potential considerations including their nutritional compositions, health benefits, and processing technologies, as well as the challenges facing the plant-based drink processing industry. We delve into scientific evidence supporting the consumption of plant-based drinks, discuss their potential roles in meeting dietary requirements, and address current limitations and concerns regarding their use. We hope to illuminate the growing significance of plant-based drinks as sustainable and nutritious alternatives to dairy milk, and assist individuals in making informed choices regarding their dietary habits, expanding potential applications for plant-based drinks, and providing necessary theoretical and technical support for the development of a plant-based drink processing industry.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 119077, Singapore;
| | - Yushi Dong
- Department of Nutritional Sciences, King’s College London, London SE19NH, UK;
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, China;
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore;
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China;
| |
Collapse
|
14
|
Chen H, Kang X, Wang X, Chen X, Nie X, Xiang L, Liu D, Zhao Z. Potential Correlation between Microbial Diversity and Volatile Flavor Substances in a Novel Chinese-Style Sausage during Storage. Foods 2023; 12:3190. [PMID: 37685124 PMCID: PMC10487076 DOI: 10.3390/foods12173190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A novel Chinese-style sausage with Chinese traditional fermented condiments used as additional ingredients is produced in this study. The aim of this study was to investigate the microbial community's structure, the volatile flavor substances and their potential correlation in the novel Chinese sausage. High-throughput sequencing (HTS) and solid-phase microextraction-gas chromatography-mass spectrometry (GC-MS) were, respectively, used to analyze the microbial diversity and volatile flavor substances of the novel Chinese-style sausage during storage. The results showed that Firmicutes, Proteobacteria and Actinobacteria were the predominant bacterial genera, and Hyphopichia and Candida were the predominant fungal genera. A total of 88 volatile flavor substances were identified through GC-MS, among which 18 differential flavor compounds were screened (VIP > 1), which could be used as potential biomarkers to distinguish the novel sausages stored for different periods. Lactobacillus exhibited a significant negative correlation with 2,3-epoxy-4,4-dimethylpentane and acetoin and a significant positive correlation with 2-phenyl-2-butenal. Hyphopichia significantly positively correlated with ester. Leuconostoc significantly positively correlated with ethyl caprate, ethyl palmate, ethyl tetradecanoate and ethyl oleate while it negatively correlated with hexanal. This study provides a theoretical basis for revealing the flavor formation mechanisms and the screening of functional strains for improving the flavor quality of the novel Chinese-style sausage.
Collapse
Affiliation(s)
- Hongfan Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Xinyue Kang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinya Chen
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
| | - Lu Xiang
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Dayu Liu
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Zhiping Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
15
|
Identification and evaluation of spoilage potential of four Bacillus strains isolated from slimy rice noodles. Food Microbiol 2023; 110:104160. [DOI: 10.1016/j.fm.2022.104160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
|
16
|
Liu R, Ma Y, Chen L, Lu C, Ge Q, Wu M, Xi J, Yu H. Effects of the addition of leucine on flavor and quality of sausage fermented by Lactobacillus fermentum YZU-06 and Staphylococcus saprophyticus CGMCC 3475. Front Microbiol 2023; 13:1118907. [PMID: 36817110 PMCID: PMC9932774 DOI: 10.3389/fmicb.2022.1118907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Methyl-branched aldehydes, especially 3-methylbutanal, have been reported to be perceived either as a malty or as a nutty/chocolate-like aroma and were considered an important flavor contributor in fermented meat products. Decomposition of leucine (Leu) by branched-chain amino acid transaminase (BACT) is a crucial step in the metabolism of Leu to 3-methylbutanal. This study was conducted to explore the effects of mixed-starter culture (Lactobacillus fermentum YZU-06 and Staphylococcus saprophyticus CGMCC 3475) and addition of Leu (0, 1, and 3 mM) on the flavor and quality of fermented sausages. The pH, water activity, texture profile analysis, color, counts of lactic acid bacteria (LAB) and staphylococci, peptide, and flavor compounds were detected during fermentation. The results showed that the starter culture group increased hardness, elasticity, the counts of LAB and staphylococci, peptide content, volatile flavor compounds, as well as the sensorial scores of sausage, while decreasing pH, a w , and L* and b* values compared with the non-inoculation group. The mixed starter of adding with 3 mM Leu enhanced the content of 3-methylbutanal and overall flavor of fermented sausages. It is applicable to directionally produce methyl-branched aldehydes and improve the overall quality of fermented sausage by the addition of Leu and using starter of L. fermentum YZU-06 and S. saprophyticus CGMCC 3475.
Collapse
Affiliation(s)
- Rui Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yong Ma
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lei Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenyan Lu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingfeng Ge
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mangang Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Xi
- Changshou Characteristic Meat Product Processing and Engineering Research Center of Jiangsu, Jiangsu Changshou Group Co., Ltd., Rugao, Jiangsu, China
| | - Hai Yu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, China,*Correspondence: Hai Yu,
| |
Collapse
|
17
|
Tian J, Yang X, Zhang K, Zhao Y, Cheng F, Jin Y. Influence of Lactobacillus helveticus ZF22 and TR1-1-3 strains on the aromatic flavor of fermented sausages. Front Nutr 2023; 9:1058109. [PMID: 36698479 PMCID: PMC9868738 DOI: 10.3389/fnut.2022.1058109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, five strains isolated from traditional Inner Mongolian air-dried meat products were used, two Lactobacillus helveticus strains, ZF22 and TR1-1-3, with potent antibacterial activity, acid, salt, and nitrite tolerance, were selected for this study. Lactic acid bacteria (LAB) (Lactobacillus helveticus ZF22 and TR1-1-3) were inoculated into fermented sausages at 107 CFU/g and their volatiles were studied during fermentation and storage. Clustering heat map and principal component analysis (PCA) were used to identify differentiating flavor components in uninoculated and inoculated sausages. The results showed that 72 volatile flavor substances were identified during the fermentation of the fermented sausages and that inoculation with Lactobacillus helveticus ZF22 and TR1-1-3 increased the proportion of acids, ketones and alkanes. Moreover, the clustering heat map demonstrated that esters such as ethyl isobutyrate, ethyl acetate, and ethyl valerate were more abundant in TR1-1-3 and ZF22 than ZR. The PCA analysis showed that the volatile compounds of the three fermented sausages were distributed in separate quadrants, suggesting that the volatile compound compositions of the three fermented sausages differed significantly. Our findings suggest that inoculating fermented sausages with Lactobacillus helveticus TR1-1-3 and ZF22 can improve flavor by enhancing the type and amount of flavor compounds.
Collapse
Affiliation(s)
- Jianjun Tian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China,*Correspondence: Jianjun Tian,
| | - Xueqian Yang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Kaiping Zhang
- Department of Cooking & Food Processing, Inner Mongolia Business & Trade Vocational College, Hohhot, China
| | - Yanhong Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Feng Cheng
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
18
|
The Flavor Profiles of Highland Barley Fermented with Different Mushroom Mycelium. Foods 2022; 11:foods11243949. [PMID: 36553692 PMCID: PMC9778070 DOI: 10.3390/foods11243949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Highland barley was fermented with Cordyceps militaris, Stropharia rugoso-annulata, Morchella esculenta, Schizophyllum commune and Tremella sanguinea. The flavor profiles were investigated by electronic nose (E-nose), headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and sensory evaluation by train panel. Fermentation with mushroom mycelium was able to change the aroma profile of highland barley. The original strong grassy taste was reduced due to a decrease in hexanal, decanal and 2-pentylfuran, and new aromatic flavors (floral, sweet and mushroom fragrance) were acquired after fermentation. The overall flavor of the fermented highland barley varied with mushroom strains. Schizophyllum commune gave a heavier sour taste to the fermented highland barley. However, fermentation with T. sanguinea increased the content of methyl 4-methoxybenzoate making the sample difficult to accepted. Fermentation with C. militaris, M. esculenta, and S. rugoso-annulata increased the volatile contents. The high levels of 1-octen-3-ol and esters gave a strong mushroom, oily and fruity flavor. Morchella esculenta showed the best performance and the highest acceptance in the fermented highland barley. Our results suggest that fermentation with mushroom mycelium can improve the flavor of highland barley, which provides an innovative utilization of highland barley.
Collapse
|
19
|
Gao G, Zhang X, Yan Z, Cheng Y, Li H, Xu G. Monitoring Volatile Organic Compounds in Different Pear Cultivars during Storage Using HS-SPME with GC-MS. Foods 2022; 11:foods11233778. [PMID: 36496586 PMCID: PMC9735802 DOI: 10.3390/foods11233778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
Aroma, which plays an essential role in food perception and acceptability, depends on various mixture of volatile organic compounds (VOCs). Meanwhile, as a field of metabolomics, VOC analysis is highly important for aroma improvement and discrimination purposes. In this work, VOCs in pear fruits were determined via headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) to study variations among different cultivars and storage stages. In 12 cultivars of pear fruits, a total of 121 VOCs were quantified, including 40 esters, 32 alcohols, 16 aldehydes, 13 alkenes, 11 ketones, 4 acids, and 5 other compounds. The types and amounts of VOCs in different cultivars varied dramatically, which were in the range of 13-71 and 3.63-55.65 mg/kg FW (fresh weight), respectively. The Dr. Guyot cultivar showed the highest level of VOCs, both in type and amount. After 21 days storage at 4 °C, total concentration of VOCs increased from initial levels of 50.76 to 101.33 mg/kg FW. Storage at 20 °C made a larger contribution to production for VOCs than that at 4 °C, resulting in the maximum content of VOCs (117.96 mg/kg FW) in fruit after 14 days storage at 4 °C plus 7 days at 20 °C. During storage, the content of esters showed a gradual increase, while the content of alcohols and aldehydes decreased. Based on the results presented, related alcohols were recognized as the intermediates of conversion from aldehydes to esters.
Collapse
Affiliation(s)
- Guanwei Gao
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
| | - Xinnan Zhang
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Key Laboratory of Germplasm Resources Utilization of Horticultural Crops, Ministry of Agriculture and Rural Afffairs, Xingcheng 125100, China
| | - Zhen Yan
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
| | - Yang Cheng
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
| | - Haifei Li
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
| | - Guofeng Xu
- Ministry of Agriculture and Rural Affairs, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
- Laboratory of Quality & Safety Risk Assessment for Fruit, Xingcheng 125100, China
- Correspondence:
| |
Collapse
|
20
|
Bibliometric Review on the Volatile Organic Compounds in Meat. Foods 2022; 11:foods11223574. [PMID: 36429166 PMCID: PMC9689666 DOI: 10.3390/foods11223574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Meat flavor is an important aspect of meat quality that also influences consumer demand, and is therefore very important for the meat industry. Volatile organic compounds (VOCs) contribute in large part to the flavor of meat, and while increasing numbers of articles are published on this topic, reviews of these articles are very scarce. Therefore, our aim was to perform a bibliometric analysis of the scientific publications on VOCs in meat over the period 2000-2020. We selected 611 scientific sources from the Scopus database related to VOCs in meat (seafood excluded). The bibliometric information retrieved included journals, authors, countries, institutions, keywords, and citations. From this analysis, we drew up a list of the most important journals, authors, countries, and institutions, and the trends in VOC research on meat. We conducted a social network analysis (SNA) to identify the collaborations among the many authors and countries, and a keyword analysis to generate a network map of the authors' keywords. We also determined which meat species were most frequently chosen as research subjects, traced the evolution of the various methods/instruments used, and explored the research tendencies. Finally, we point out the need for further research in defining meat quality, improving meat flavor, identifying adulterants, and certifying the authenticity of meat.
Collapse
|
21
|
Jeong CH, Lee SH, Kim HY. Microbiological Composition and Sensory Characterization Analysis of Fermented Sausage Using Strains Isolated from Korean Fermented Foods. Food Sci Anim Resour 2022; 42:928-941. [PMID: 36415576 PMCID: PMC9647183 DOI: 10.5851/kosfa.2022.e56] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 09/14/2023] Open
Abstract
This study aimed to analyze the microbiological composition and sensory characterization of fermented sausage using strains isolated from Kimchi (GK1, Pediococcus pentosaceus SMFM2016-GK1; NK3, P. pentosaceus SMFM2016-NK3), Doenjang (D1, Debaryomyces hansenii SMFM2021-D1), and spontaneously fermented sausage (S8, D. hansenii SMFM2021-S8; S6, Penicillium nalgiovense SMFM2021-S6). The control was commercial starter culture. Nine treatments were applied [GD (GK1+D1), GS (GK1+S8), GDS (GK1+D1+S8), ND (NK3+D1), NS (NK3+S8), NDS (NK3+D1+S8), GND (GK1+NK3+D1), GNS (GK1+NK3+S8), and GNDS (GK1+NK3+D1+S8)] by mixing lactic acid bacteria and yeast, and S6 was sprayed. The microbial composition of fermented sausage was analyzed [aerobic bacteria (AC), Lactobacillus spp. (LABC), Staphylococcus spp. (STPC), and yeast and mold (YMC)], and pH and electronic nose and tongue measurements were taken. The AC, LABC, STPC, and YMC values of the control and treatment groups tended to increase during fermentation (p>0.05). The STPC values of the GD, GS, ND, and GDS groups were similar to that of the control on day 3. The pH of the control on day 3 was significantly lower than that of the GD, ND, and GND groups (p<0.05). Higher levels of 4-methylpentanol, 2-furanmethanol, and propyl nonanoate, which provide a "fermented" flavor, were detected in the GD group compared to in the control and other treatment groups. GD and ND groups showed higher umami values than the control and other treatment groups. Therefore, it is expected that GD can be valuable as a starter culture unique to Korea when manufacturing fermented sausage.
Collapse
Affiliation(s)
- Chang-Hwan Jeong
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Sol-Hee Lee
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| |
Collapse
|
22
|
Li H, Wang C, Wang Z, Zhao K, Zhang J, Li S, Chen L, Tang H. Functional properties and flavor formation of two Staphylococcus simulans strains isolated from Chinese dry fermented sausages. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Yang Y, Liang D, Wang X, Li F, Fan X, Liu Y. Effects of Contact Ultrasound &
Far‐Infrared
Radiation Strengthening Drying on Water Migration and Quality Characteristics of Taro Slices. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Yang
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| | - Duan Liang
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| | - Xueqing Wang
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| | - Fang Li
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| | - Xiaoyan Fan
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| | - Yunhong Liu
- College of Food & Bioengineering Henan University of Science and Technology Luoyang China
| |
Collapse
|
24
|
Physicochemical properties of a new structural lipid from the enzymatical incorporation of flaxseed oil into mutton tallow. Heliyon 2022; 8:e09615. [PMID: 35706940 PMCID: PMC9189876 DOI: 10.1016/j.heliyon.2022.e09615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/27/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
This study evaluated the physio-chemical properties of a structural lipid (SL) obtained by the enzymatical incorporation of flaxseed oil into mutton tallow (MT). By measuring the melting point, colour, safety, fatty acids, apparent viscosity, shear stress and volatile compounds of the samples, the results showed that compared to MT, SL exhibited lower L∗(lightness) value, melting point, apparent viscosity and shear stress (p < 0.05). Noteworthy, the Saturated fatty acids (SFA)content of MT was reduced from 61.46% to 25.49% (p < 0.05), although SL was found to be more prone to oxidation during storage. The clearest discrepancy in volatile compounds was the increase of heterocyclic compounds in SL. In summary, improving the edible properties of animal fats by adding vegetable oils is an effective solution, and SL may have a great potential to be developed into a high-quality product with improved nutritional composition of animal fat.
Collapse
|
25
|
Metabolomics mechanism of traditional soy sauce associated with fermentation time. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Hu Y, Li Y, Li XA, Zhang H, Chen Q, Kong B. Application of lactic acid bacteria for improving the quality of reduced-salt dry fermented sausage: Texture, color, and flavor profiles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Wang X, Zhou P, Cheng J, Yang H, Zou J, Liu X. The role of endogenous enzyme from straw mushroom (Volvariella volvacea) in improving taste and volatile flavor characteristics of Cantonese sausage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Sallan S, Kaban G, Kaya M. The effects of nitrite, sodium ascorbate and starter culture on volatile compounds of a semi-dry fermented sausage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Wang M, Wang C, Yang C, Peng L, Xie Q, Zheng R, Dai Y, Liu S, Peng X. Effects of Lactobacillus plantarum C7 and Staphylococcus warneri S6 on flavor quality and bacterial diversity of fermented meat rice, a traditional Chinese food. Food Res Int 2021; 150:110745. [PMID: 34865763 DOI: 10.1016/j.foodres.2021.110745] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Fermented meat rice (FMR) is a traditional Chinese fermented food with special flavor and abundant microorganisms. Lactobacillus and Staphylococcus species have been found to be excellent strains in FMR during fermentation. However, their roles in FMR flavor formation remain yet to be elucidated. Here, we investigated the correlation between physicochemical properties and volatile flavor components, as well as the microbial community during FMR fermentation. First, we determined pH, total titratable acids (TTA), proteins, total lipids, organic acids, free amino acids (FAAs), and volatile flavor compounds (VFCs). With increasing fermentation time, inoculation with Lactobacillus plantarum C7+ Staphylococcus warneri S6 (LP + SW) accelerated the decrease in pH, increased TTA, and reduced protein and total lipid content of FMR. In addition, LP + SW inoculation resulted in significantly (P < 0.05) higher contents of β-eudesmol, nerolidol, ethyl caproate, citronellal, lactic acid, and most FAAs (aspartic acid, glutamic acid, alanine, and lysine) in FMR compared to natural fermentation. Second, inoculated fermentation promoted the growth of Lactobacillus plantarum and/or Staphylococcus warneri and inhibited the growth of some potentially pathogenic microorganisms such as Acinetobacter and Enhydrobacter. Lactobacillus and Staphylococcus were found to be highly correlated with the physicochemical properties and VFCs (P < 0.05) of FMR as indicated by redundancy analysis (RDA) and partial least squares (PLS, VIP > 1.0) analysis. Finally, Spearman's correlation (| r | ≥ 0.7, P < 0.05) analysis of SPSS was visualized by the Cytoscape software. The findings suggest that inoculation with L. plantarum C7 and/or S. warneri S6 can significantly improve the flavor quality of FMR.
Collapse
Affiliation(s)
- Man Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Chengming Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Chen Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Luqiu Peng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Qihui Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Runmin Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Yiyi Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Shilin Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Xitian Peng
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| |
Collapse
|
30
|
Variation in Volatile Flavor Compounds of Cooked Mutton Meatballs during Storage. Foods 2021; 10:foods10102430. [PMID: 34681481 PMCID: PMC8535560 DOI: 10.3390/foods10102430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Solid phase microextraction (SPME) and Solvent-Assisted Flavor Evaporation (SAFE) were used to analyze the flavor changes of cooked mutton meatballs during storage by gas chromatography-olfactometrymass spectrometry (GC-O-MS), sensory evaluation and Partial Least Squares Regression (PLSR). With the increase of storage time, the concentrations of various volatile compounds in cooked mutton meatballs decreased to varying degrees at the later stage of storage, indicating that the aroma was gradually weakened, which was consistent with the results of sensory evaluation. At 30 days of storage, the overall aroma profile was more prominent, and at the later stage of storage, the sulfur odor was more prominent. The correlation of PLSR further confirmed the credibility of the results. Compared with the SPME and SAFE extraction methods, SPME extracted more flavor substances, and the SAFE extraction rate was higher, which indicated that the combination of several methods was needed for aroma extraction. An analysis of the dilution results and odor activity value (OAV) showed that the key aroma components during storage were 1-octene-3-ol, linalool, methylallyl sulfide, diallyl disulfide, 2-pinene, hexanal and butyric acid.
Collapse
|
31
|
Effect of lysozyme and Chinese liquor on Staphylococcus aureus growth, microbiome, flavor profile, and the quality of dry fermented sausage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Kim J, Knowles S, Ahmad R, Day L. Objective Measurements Associated with the Preferred Eating Qualities of Fermented Salamis. Foods 2021; 10:foods10092003. [PMID: 34574113 PMCID: PMC8466134 DOI: 10.3390/foods10092003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 01/27/2023] Open
Abstract
The development of new food products can be expedited by understanding the physicochemical attributes that are most relevant to consumers. Although many objective analyses are possible, not all are a suitable proxy to serve as quality markers associated with sensory preferences. In this work, we selected nine candidate laboratory assays to use on six commercial salamis, which were also eaten and informally described by a consumer discussion group familiar with China-sourced meat products. Several objective measures were strongly related to the flavour perceptions: (i) texture: instrumental texture values, fat release at oral temperature and fat saturation ratios, (ii) aroma: volatile compounds (e.g., alcohols and esters) associated with microbial fermentation and spices (terpenes and sulphur compounds) and (iii) taste: kokumi taste receptor responses. The fat released at oral temperature was associated with unsaturated fatty acids (r = 0.73). However, there was less explanatory worth for associations between sensory perceptions and proximate composition, water activity, pH or L*, a*, b* colourimetry.
Collapse
Affiliation(s)
- Jihan Kim
- Correspondence: ; Tel.: +64-63-518-369
| | | | | | | |
Collapse
|
33
|
Zhang L, Chen Q, Liu Q, Xia X, Wang Y, Kong B. Effect of different types of smoking materials on the flavor, heterocyclic aromatic amines, and sensory property of smoked chicken drumsticks. Food Chem 2021; 367:130680. [PMID: 34348198 DOI: 10.1016/j.foodchem.2021.130680] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
This study investigated the effect of different types of smoking materials on the flavor, heterocyclic aromatic amine (HAA) content, and sensory attributes of smoked chicken drumsticks. All smoked samples showed lower pH and L*-value and higher a*-value and b*-value than the control sample (P < 0.05), but no significant differences in water content and water activity (P > 0.05). The samples smoked with sucrose combined with pear-tree woodchips (SP) or green tea leaves (ST) had higher overall acceptability than other samples (P < 0.05). Smoking increased the total HAA content, and the ST sample exhibited the highest total HAA content (P < 0.05). A total of 54 volatile compounds was identified. Overall, SP and ST are suitable for smoked chicken considering the sensory properties, while S and SA are proper for smoked chicken considering the minimization of HAAs, which may provide a theory basis for the production of smoked chicken.
Collapse
Affiliation(s)
- Lang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yan Wang
- Shimadzu Co. Ltd., Shenyang 110016, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
34
|
Merlo TC, Lorenzo JM, Saldaña E, Patinho I, Oliveira AC, Menegali BS, Selani MM, Domínguez R, Contreras-Castillo CJ. Relationship between volatile organic compounds, free amino acids, and sensory profile of smoked bacon. Meat Sci 2021; 181:108596. [PMID: 34118571 DOI: 10.1016/j.meatsci.2021.108596] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
Flavor is one of the most important characteristics of smoked bacon, strongly affecting its liking by consumers. The smoking process, lipid oxidation and proteolysis contribute to bacon quality through the generation of odors and flavor compounds. In this study, the relationships between free amino acids (FAAs), volatile organic compounds (VOCs) and sensory characteristics of smoked bacon stored for 60 days at 5 °C were investigated. Smoked bacon stored for 30 days was characterized by VOCs associated with the smoking process and lipid oxidation. After 30 days of storage, the bacon samples presented an increase in FAAs produced mainly by proteolysis. Smoked bacon was characterized by the attributes smoky, crunchy, salty, soft and bright. This study demonstrated that VOCs, FAAs and their interactions are responsible for generating sensory attributes and increasing overall liking.
Collapse
Affiliation(s)
- Thais Cardoso Merlo
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Agroindústria, Alimentos e Nutrição, Av. Pádua Dias, 11, Piracicaba, SP, Brazil
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnolóxico de Galicia, San Cibrán das Viñas, Rúa Galicia N 4, Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Erick Saldaña
- Facultad de Ingeniería Agroindustrial, Universidad Nacional de Moquegua (UNAM), Moquegua, Peru
| | - Iliani Patinho
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Agroindústria, Alimentos e Nutrição, Av. Pádua Dias, 11, Piracicaba, SP, Brazil
| | - Alais Cristina Oliveira
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Agroindústria, Alimentos e Nutrição, Av. Pádua Dias, 11, Piracicaba, SP, Brazil
| | - Beatriz Schmidt Menegali
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Agroindústria, Alimentos e Nutrição, Av. Pádua Dias, 11, Piracicaba, SP, Brazil
| | - Miriam Mabel Selani
- Centro de Ciências da Natureza, Campus Lagoa do Sino, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, km 12, Buri, SP, Brazil
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnolóxico de Galicia, San Cibrán das Viñas, Rúa Galicia N 4, Ourense, Spain
| | - Carmen J Contreras-Castillo
- Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Agroindústria, Alimentos e Nutrição, Av. Pádua Dias, 11, Piracicaba, SP, Brazil.
| |
Collapse
|
35
|
Yin M, Fu X, Wang X. Key lipid molecules in hepatopancreas of Eriocheir sinensis: Identification and thermal oxidative degradation characteristics. J Food Biochem 2021; 45:e13734. [PMID: 33990974 DOI: 10.1111/jfbc.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 11/27/2022]
Abstract
The hepatopancreas of Eriocheir sinensis are the key parts that form its unique flavor. Lipids are important parts of hepatopancreas; hence, this study used UHPLC-Q E Orbitrap mass spectrometer to investigate the changes in the lipid composition of crabs formed from thermal oxidation system. The results demonstrated that key lipids in the hepatopancreas of female Chinese mitten crabs were phosphatidylethanolamine (PE) and free fatty acid (FFA) during the steaming process. The key fatty acids of PE were C18:1, C18:3, C20:3, C20:4, C20:5, and C22:6. The degradation rate of C24:0 in FFA was greater than the synthesis rate. Principal component analysis, partial least square analysis combined with hierarchical cluster analysis found that PE (16:0/20:5), PE (18:1/20:4), PE (16:0/22:6), PE (16:0/20:4), PE (16:0 /16:1), PE (16:0/18:2), PE (18:0/20:5), PE (18:0/22:6), PE (18:0/20:4), PE (16:0/18:1), PE (18:0/18:2), PE (18:0/22:5), and PE (18:0/18:1) were the key PE molecular species. Simulating thermal oxidation to understand the dynamic change mechanism of lipids is meaningful for processing of Chinese mitten crab products and catering to public sensory orientation. PRACTICAL APPLICATIONS: In this study, the UHPLC-Q E Orbitrap method was used to detect and analyze the molecular species changes of Eriocheir sinensis in the simulated thermal oxidation system, and systematically analyzed the law of changes. Based on these results, we can expand our understanding of the changing characteristics of the hepatopancreas and pancreas of the river crab and provide a direction for the formation mechanism of the aroma substances of E. sinensis during the heat treatment and the improvement of the quality of its products.
Collapse
Affiliation(s)
- Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| | - Xueyan Fu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
| |
Collapse
|
36
|
Evaluation the potential of lactic acid bacteria isolates from traditional beef jerky as starter cultures and their effects on flavor formation during fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Zhou H, Zhao B, Zhang S, Wu Q, Zhu N, Li S, Pan X, Wang S, Qiao X. Development of volatiles and odor-active compounds in Chinese dry sausage at different stages of process and storage. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Fish Oil Microcapsules as Omega-3 Enrichment Strategy: Changes in Volatile Compounds of Meat Products during Storage and Cooking. Foods 2021; 10:foods10040745. [PMID: 33915969 PMCID: PMC8067074 DOI: 10.3390/foods10040745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
This work aims to analyze the effects of processing and storage on the volatile compound profile of different meat products enriched in ω-3 polyunsaturated fatty acids (PUFA). Monolayered (Mo) and multilayered (Mu) microcapsules of fish oil were tested. The profiles of volatile compounds were analyzed by solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The enrichment with Mo significantly increases the abundance of volatile compounds from lipid oxidation and markers of ω-3 PUFA oxidation, which may be related to the multilayer structure of chitosan–maltodextrin in Mu that achieves greater fish oil protection than the simple coating of maltodextrin in Mo. Besides, the changes in volatile compounds during storage depends on the type of fish oil microcapsules and the meat products, having an increased abundance of ω-3 PUFA oxidation markers in dry-cured sausages added with Mo. However, the enrichment of these meat products with Mo and Mu does not modify the usual variations in the volatile compound profile during culinary cooking. Thus, the addition of multilayer fish oil microcapsules may be a suitable option for enrichment of meat products in ω-3 PUFA without modifying the abundance of volatile compounds, including oxidation markers.
Collapse
|
39
|
The potential correlations between the fungal communities and volatile compounds of traditional dry sausages from Northeast China. Food Microbiol 2021; 98:103787. [PMID: 33875215 DOI: 10.1016/j.fm.2021.103787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
The fungal communities and volatile compounds of traditional dry sausages collected from five different regions in Northeast China, including Harbin (HRB), Daqing (DQ), Suihua (SH), Hegang (HG) and Mudanjiang (MDJ) were investigated in this study. The results revealed clear differences among the fungal community structures of the sausages. Aspergillus pseudoglaucus, Debaryomyces hansenii, and Trichosporon asahii were found to be the predominant species in the sausages from HRB, HG, and MDJ, respectively. Candida zeylanoides was the predominant species in the sausage from DQ and SH. Additionally, 88 volatile compounds were identified in all sausages, of which 31 volatile compounds were the most important flavor contributors (odor activity value > 1). Potential correlation analysis revealed that 8 fungi (D. hansenii, C. zeylanoides, T. asahii, A. pseudoglaucus, Aspergillus sydowii, Penicillium expansum, A. alternata, and Alternaria tenuissima) showed significant positive correlations with ≥3 key volatile compounds. Among these fungi, D. hansenii was regarded as a core functional fungus responsible for the formation of the volatile compounds, given its strong connection with the highest number of key volatile compounds. These results provide detailed insight into the fungal communities of traditional dry sausages and a deeper understanding of the contribution of these fungi to sausage flavor.
Collapse
|
40
|
Hu Y, Wang H, Kong B, Wang Y, Chen Q. The succession and correlation of the bacterial community and flavour characteristics of Harbin dry sausages during fermentation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Wen R, Li XA, Han G, Chen Q, Kong B. Fungal community succession and volatile compound dynamics in Harbin dry sausage during fermentation. Food Microbiol 2021; 99:103764. [PMID: 34119122 DOI: 10.1016/j.fm.2021.103764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/27/2022]
Abstract
This study investigated the fungal community succession and volatile compound dynamics of Harbin dry sausage during a twelve-day fermentation using high-throughput internal transcribed spacer amplicon sequencing and headspace solid-phase microextraction gas chromatography-mass spectrometry. Aspergillus pseudoglaucus was found to be the primary species in the sausages during fermentation, whereas Lasiodiplodia theobromae, Alternaria alternata, Aspergillus caesiellus, and Trichosporon asahii were also prevalent. Additionally, a total of 72 volatile compounds were identified in the dry sausages, of which 24 key compounds (odor activity value > 1) dominated flavor development, including 3 aldehydes, 1 ketone, 4 alcohols, 9 esters, 4 alkenes, and 3 other compounds. Furthermore, correlation analysis suggested that most of the core fungi were positively correlated with the key volatile compounds, particularly A. pseudoglaucus, Aspergillus gracilis, Trichosporon caseorum, Debaryomyces hansenii, and T. asahii. Our findings provide novel insights into the fungal ecology and flavor development of Harbin dry sausages.
Collapse
Affiliation(s)
- Rongxin Wen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Xiang-Ao Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ge Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Qian Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
42
|
Effect of Omega-3 Microcapsules Addition on the Profile of Volatile Compounds in Enriched Dry-Cured and Cooked Sausages. Foods 2020; 9:foods9111683. [PMID: 33217971 PMCID: PMC7698614 DOI: 10.3390/foods9111683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 01/10/2023] Open
Abstract
The main goal of the present study was evaluating the effect of enriching meat products (cooked (C-SAU) and dry-cured sausages (D-SAU)) with monolayered (Mo) and multilayered (Mu) fish oil microcapsules on the profile of volatile compounds, with special interest in lipid oxidation markers. For that, Solid-Phase Microextraction (SPME) and Gas Chromatography-Mass Spectrometry (GC-MS) were used. Significant differences were found in the volatile compound profile between Mo and Mu, which was been reflected in the meat samples. Thus, in general, volatile compounds from lipid oxidation have shown higher abundance in Mo and C-SAU and D-SAU enriched with this type of microcapsule, indicating that the wall of Mu (chitosan-maltodextrine) might protect the encapsulated bioactive compounds more effectively than that of Mo (maltodextrine). However, this finding is not reflected in the results of previous studies evaluating the sensory perception and oxidation stability of C-SAU and D-SAU, but it should be considered since unhealthy oxidation products can be formed in the enriched meat products with Mo. Thus, the addition of Mu as an omega-3 vehicle for enriching meat products may be indicated.
Collapse
|
43
|
Chen Q, Hu Y, Wen R, Wang Y, Qin L, Kong B. Characterisation of the flavour profile of dry fermented sausages with different NaCl substitutes using HS-SPME-GC-MS combined with electronic nose and electronic tongue. Meat Sci 2020; 172:108338. [PMID: 33129060 DOI: 10.1016/j.meatsci.2020.108338] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
The effects of different sodium substitutes on the physical and bacterial properties, flavour profile and sensory evaluation of dry fermented sausage were investigated. There were three different salt formulations, including control (C: 100%NaCl), S1 (70%NaCl and 30%KCl) and S2 (70%NaCl, 20%KCl and 10% flavour enhancers). Higher moisture content and lactic acid bacteria count, and lower pH and Staphylococcus count were observed in NaCl substitution treatments compared to the control (P < 0.05). Sixty-two volatiles were detected in sausages, and 26 compounds were regarded as key volatile compounds based on the odour activity values. The electronic tongue result and sensory evaluation showed that the taste profile of S2 treatment was similar to control treatment; and the electronic nose, volatile compound results and hierarchical cluster analysis showed that the sodium substitutes had a more significant effect on the odour profile. Overall, S2 may be an ideal low-sodium substitute to achieve a 30% reduction in NaCl and provide a better flavour profile of fermented sausages.
Collapse
Affiliation(s)
- Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yingying Hu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Rongxin Wen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yan Wang
- Shimadzu (China) Co., LTD., Shenyang, Liaoning 110000, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
44
|
Xiao Y, Liu Y, Chen C, Xie T, Li P. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages. Food Res Int 2020; 135:109247. [PMID: 32527474 DOI: 10.1016/j.foodres.2020.109247] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 11/17/2022]
Abstract
The use of starter cultures helps to improve the quality and safety of traditional meat products. In this study, the effects of Lactobacillus plantarum R2 and Staphylococcus xylosus A2 inoculation on microbial community, lipolysis, proteolysis, and volatile compounds in Chinese dry fermented sausages were investigated. Culture-dependent and culture-independent high-throughput sequencing) methods were employed to evaluate the bacterial communities. Results showed that the total contents of free fatty acids (FFAs) and free amino acids (FAAs) were increased by inoculating the starter cultures, especially a mixed culture. A significant decrease in pH and water activity was observed in the inoculated sausages (p < 0.05). Moreover, the inoculation treatment enhanced the competitiveness of dominant bacteria and inhibited the growth of unwanted bacteria. This was beneficial to promote the release of FFAs and FAAs and to prevent the formation of off-flavours and rancidity. Thus, the flavour development in the inoculated dry fermented sausages was attributed to the improvements in microbiological quality.
Collapse
Affiliation(s)
- Yaqing Xiao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui Province, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Yingnan Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Conggui Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui Province, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Tingting Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China; Three Squirrel Co., LTD, Wuhu 241000, Anhui Province, China
| | - Peijun Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui Province, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China.
| |
Collapse
|
45
|
Demirok Soncu E, Özdemir N, Arslan B, Küçükkaya S, Soyer A. Contribution of surface application of chitosan-thyme and chitosan-rosemary essential oils to the volatile composition, microbial profile, and physicochemical and sensory quality of dry-fermented sausages during storage. Meat Sci 2020; 166:108127. [PMID: 32247159 DOI: 10.1016/j.meatsci.2020.108127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 12/27/2022]
Abstract
The effect of chitosan (C), chitosan enriched with thyme (CT) or rosemary (CR) essential oils, and potassium sorbate (PS) against superficial fungal growth was investigated in fermented sausages during 3 months of storage at 4 °C. For control groups, distilled water (DW) and acetic acid (AA) were used. PS, C, CT and CR treatments inhibited fungal growth on casings while they resulted in lower Gram(+) catalase(+) cocci, Enterobacteriaceae, mold and yeast counts in sausages. Lower TBARS values were determined for CT and CR (p < .05). A total of 44 and 64 volatile compounds were identified in sausages and casings, respectively. Sausages coated with C, CT or CR had acceptable sensory attributes at the end of storage; however, DW and AA groups were rejected in the second and third month (p < .05), respectively, due to intense fungal growth which resulted in sensory defects.
Collapse
Affiliation(s)
- E Demirok Soncu
- Department of Food Engineering, Faculty of Engineering, Ankara University, Gölbaşı, Ankara, Turkey.
| | - N Özdemir
- Department of Food Engineering, Faculty of Engineering, Ankara University, Gölbaşı, Ankara, Turkey; Department of Food Engineering, Faculty of Engineering and Architecture, Bitlis Eren University, Bitlis, Turkey
| | - B Arslan
- Department of Food Engineering, Faculty of Engineering, Ankara University, Gölbaşı, Ankara, Turkey; Department of Food Engineering, Faculty of Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - S Küçükkaya
- Department of Food Engineering, Faculty of Engineering, Ankara University, Gölbaşı, Ankara, Turkey
| | - A Soyer
- Department of Food Engineering, Faculty of Engineering, Ankara University, Gölbaşı, Ankara, Turkey
| |
Collapse
|
46
|
Zhang D, Ji W, Peng Y, Ji H, Gao J. Evaluation of Flavor Improvement in Antarctic Krill Defluoridated Hydrolysate by Maillard Reaction Using Sensory Analysis, E-nose, and GC-MS. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2020. [DOI: 10.1080/10498850.2020.1723764] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Wei Ji
- College of Biological and Food Engineering, Guangdong University of Education, Guangzhou, P. R. China
| | - Yuanhuai Peng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Zhanjiang, P. R. China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang, P. R. China
| | - Jing Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, P. R. China
| |
Collapse
|
47
|
Gu X, Yu S, Wu Q, Gong S, Wang Z, Wu J, Wang S. A Case Study of a Typical Potato Flavoring based on Aroma Characteristic of Purple Potato. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2020. [DOI: 10.3136/fstr.26.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xinzhe Gu
- Department of Food Science and Engineering, Potato Engineering and Technology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Shengda Yu
- Department of Food Science and Engineering, Potato Engineering and Technology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Qiaoyu Wu
- Department of Food Science and Engineering, Potato Engineering and Technology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Shengxiang Gong
- Department of Food Science and Engineering, Potato Engineering and Technology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Zhengwu Wang
- Department of Food Science and Engineering, Potato Engineering and Technology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Jinhong Wu
- Department of Food Science and Engineering, Potato Engineering and Technology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University
| |
Collapse
|
48
|
Bi Y, Zhou G, Pan D, Wang Y, Dang Y, Liu J, Jiang M, Cao J. The effect of coating incorporated with black pepper essential oil on the lipid deterioration and aroma quality of Jinhua ham. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00195-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Wang R, Huang F, Zhang L, Liu Q, Zhang C, Zhang H. Changes in the texture, microstructures, colour and volatile compounds of pork meat loins during superheated steam cooking. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ruirui Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
| | - Feng Huang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
- Academy of Food and Nutrition Health CAAS Hefei 238000 China
- College of Staple Food Technology Institute of Food Science and Technology CAAS Harbin 151900 China
| | - Liang Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
- Academy of Food and Nutrition Health CAAS Hefei 238000 China
- College of Staple Food Technology Institute of Food Science and Technology CAAS Harbin 151900 China
| | - Qiannan Liu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
- Academy of Food and Nutrition Health CAAS Hefei 238000 China
- College of Staple Food Technology Institute of Food Science and Technology CAAS Harbin 151900 China
| | - Chunjiang Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
- Academy of Food and Nutrition Health CAAS Hefei 238000 China
- College of Staple Food Technology Institute of Food Science and Technology CAAS Harbin 151900 China
| | - Hong Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Key Laboratory of Agro‐Products Processing Ministry of Agriculture Beijing 100193 China
- Academy of Food and Nutrition Health CAAS Hefei 238000 China
- College of Staple Food Technology Institute of Food Science and Technology CAAS Harbin 151900 China
| |
Collapse
|
50
|
Liu P, Wang S, Zhang H, Wang H, Kong B. Influence of glycated nitrosohaemoglobin prepared from porcine blood cell on physicochemical properties, microbial growth and flavour formation of Harbin dry sausages. Meat Sci 2019; 148:96-104. [DOI: 10.1016/j.meatsci.2018.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/26/2022]
|