1
|
Vescovo D, Manetti C, Ruggieri R, Spizzirri UG, Aiello F, Martuscelli M, Restuccia D. The Valorization of Potato Peels as a Functional Ingredient in the Food Industry: A Comprehensive Review. Foods 2025; 14:1333. [PMID: 40282735 PMCID: PMC12026436 DOI: 10.3390/foods14081333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Potato peels (PPs) represent a significant agro-industrial by-product with notable potential for valorization due to their rich composition of bioactive compounds, including phenolics, glycoalkaloids, dietary fiber, and essential minerals. This review explores the functional applications of PPs in the food industry by examining their chemical profile, extraction methods, and biological activities. Phenolic compounds, mainly chlorogenic acid and its derivatives, are the most abundant bioactives and contribute to antioxidant and anti-inflammatory properties. Glycoalkaloids, such as α-solanine and α-chaconine, exhibit antimicrobial activity but require careful monitoring due to their potential toxicity, although recent evidence suggests that controlled doses may provide health benefits. The choice of extraction technique influences the recovery of these compounds, with ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) proving to be efficient and environmentally friendly alternatives to conventional methods. The incorporation of PP-derived ingredients into food formulations, including cereal, dairy, meat, and fish products, as well as vegetable oils, has shown promising results in the improvement of nutritional quality, oxidative stability and functional properties. However, challenges remain with regard to the standardization of PP composition, bioavailability of bioactive compounds and their stability within food matrices. Advancing research on PPs will not only contribute to circular economy goals but also provide innovative solutions for the food industry, reinforcing the link between sustainability and human health.
Collapse
Affiliation(s)
- Domizia Vescovo
- Department of Management, Sapienza University of Rome, 00161 Rome, Italy; (D.V.); (R.R.)
| | - Cesare Manetti
- Department of Environmental Biology, Sapienza University of Rome, 00161 Rome, Italy;
| | - Roberto Ruggieri
- Department of Management, Sapienza University of Rome, 00161 Rome, Italy; (D.V.); (R.R.)
| | - Umile Gianfranco Spizzirri
- Ionian Department of Law, Economics and Environment, University of Bari Aldo Moro, 74123 Taranto, Italy;
| | - Francesca Aiello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Maria Martuscelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Donatella Restuccia
- Department of Management, Sapienza University of Rome, 00161 Rome, Italy; (D.V.); (R.R.)
| |
Collapse
|
2
|
Rehman A, Khalifa I, Rasheed HA, Iqbal MW, Shoaib M, Wang J, Zhao Y, Liang Q, Zhong M, Sun Y, Alsulami T, Ren X, Miao S. Co-encapsulation of borage seed oil and peppermint oil blends within ultrasound-assisted soy protein isolate/purity gum ultra complex nanoparticles: Fabrication, structural interaction mechanisms, and in vitro digestion studies. Food Chem 2025; 463:141239. [PMID: 39278077 DOI: 10.1016/j.foodchem.2024.141239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
This study aimed at co-encapsulating borage seed oil (BSO)- and peppermint oil (PO) blends in ultrasound-assisted complex nanoparticles stabilized by soy protein isolate (SPI) and purity gum ultra (PGU) in different ratios: SPI/PGU-1:0 (NP1), 0:1 (NP2), 1:1 (NP3), 1:3 (NP4), and 3:1 (NP5). The BSO- and PO-loaded SPI/PGU complex nanoparticles (BP-loaded SPNPs) coded as NP4 (SPI-PGU-1:3) revealed a zeta potential of -33.27 mV, a PDI of 0.14, and the highest encapsulation efficiency (81.38 %). The main interactions observed among SPI, PGU, BSO, PO, and a blend of BSO and PO, as determined by FTIR and molecular docking, involved hydrophobic effects, electrostatic attraction, and H-bonding. These interactions played crucial roles in the production of BP-loaded SPNPs. XRD results validated the alterations in the structure of BP-loaded SPNPs caused by varying proportions of SPI and PGU. The thermal capacity of BP-loaded SPNPs (NP4), as determined by TGA, exhibited the lowest amount of weight loss compared to other BP-loaded SPNPs. Morphological results revealed that NP4 and NP5 exhibited a spherical surface and two distinguishable layers, indicating successful coating of PGU onto the droplet surface. In addition, BP-loaded SPNPs (NP4) exhibited a higher antioxidant effect due to their improved progressive release and prolonged release of co-encapsulated BSO and PO during in vitro digestion. The comprehensive investigation of the co-encapsulation of BSO and PO in complex nanoparticles, dietary supplements, and double-layered emulsified systems provides valuable insights into the development of functional foods.
Collapse
Affiliation(s)
- Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ibrahim Khalifa
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Food Technology Department, Faculty of Agriculture,13736, Moshtohor, Benha University, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Hafiz Abdul Rasheed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Muhammad Shoaib
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yongjun Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Tawfiq Alsulami
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
3
|
Belhoussaine O, El Kourchi C, Mohammed A, El Yadini A, Ullah R, Iqbal Z, Goh KW, Gallo M, Harhar H, Bouyahya A, Tabyaoui M. Unveiling the oxidative stability, phytochemical richness, and nutritional integrity of cold-pressed Linum usitatissimum oil under UV exposure. Food Chem X 2024; 24:101785. [PMID: 39290756 PMCID: PMC11406365 DOI: 10.1016/j.fochx.2024.101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
This study examines the effect of UV irradiation on the oxidation stability of Linum usitatissimum oil, presenting possible changes in the phytochemical profile due to photo-oxidation. GC-MS analysis of the oils identified 11 fatty acid compounds with a high percentage of unsaturated fatty acids, the most important of which is α-linolenic acid (ALA), known as omega-3 (48.88 %), also significant profiles of phytosterol and tcocopherol isomers rich in β-Sitosterol and γ-tocopherols respectively. As well as physicochemical properties such as free fatty acids (FFA %), peroxide value (PV) and iodine value (IV), and nutritional indexes that determine the significant changes observed during the oxidation process, the most important of which is the progressive increase in acidity, peroxide, conjugated dienes and trienes and degrees of unsaturation over 8 h of UV exposure. High levels of carotenoids and phenolic compounds (TPC) protect and enhance oil quality in the face of irradiation, so a significantly small difference is observed between irradiated and non-irradiated oil during photo-oxidation.
Collapse
Affiliation(s)
- Oumayma Belhoussaine
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014 Rabat, Morocco
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014 Rabat, Morocco
| | - Amakhmakh Mohammed
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, Sidi Mohamed ben Abdellah University in Fes, Morocco
| | - Adil El Yadini
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014 Rabat, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University P.O.Box 7805, Riyadh 11472, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Engineering, Shinawatra University, Samkhok, Pathum Thani, Thailand
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014 Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014 Rabat, Morocco
| |
Collapse
|
4
|
Baştürk A, Yavaş B. Improving sunflower oil stability with propolis: A study on antioxidative effects of Turkish propolis during accelerated oxidation. J Food Sci 2024; 89:8910-8929. [PMID: 39475345 DOI: 10.1111/1750-3841.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024]
Abstract
Propolis, a natural resinous substance collected by bees, is known for its potent antioxidant properties. This study investigates the antioxidant activities and total phenolic contents of propolis samples from 16 provinces of Türkiye and their effects on the oxidative stability of sunflower oil. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) inhibition was in the range of 28.1%-92.5% in thirteen propolis samples, whereas this rate was 24.5% in butylated hydroxytoluene (BHT). Although 2,2'-azino-bis(3-ethylbenzotiazolin-6-sulfonic acid) (ABTS) value was 224 µmol trolox/g in BHT, this value was in the range of 262-1370 µmol trolox/g in propolis samples, except for one. Propolis methanol extracts 13 applied to sunflower oil at a concentration of 1000 ppm were more efficient than BHT added at 200 ppm for inhibiting the production of peroxide value (PV). Similarly, most propolis extracts (1000 ppm) demonstrated antioxidant activity against the production of p-anisidine (p-AV) in sunflower oil under accelerated oxidation conditions. It was determined that Turkish propolis had strong antioxidant properties and delayed oxidation and may be utilized commercially in the food sector to delay the oxidation of fats and oils.
Collapse
Affiliation(s)
- Ayhan Baştürk
- Department of Food Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, Turkey
| | - Berfin Yavaş
- Department of Food Engineering, Faculty of Engineering, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
5
|
Belhoussaine O, El Kourchi C, Amakhmakh M, Ullah R, Iqbal Z, Goh KW, Gallo M, Harhar H, Bouyahya A, Tabyaoui M. Oxidative stability and nutritional quality of stored Linum usitatissmium L. and Argania spinosa L., oil blends: Chemical compositions, properties and nutritional value. Food Chem X 2024; 23:101680. [PMID: 39184320 PMCID: PMC11342117 DOI: 10.1016/j.fochx.2024.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
Identification of the chemical compositions of fatty acids and tocopherols shows the high content of linum usitatissimum oil (LO) by linolenic acid 55.3735% and γ-tocopherol 570.927 mg/kg, while argania spinosa oil (AO) is known by the dominance of oleic acid 47.77% followed by linoleic acid 31.08% as well as tocopherols by γ-tocopherols 687.485 mg/kg and δ-tocopherols 51.035 mg/kg. This difference in compositions enables us to enrich the low-stability oil and monitor its behavior during storage at a specific time and under specific conditions. In this study, pure linum usitatissimum and argania spinosa oils extracted by cold pressing as well as their formulations at proportions of (LO: AO) respectively: (80:20; 60:40, 50:50; 40:60; 20: 80) were oxidized at 60 °C for 28 days of storage, during which time the pure oils and blends were assessed for oxidative stability by studying their different fatty acid and tocopherol profiles and physicochemical characteristics such as acidity, peroxide value and chlorophyll and carotenoid pigments, as well as nutritional indexes such as the atherogenic index (AI), the thrombogenic index (TI), and the hypocholesterolemic: hypercholesterolemic ratio (HH), ω3:ω6 ratio, also the oxidative susceptibility (OS), and oxidazability value (Cox), and total phenolic compounds (TPC).
Collapse
Affiliation(s)
- Oumayma Belhoussaine
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Mohamed Amakhmakh
- Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, Sidi Mohamed ben Abdellah University in Fes, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University P.O.Box 7805, Riyadh, 11472, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Engineering, Shinawatra University, Samkhok, Pathum Thani, Thailand
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini, 5, 80131 Naples, Italy
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Mohamed Tabyaoui
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta, B.P1014, Rabat, Morocco
| |
Collapse
|
6
|
Mashhadi Z, Davati N, Emamifar A, Karami M. The effect of nano/microparticles of bee pollen on the shelf life of high-fat cooked sausage during refrigerated storage. Food Sci Nutr 2024; 12:4269-4283. [PMID: 38873449 PMCID: PMC11167182 DOI: 10.1002/fsn3.4086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/15/2024] Open
Abstract
Sausage is susceptible to oxidative changes in lipids and microbial spoilage due to the presence of water, fat, protein, and vitamins. Bee pollen (BP) as a source of potential antioxidants and antibacterial compounds can effectively prevent lipid peroxidation and microbial spoilage in meat products. The aim of the present study was to investigate the antibacterial and antioxidant activities of BP and the effects of nano/microparticles of bee pollen extract (n/m BP) at a concentration of 125 and 250 mg/100 g meat on the oxidative stability and microbial growth of high-fat sausage during 30 days of storage at 4°C. The formation of BP particles in the nano/micro range was confirmed by scanning electron microscopy. High concentrations of total phenolic compounds (28.26 ± 0.10 mg GAE/g BP) with antioxidant activity (EC50 = 5.4 ± 0.07 mg/mL) were detected in BP. Based on the microdilution assay, the minimum inhibitory concentration of n/m BP for all test bacteria was 1000 (μg/mL) and the minimum bactericidal concentration of n/m BP was 2000 (μg/mL) for Staphylococcus aureus and Bacillus cereus and 4000 (μg/mL) for Escherichia coli and Pseudomonas aeruginosa. The n/m BP treatment (250 mg/100 g meat) showed a higher pH value (p < .05) and lower TBARS values (p < .05) than the ascorbic acid treatment (100 mg/100 g meat) and the control during the storage period. The microbial analysis showed that the addition of n/m BP led to a significant decrease (p < .05) in the total bacterial count, coliforms, S. aureus, and fungal population compared to the other samples. The results show that the addition of n/m BP (125 mg/100 g) can improve the texture, taste, and overall acceptability of the sausage compared to the control sample. In conclusion, this study suggests that BP can replace synthetic antioxidants in high-fat sausages at the nano/microparticle level.
Collapse
Affiliation(s)
- Zahra Mashhadi
- Department of Food Science and Technology, Faculty of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Nafiseh Davati
- Department of Food Science and Technology, Faculty of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Aryou Emamifar
- Department of Food Science and Technology, Faculty of Food IndustryBu‐Ali Sina UniversityHamedanIran
| | - Mostafa Karami
- Department of Food Science and Technology, Faculty of Food IndustryBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
7
|
Alshehri AA, Kamel RM, Gamal H, Sakr H, Saleh MN, El-Bana M, El-Dreny ESG, El Fadly E, Abdin M, Salama MA, Elsayed M. Sodium alginate films incorporated with Lepidium sativum (Garden cress) extract as a novel method to enhancement the oxidative stability of edible oil. Int J Biol Macromol 2024; 265:130949. [PMID: 38508545 DOI: 10.1016/j.ijbiomac.2024.130949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study addresses the growing interest in bio-based active food packaging by infusing Lepidium sativum (Garden cress) seeds extract (GRCE) into sodium alginate (SALG) films at varying concentrations (1, 3, and 5 %). The GRCE extract revealed six phenolic compounds, with gallic and chlorogenic acids being prominent, showcasing substantial total phenolic content (TPC) of 139.36 μg GAE/mg and total flavonoid content (TFC) of 26.46 μg RE/mg. The integration into SALG films significantly increased TPC, reaching 30.73 mg GAE/g in the film with 5 % GRCE. This enhancement extended to DPPH and ABTS activities, with notable rises to 66.47 and 70.12 %, respectively. Physical properties, including tensile strength, thickness, solubility, and moisture content, were positively affected. A reduction in water vapor permeability (WVP) was reported in the film enriched with 5 % GRCE (1.389 × 10-10 g H2O/m s p.a.). FT-IR analysis revealed bands indicating GRCE's physical interaction with the SALG matrix, with thermal stability of the films decreasing upon GRCE integration. SALG/GRCE5 effectively lowered the peroxide value (PV) of sunflower oil after four weeks at 50 °C compared to the control, with direct film-oil contact enhancing this reduction. Similar trends were observed in the K232 and K270 values.
Collapse
Affiliation(s)
- Azizah A Alshehri
- Department of Home Economic, College of Home Economic, Abha, King Khalid University, Kingdom of Saudi Arabia
| | - Reham M Kamel
- Agricultural Engineering Research Institute, Agricultural Research Center, Dokki, Giza 12611, Egypt
| | - Heba Gamal
- Home Economics Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Hazem Sakr
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Mohamed N Saleh
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Mohamed El-Bana
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | | | - Enas El Fadly
- Dairy Sciences Department, Faculty of Agriculture, Kafrelshiekh University, Kafr El Sheikh, Egypt
| | - Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | | | | |
Collapse
|
8
|
Wang X, Yang S, Sun J, Chen G, Wen Y, Yang J, Nie X, Liu C. Metabolomics Reveals the Response Mechanisms of Potato Tubers to Light Exposure and Wounding during Storage and Cooking Processes. Foods 2024; 13:308. [PMID: 38254610 PMCID: PMC10814798 DOI: 10.3390/foods13020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Potato is susceptible to light exposure and wounding during harvesting and transportation. However, the metabolite profile changes in these potato tubers are unclear. The potato cultivars in this study included Hezuo88 (HZ88), Shida6 (SD6), and Jianchuanhong (JCH); the effects of light exposure (L), wounding (W), and the cooking process on potato metabolites were determined. In total, 973 metabolites were identified, with differential metabolites (mainly alkaloids, flavonoids, and phenolic acids) accumulated on days 0 and 2 (0 d and 2 d) in the 0dHZ88 vs. 0dJCH (189), 0dHZ88 vs. 0dSD6 (147), 0dSD6 vs. 0dJCH (91), 0dJCH vs. 2dIJCH (151), 0dJCH vs. 2dWDJCH (250), 0dJCH vs. 2dWLJCH (255), 2dIJCH vs. 2dWDJCH (234), and 2dIJCH vs. 2dWLJCH (292) groups. The flavonoid content in the light exposure group was higher than that in the dark group. The alkaloid content in the wounded group was higher than that in the uninjured potato tuber group, but the lipid content in the wounded group was lower. Importantly, only 5.54% of the metabolites changed after potato tuber steaming. These results provide valuable information for the breeding and consumption of potato tubers.
Collapse
Affiliation(s)
- Xin Wang
- Yunnan Provincial Academy of Food and Oil Sciences, Kunming 650033, China
| | - Shuiyan Yang
- Yunnan Provincial Academy of Food and Oil Sciences, Kunming 650033, China
| | - Jinghan Sun
- Yunnan Provincial Academy of Food and Oil Sciences, Kunming 650033, China
| | - Guoyan Chen
- Yunnan Provincial Academy of Food and Oil Sciences, Kunming 650033, China
| | - Yunman Wen
- Yunnan Provincial Academy of Food and Oil Sciences, Kunming 650033, China
| | - Jin Yang
- Yunnan Provincial Academy of Food and Oil Sciences, Kunming 650033, China
| | - Xuheng Nie
- Yunnan Provincial Academy of Food and Oil Sciences, Kunming 650033, China
| | - Chao Liu
- College of Biological Resource and Food Engineering, Yunnan Engineering Research Center of Fruit Wine, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
9
|
Tavakoli J, Abbasi H, Gashtasebi S, Salmanpour M, Mousavi Khaneghah A. Enhancing canola oil's shelf life with nano-encapsulated Mentha aquatica extract for optimal antioxidant performance. Food Sci Nutr 2023; 11:7985-7995. [PMID: 38107116 PMCID: PMC10724637 DOI: 10.1002/fsn3.3717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 12/19/2023] Open
Abstract
Incorporation of antioxidants, such as phenolic compounds into edible oils has limitations such as rapid release of phenolic compounds, low solubility, low penetration, low accessibility, and rapid degradation by environmental compounds. To solve this problem, the nano-encapsulation process is offering promising opportunities. In this research, for the first time, the phenolic extract of Mentha aquatica was nano-encapsulated in nano-emulsions coated with chitosan, Lepidium perfoliatum gum (LPG), and complex of chitosan and LPG (CCL) (1:1 ratio). Based on various tests (particle size measurement, ζ-potential, polydispersity index, encapsulation efficiency index, and intensity curve), the LPG coating was the most optimum option for nano-encapsulation compared to the other coatings. Thus, the LPG-assisted nano-encapsulated phenolic extract of M. aquatica was used to improve the oxidative stability of canola oil at three concentrations (100, 200, and 300 ppm). The results of peroxide value and anisidine index tests (as initial and secondary oxidation indicators, respectively) showed that the nano-encapsulation improved the antioxidant effect of M. aquatica when compared with free extract in canola oil. In a comparative approach, the best sample was obtained from the LPG-assisted nano-encapsulated extract (200 ppm) due to the release of more phenolic compounds. The findings from this study showcase how nano-encapsulation enhances the efficacy of antioxidants in edible oils.
Collapse
Affiliation(s)
- Javad Tavakoli
- Department of Food Science and Technology, Faculty of AgricultureJahrom UniversityJahromIran
| | - Habib Abbasi
- Department of Nutrition Sciences, Ewaz School of HealthLarestan University of Medical SciencesLarestanIran
- Department of Chemical EngineeringJundi‐Shapur University of TechnologyDezfulIran
| | - Sara Gashtasebi
- Department of Food Science and Technology, Faculty of AgricultureJahrom UniversityJahromIran
- Department of Food Science, Engineering and TechnologyUniversity of TehranKarajIran
| | - Mohsen Salmanpour
- Cellular and Molecular Biology Research CenterLarestan University of Medical SciencesLarestanIran
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product TechnologyProf. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology – State Research InstituteWarsawPoland
| |
Collapse
|
10
|
Lid Films of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate)/Microfibrillated Cellulose Composites for Fatty Food Preservation. Foods 2023; 12:foods12020375. [PMID: 36673467 PMCID: PMC9858538 DOI: 10.3390/foods12020375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The present work evaluates the food packaging performance of previously developed films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced with atomized microfibrillated cellulose (MFC) compatibilized by a reactive melt-mixing process. To this end, the novel green composite films were originally applied herein as lids in aluminum trays to preserve two dissimilar types of fatty foods, namely minced pork meat and sunflower oil. Results indicated that the PHBV/MFC films effectively preserved the physicochemical and microbiological quality of pork meat for one week of storage at 5 °C. In particular, the compatibilized green composite lid film yielded the lowest weight loss and highest oxidative stability, showing values of 0.935% and 0.78 malonaldehyde (MDA)/kg. Moreover, none of the packaged meat samples exceeded the acceptable Total Aerobial Count (TAC) level of 5 logs colony-forming units (CFU)/g due to the improved barrier properties of the lids. Furthermore, the green composite films successfully prevented sunflower oil oxidation in accelerated oxidative storage conditions for 21 days. Similarly, the compatibilized PHBV/MFC lid film led to the lowest peroxide value (PV) and conjugated diene and triene contents, with respective values of 19.5 meq O2/kg and 2.50 and 1.44 g/100 mL. Finally, the migration of the newly developed PHBV-based films was assessed using two food simulants, proving to be safe since their overall migration levels were in the 1-3 mg/dm2 range and, thus, below the maximum level established by legislation.
Collapse
|
11
|
Arjeh E, Khodaei SM, Barzegar M, Pirsa S, Karimi Sani I, Rahati S, Mohammadi F. Phenolic compounds of sugar beet ( Beta vulgaris L.): Separation method, chemical characterization, and biological properties. Food Sci Nutr 2022; 10:4238-4246. [PMID: 36514772 PMCID: PMC9731528 DOI: 10.1002/fsn3.3017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
Sugar beet (Beta vulgaris L.) is a good source of bioactive compounds. However, information on the biological properties of sugar beet root is limited and its beneficial effects have not been completely understood. In this work, 10 phenolic compounds have been separated and identified in various parts of sugar beet for the first time, including the most abundant epicatechin (31.16 ± 1.89 mg/100 g), gallic acid (30.57 ± 2.69 mg/100 g), and quercetin-3-O-rutinoside (30.14 ± 3.63 mg/100 g). The biological activity tests indicated that sugar beet peel potently scavenged the nitric oxide and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals with IC50 values of 88.17 ± 05.14 and 28.77 ± 0.62 μg/ml, respectively. In addition, sugar beet peel exhibited the highest reducing power, IC50 values of 11.98 ± 1.20 μg/ml, and the highest ion-chelating activity, IC50 values of 48.52% and 55.21% for cupric and ferrous ions at 250 μg/ml, respectively. Compared to synthetic antioxidants, sugar beet showed promising biological activities, which could be considered further in future studies.
Collapse
Affiliation(s)
- Edris Arjeh
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Seyedeh Mahsa Khodaei
- Faculty of Nutrition and Food SciencesIsfahan University of Medical SciencesIsfahanIran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Sajad Pirsa
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Iraj Karimi Sani
- Department of Food Science and Technology, Faculty of AgricultureUrmia UniversityUrmiaIran
| | - Shiva Rahati
- Department of Nutrition, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | | |
Collapse
|
12
|
Mohdaly AAA, Roby MHH, Sultan SAR, Groß E, Smetanska I. Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips. Molecules 2022; 27:7516. [PMID: 36364343 PMCID: PMC9659110 DOI: 10.3390/molecules27217516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2023] Open
Abstract
Acrylamide is classified as a toxic and a prospective carcinogen to humans, and it is formed during thermal process via Maillard reaction. In order to find innovative ways to diminish acrylamide formation in potato chips, several extracts of agricultural wastes including potato peels, olive leaves, lemon peels and pomegranate peels extracts were examined as a soaking pre-treatment before frying step. Total phenolic, total flavonoids, antioxidant activity, and the reduction in sugar and asparagine contents were additionally performed. Proximate composition of these wastes was found to be markedly higher in fat, carbohydrate and ash contents. Lemon peels and potato peels showed almost similar phenolic content (162 ± 0.93 and 157 ± 0.88 mg GAE /g, respectively) and exhibited strong ABTS and DPPH radical scavenging activities than the other wastes. The reduction percentage of reducing sugars and asparagine after soaking treatment ranged from 28.70 to 39.57% and from 22.71 to 29.55%, respectively. HPLC results showed higher level of acrylamide formation in control sample (104.94 mg/kg) and by using the wastes extracts of lemon peels, potato peels, olive leaves, and pomegranate peels succeeded to mitigate acrylamide level by 86.11%, 69.66%, 34.03%, and 11.08%, respectively. Thus, it can be concluded that the soaking of potato slices in the tested wastes extracts as antioxidant as pre-treatment before frying reduces the formation of acrylamide and in this way, the risks connected to acrylamide consumption could be regulated and managed.
Collapse
Affiliation(s)
- Adel Abdelrazek Abdelazim Mohdaly
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihenstephan-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
| | - Mohamed H. H. Roby
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Seham Ahmed Rabea Sultan
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Eberhard Groß
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihenstephan-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
| | - Iryna Smetanska
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihenstephan-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
| |
Collapse
|
13
|
Singh L, Kaur S, Aggarwal P. Techno and bio functional characterization of industrial potato waste for formulation of phytonutrients rich snack product. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Singh L, Kaur S, Aggarwal P, Kaur N. Characterization of industrial potato waste for suitability in food applications. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lovepreet Singh
- Department of Food Science and Technology Punjab Agricultural University Ludhiana ‐141004 Punjab India
| | - Sukhpreet Kaur
- Department of Food Science and Technology Punjab Agricultural University Ludhiana ‐141004 Punjab India
| | - Poonam Aggarwal
- Department of Food Science and Technology Punjab Agricultural University Ludhiana ‐141004 Punjab India
| | - Navjot Kaur
- Department of Food Science and Technology Punjab Agricultural University Ludhiana ‐141004 Punjab India
| |
Collapse
|
15
|
Metabolic Profiling of Bulgarian Potato Cultivars. Foods 2022; 11:foods11131981. [PMID: 35804796 PMCID: PMC9265564 DOI: 10.3390/foods11131981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Potatoes (Solanum tuberosum L.) are the fourth most economically important crop in the world. They have a short period of vegetation and are an excellent source of carbohydrates, amino acids, vitamins, organic acids, minerals and phenolics as antioxidant substances. Potato can be a major dietary source of various bioactive compounds. In this study, we applied gas chromatography coupled with mass spectrometry (GC-MS) metabolite profiling to classify eight Bulgarian potato cultivars bred in the Maritsa Vegetable Crops Research Institute (VCRI), Plovdiv, according to their metabolite contents. Altogether, we determine their flavonoids/phenolics to evaluate their nutritive quality for the breeding program with the target of determining strong health-promoting compounds. The “Kalina” cultivar is highlighted as the best one with the highest number of metabolites, containing 14 out of the 26 evaluated; it was selected as the highest-quality cultivar, compared with the other seven cultivars studied. According to the grouping of the cultivars in principal component analysis PCA, their positive distribution is explained mainly by them having the highest contents of aminobutyric and isocitric acids, methionine and alanine and lower levels of fumaric acid, pyroglutamic acid and glycine, in contrast to the cultivars distributed negatively, which had high contents of carbohydrates and relatively low contents of most of the amino acids. The highest number of amino acids was found in the cultivar “Kalina”, followed by “Perun” and “Bor”. The highest number of carbohydrates was found in “Pavelsko” and “Iverce”, while the prominent accumulation of organic acids was found in “Kalina”, “Bor” and “Rozhen”. The highest number of flavonoids in the flesh of the tubers was found in the cultivars “Nadezhda” and “Pavelsko”, followed by “Bor”. The highest ratio of flavonoids/phenolics in the flesh was found in “Pavelsko” and in “Nadezhda”, followed by “Iverce”.
Collapse
|
16
|
Jin F, Wang Y, Huang R, Li B, Zhou Y, Pei D. Phenolic extracts from colored-walnut pellicles: antioxidant efficiency in walnut oil preservation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Feng Jin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Yaping Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Ruimin Huang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Baoxin Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Ye Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| |
Collapse
|
17
|
Improving oxidative stability of soyabean oil by apple pomace extract during deep frying of french fries. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Rehman A, Tong Q, Korma SA, Han W, Karim A, Sharif HR, Ali A, Yaqoob S, Khalifa SA, Cacciotti I. Influence of diverse natural biopolymers on the physicochemical characteristics of borage seed oil-peppermint oil loaded W/O/W nanoemulsions entrapped with lycopene. NANOTECHNOLOGY 2021; 32:505302. [PMID: 34469878 DOI: 10.1088/1361-6528/ac22de] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Borage seed oil (BSO), peppermint oil (PO) and lycopene (LC) have accomplished a lot of interest due to their therapeutic benefits in the food and pharmaceutical sectors. However, their employment in functional food products and dietary supplements is still precluded by their high susceptibility to oxidation. Thus, the encapsulation can be applied as a promising strategy to overcome these limits. In the present study, doubly layered water/oil/water (W/O/W) nanoemulsions were equipped using purity gum ultra (PGU), soy protein isolate (SPI), pectin (PC), whey protein isolate (WPI) and WPI-PC and SPI-PC complexes, and their physico-chemical properties were investigated. Our aim was to investigate the influence of natural biopolymers as stabilizers on the physicochemical properties of nanoemulsified BSO, PO and lycopene thru W/O/W emulsions. The droplet size of the fabricated emulsions coated with PGU, WPI, SPI, PC, WPI-PC, and SPI-PC was 156.2, 265.9, 254.7, 168.5, 559.5 and 656.1 nm, correspondingly. The encapsulation efficiency of the entrapped bioactives for powders embedded by PGU, WPI, SPI, PC, WPI-PC, and SPI-PC was 95.21%, 94.67%, 97.24%, 92.19%, 90.07% and 92.34%, respectively. In addition, peroxide and p-anisidine values were used to measure the antioxidant potential of the entrapped bioactive compounds during storage, which was compared to synthetic antioxidant and bare natural antioxidant. The collected findings revealed that oxidation occurred in oils encompassing entrapped bioactive compounds, but at a lower extent than for non-encapsulated bioactives. In summary, the findings obtained from current research prove that the nanoencapsulation of BSO surrounded by innermost aqueous stage of W/O/W improved its stability as well as allowed a controlled release of the entrapped bioactives. Thus, the obtained BSO-PO-based systems could be successfully used for further fortification of food-stuffs.
Collapse
Affiliation(s)
- Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, People's Republic of China
- Collaborative Innovation Centre of Food Safety and Quality Control, Jiangsu Province, People's Republic of China
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, People's Republic of China
- Collaborative Innovation Centre of Food Safety and Quality Control, Jiangsu Province, People's Republic of China
| | - Sameh A Korma
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, People's Republic of China
| | - Wen Han
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, Guangdong, People's Republic of China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, People's Republic of China
| | - Hafiz Rizwan Sharif
- University Institute of Diet and Nutritional Sciences, The University of Lahore (Gujrat Campus), Pakistan
| | - Ahmad Ali
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Sanabil Yaqoob
- Department of Food Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Salah A Khalifa
- Department of Food Science, Faculty of Agriculture, Zagazig University, 114 El-Zeraa Road, Zagazig 44511, Sharkia, Egypt
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolo Cusano', Roma, Italy
| |
Collapse
|
19
|
Erdoğan Ü, Gökçe EH. Fig seed oil‐loaded nanostructured lipid carriers: Evaluation of the protective effects against oxidation. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ümit Erdoğan
- Faculty of Agriculture Isparta University of Applied Sciences Isparta Turkey
| | - Evren Homan Gökçe
- Department of Pharmaceutical Technology Faculty of Pharmacy University of Ege Izmir Turkey
| |
Collapse
|
20
|
Aydın S, Sayin U, Sezer MÖ, Sayar S. Antioxidant efficiency of citrus peels on oxidative stability during repetitive deep‐fat frying: Evaluation with EPR and conventional methods. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sema Aydın
- Department of Gastronomy (English) Istanbul Gelisim University Istanbul Turkey
| | - Ulku Sayin
- Department of Physics, Faculty of Science Selçuk University Konya Turkey
| | - M. Özgür Sezer
- Department of Physics, Faculty of Science Selçuk University Konya Turkey
| | - Sedat Sayar
- Department of Food Engineering University of Mersin Mersin Turkey
| |
Collapse
|
21
|
Lau KQ, Sabran MR, Shafie SR. Utilization of Vegetable and Fruit By-products as Functional Ingredient and Food. Front Nutr 2021; 8:661693. [PMID: 34211995 PMCID: PMC8239155 DOI: 10.3389/fnut.2021.661693] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
With the constant growth of the human population, the global demand for food is increasing annually. Food security is an arising issue due to decreased resources and massive waste production from the agricultural sector. For example, not all parts of fruits and vegetables are consumed by consumers, and this phenomenon can lead to huge amounts of food wastes that are produced globally. Moreover, non-utilized agriculture by-products, including seed coat, hull, husk, peels, seeds, and pomace, can cause environmental issues. Hence, efficiently utilizing food wastes, such as vegetable and fruit by-products, could be a way to increase food sustainability, and in line with the United Nations Sustainable Development Goal (SDG) to ensure sustainable consumption and production patterns. Moreover, certain agriculture by-products are reported to have a high nutritional value and could be potentially used as functional ingredient and food in the food industry. This review article summarizes findings on the development of new functional foods by utilizing different types of agriculture by-products, that is, vegetable and fruit by-products as ingredients. Furthermore, the nutritional values, processing methods, product acceptability, and potential uses of these vegetable and fruit by-products are also discussed. These by-products can be an alternative source of nutrients to support the global demand for functional foods and as one of the strategies to cope with food insecurity. Studies have shown that different types of fruit and vegetable by-products were well-incorporated in the development of functional foods, such as bakery products and dairy products. Of great importance, this review article provides an insight of the nutritional value, health benefits, and utilization of fruit and vegetable by-products.
Collapse
Affiliation(s)
- Ke Qi Lau
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Redzwan Sabran
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siti Raihanah Shafie
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
22
|
Constantin OE, Milea AȘ, Bolea C, Mihalcea L, Enachi E, Copolovici DM, Copolovici L, Munteanu F, Bahrim GE, Râpeanu G. Onion ( Allium cepa L.) peel extracts characterization by conventional and modern methods. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2020-0310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The impact of different extraction methods on bioactive compounds (total phenols and flavonoids) recovery from onion wastes recovered from the market was investigated. The results revealed a total polyphenol content from 25.19 ± 3.56 mg gallic acid equivalents/g for enzyme-assisted extraction (EAE) to 212.56 ± 1.18 mg gallic acid equivalents/g for supercritical extraction (SFE). The total flavonoid content registered from 108.36 ± 3.62 mg quercetin equivalents/g for EAE to 334.97 ± 19.41 mg quercetin equivalents/g for conventional solvent extraction (CSE). The antioxidant activity (404.93 ± 1.39 mM Trolox/g) for SFE was the highest compared to all the extraction procedures used. The chromatographic profiles were conducted at five primary compound identification (quercetin 7,4-diglycoside, quercetin 3,4-diglycoside, quercetin 4-glucoside, quercetin, and kaempferol) and GC-MS analysis allowed the identification of 26 compounds, manly identified in EAE. The results also revealed that the SFE method, as a non-invasive technique, recorded the highest concentration of bioactive compounds and antioxidant activity, confirmed by chromatographic profiles.
Collapse
Affiliation(s)
- Oana Emilia Constantin
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati , 111 Domnească Street, 800201 , Galati , Romania
| | - Adelina Ștefania Milea
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati , 111 Domnească Street, 800201 , Galati , Romania
| | - Carmen Bolea
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati , 111 Domnească Street, 800201 , Galati , Romania
| | - Liliana Mihalcea
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati , 111 Domnească Street, 800201 , Galati , Romania
| | - Elena Enachi
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati , 111 Domnească Street, 800201 , Galati , Romania
| | - Dana Maria Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development, and Innovation in Technical and Natural Sciences, Aurel Vlaicu University of Arad , 2 Elena Dragoi St. , Arad , 310330 , Romania
| | - Lucian Copolovici
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development, and Innovation in Technical and Natural Sciences, Aurel Vlaicu University of Arad , 2 Elena Dragoi St. , Arad , 310330 , Romania
| | - Florentina Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, Institute for Research, Development, and Innovation in Technical and Natural Sciences, Aurel Vlaicu University of Arad , 2 Elena Dragoi St. , Arad , 310330 , Romania
| | - Gabriela Elena Bahrim
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati , 111 Domnească Street, 800201 , Galati , Romania
| | - Gabriela Râpeanu
- Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati , 111 Domnească Street, 800201 , Galati , Romania
| |
Collapse
|
23
|
The Use of Salvia macrosiphon and Lepidium sativum Linn. Seed Gums in Nanoencapsulation Processes: Improving Antioxidant Activity of Potato Skin Extract. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5519857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In the present study, the effect of Salvia macrosiphon Seed Gum (SMSG) and Lepidium sativum Linn. Seed Gum (LSSG) as a coating agent on the properties of nanoencapsulated potato skin extract was studied. Moreover, the antioxidant effect of nanoencapsulated extract at a concentration of 1000 ppm incorporated into soybean oil was evaluated. The Z-average size of the emulsions stabilized by SMSG; LSSG; and a complex (1 : 1) of SMSG and LSSG (CSL) was estimated as 160.2, 144.3, and 115.2 nm. The encapsulation efficiency of phenolic extracts in the powders formed by SMSG, LSSG, and CSL was 82.39, 81.67, and 93.6% which declined to 45.28, 48.22, and 62.67% after storage for 40 days at 30°C. The results indicated that the use of coating agents for encapsulation enhanced their antioxidant effect and compared with TBHQ and free extract that nanoencapsulated extract by CSL had the highest antioxidant activity followed by LSSG nanoencapsulated extract and SMSG nanoencapsulated extract.
Collapse
|
24
|
Wu Q, Zhou J. The application of polyphenols in food preservation. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:35-99. [PMID: 34507646 DOI: 10.1016/bs.afnr.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyphenols are a kind of complex secondary metabolites in nature, widely exist in the flowers, bark, roots, stems, leaves, and fruits of plants. Numerous studies have shown that plant-derived polyphenols have a variety of bioactivities due to their unique chemical structure, such as antioxidant, antimicrobial, and prevention of chronic diseases, cardiovascular disease, cancer, osteoporosis, and neurodegeneration. With the gradual rise of natural product development, plant polyphenols have gradually become one of the research hotspots in the field of food science due to their wide distribution in the plants, and the diversity of physiological functions. Owing to the extraordinary antioxidant and antibacterial activity of polyphenols, plant-derived polyphenols offer an alternative to chemical additives used in the food industry, such as oil, seafood, meat, beverages, and food package materials. Based on this, this chapter provides an overview of the potential antioxidant and antibacterial mechanisms of plant polyphenols and their application in food preservation, it would be providing a reference for the future development of polyphenols in the food industry.
Collapse
Affiliation(s)
- Qian Wu
- Hubei University of Technology, Wuhan, China.
| | - Jie Zhou
- Northwest Agriculture & Forestry University, Yangling, China
| |
Collapse
|
25
|
Bhattacharya A, Purkait S, Bag A, Chattopadhyay RR. Evaluation of antimicrobial and antioxidant efficacy of hydro ethanol extract of peels of
Kufri Chandramukhi
,
Kufri Chipsona‐3
, and
Kufri Jyoti
potato varieties alone and in combination. J Food Saf 2021. [DOI: 10.1111/jfs.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abhishek Bhattacharya
- Agricultural and Ecological Research Unit Indian Statistical Institute Kolkata India
| | - Shilpa Purkait
- Agricultural and Ecological Research Unit Indian Statistical Institute Kolkata India
| | - Anwesa Bag
- Agricultural and Ecological Research Unit Indian Statistical Institute Kolkata India
| | | |
Collapse
|
26
|
Pan F, Wang X, Wen B, Wang C, Xu Y, Dang W, Zhang M. Development of walnut oil and almond oil blends for improvements in nutritional and oxidative stability. GRASAS Y ACEITES 2020. [DOI: 10.3989/gya.0920192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For the increase in oxidative stability and phytonutrient contents of walnut oil (WO), 5, 10, 20 and 30% blends with almond oil (AO) were prepared. The fatty acid compositions and the micronutrients of the oil samples such as tocopherol, phytosterol and squalene were measured by GC-MS and HPLC. It was found that the proportions of PUFAs/SFAs in blended oils with high AO contents were lowered, and the blends contained higher levels of tocopherols, phytosterols and squalene than those of pure WO. The 60 °C oven accelerated oxidation test was used to determine the oxidative stability of the blended oil. The fatty acid composition, micronutrients and oxidation products were determined. The results showed that the oxidation stability of the blended oil increased with an increasing proportion of AO. In addition, a significant negative correlation between micronutrient and oxidation products was observed as the number of days of oxidation increased.
Collapse
|
27
|
Drinić Z, Mudrić J, Zdunić G, Bigović D, Menković N, Šavikin K. Effect of pomegranate peel extract on the oxidative stability of pomegranate seed oil. Food Chem 2020; 333:127501. [DOI: 10.1016/j.foodchem.2020.127501] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
|
28
|
Pan F, Li Y, Luo X, Wang X, Wang C, Wen B, Guan X, Xu Y, Liu B. Effect of the chemical refining process on composition and oxidative stability of evening primrose oil. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Fengguang Pan
- Laboratory of Nutrition and Functional Food College of Food Science and Engineering Jilin University Changchun China
| | - Yuanyuan Li
- Laboratory of Nutrition and Functional Food College of Food Science and Engineering Jilin University Changchun China
| | - Xiangdan Luo
- The Second Hospital of Jilin University Changchun China
| | - Xiaoqing Wang
- Laboratory of Nutrition and Functional Food College of Food Science and Engineering Jilin University Changchun China
| | | | - Baoli Wen
- Laboratory of Nutrition and Functional Food College of Food Science and Engineering Jilin University Changchun China
| | - Xinrui Guan
- Jilin Baili Biotechnology Co., Ltd. Changchun China
| | - Yufei Xu
- Laboratory of Nutrition and Functional Food College of Food Science and Engineering Jilin University Changchun China
| | - Boqun Liu
- Laboratory of Nutrition and Functional Food College of Food Science and Engineering Jilin University Changchun China
| |
Collapse
|
29
|
|
30
|
Improving antioxidant effect of phenolic extract of Mentha piperita using nanoencapsulation process. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00606-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Pereira JC, Sivakanthan S, Vasantharuba S. Effect of Star Fruit (Averrhoa carambola L.)By-product on Oxidative Stability of Sesame (Sesamum indicum) Oil under Accelerated Oven Storage and during Frying. J Oleo Sci 2020; 69:837-849. [PMID: 32759549 DOI: 10.5650/jos.ess19248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aim of this study was to evaluate the effect of star fruit (Averrhoa carambola L.) by-products (peel and residue) on stability of sesame (Sesamum indicum) oil against oxidation. Antioxidant properties of extract of peel and residue at different time durations of extraction were determined and found that peel contains higher antioxidant potential than residue. Thus, extract of peel obtained after 24 h extraction was used to study its effectiveness on oxidative stability of sesame oil during accelerated oven storage and frying using the butylated hydroxytoluene (BHT) (200 ppm) as the reference antioxidant (positive control) and oil without added antioxidant as the negative control. The oxidative stability of the oil was determined by evaluating peroxide value, p-anisidine value, thiobarbituric acid reactive substances (TBARS) value, total oxidation (TOTOX) value, conjugated diene (CD) and conjugated triene (CT) values, and iodine value. Peel extract at different concentrations (200-1000 ppm) was tested. The oil added with peel extract exhibited higher stability against oxidation than the controls during oven storage test. Extract at 1000 ppm significantly increased the stability of sesame oil during frying as compared with controls. Thus, star fruit peel extract could be an alternative to synthetic antioxidants to suppress oxidation of edible oils.
Collapse
Affiliation(s)
| | - Subajiny Sivakanthan
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna
| | | |
Collapse
|
32
|
Mikołajczak N, Sobiechowska DA, Tańska M. Edible flowers as a new source of natural antioxidants for oxidative protection of cold-pressed oils rich in omega-3 fatty acids. Food Res Int 2020; 134:109216. [DOI: 10.1016/j.foodres.2020.109216] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022]
|
33
|
Rashmi HB, Negi PS. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res Int 2020; 136:109298. [PMID: 32846511 DOI: 10.1016/j.foodres.2020.109298] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023]
Abstract
Phenolic acids are the most prominent group of bioactive compounds present in various plant sources. Hydroxybenzoic acids and hydroxycinnamic acids, the aromatic secondary metabolites imparting typical organoleptic characteristics to food are the major phenolic acids, and they are linked to several health benefits. Fruit and beverage crops being the richer sources of phenolic acids have been studied in depth, but phenolic acids from vegetables are largely overlooked. Though lesser in quantity in many vegetables, there is a need to explore the health benefits of the phenolic acids present in them. In this review, the importance of vegetables as a significant source of phenolic acids is emphasized. Vegetables being easily accessible throughout the year and consumed in larger quantities compared to fruits in our daily diet will probably contribute to significant health benefits. Since vegetables are often processed before consumption, the changes in phenolic acids as influenced by processing methods are highlighted. Best processing methods, pre-treatments and storage conditions for higher retention of phenolic acids have been highlighted to minimize their losses. The phenolic acids in vegetables and their health benefits have been cluster mapped, which may facilitate further research for nutraceutical development for specific health concerns. The processing stability of phenolic acids coupled with higher consumption indicates that they may be a potential source of phenolic acids in the diet. It is expected that the popularization of vegetables as a source of phenolic acids in daily diet will help in ameliorating the adverse effect of some of the lifestyle diseases.
Collapse
Affiliation(s)
- Havalli Bommegowda Rashmi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Pradeep Singh Negi
- Department of Fruit and Vegetable Technology, CSIR-Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
34
|
Bioactivity of Selected Phenolic Acids and Hexane Extracts from Bougainvilla spectabilis and Citharexylum spinosum on the Growth of Pectobacterium carotovorum and Dickeya solani Bacteria: An Opportunity to Save the Environment. Processes (Basel) 2020. [DOI: 10.3390/pr8040482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Phenolic acids and natural extracts, as ecofriendly environmental agents, can be used as bio bactericides against the growth of plant pathogenic bacteria. In this study, isolation trails from infected potato tubers and stems that showed soft rot symptoms in fields revealed two soft rot bacterial isolates and were initially identified through morphological, physiological, and pathogenicity tests. The molecular characterization of these isolates via PCR, based on the 16S rRNA region, was carried out by an analysis of the DNA sequence via BLAST and Genbank, and showed that the soft rot bacterial isolates belong to Pectobacterium carotovorum subsp. carotovorum (PCC1) and Dickeya solani (Ds1). The in vitro results of the tested phenolic acids against the cultured bacterial isolates proved that concentrations of 800, 1600, and 3200 μg/mL were the most effective. Ferulic acid was the potent suppressive phenolic acid tested against the Ds1 isolate, with an inhibition zone ranging from 6.00 to 25.75 mm at different concentrations (25–3200 μg/mL), but had no effect until reaching a concentration of 100 μg/mL in the PCC1 isolate, followed by tannic acid, which ranged from 7.00 to 25.50 mm. On the other hand, tannic acid resulted in a significant decrease in the growth rate of the PCC1 isolate with a mean of 9.11 mm. Chlorogenic acid was not as effective as the rest of the phenolic acids compared with the control. The n-hexane oily extract (HeOE) from Bougainvillea spectabilis bark showed the highest activity against PCC1 and Ds1, with inhibition zone values of 12 and 12.33 mm, respectively, at a concentration of 4000 μg/mL; while the HeOE from Citharexylum spinosum wood showed less activity. In the GC/MS analysis, nonanal, an oily liquid compound, was found ata percentage of 38.28%, followed by cis-2-nonenal (9.75%), which are the main compounds in B. spectabilis bark HeOE, and 2-undecenal (22.39%), trans-2-decenal (18.74%), and oleic acid (10.85%) were found, which are the main compounds in C. spinosum wood HeOE. In conclusion, the phenolic acids and plant HeOEs seem to raise the resistance of potato plants, improving their defense mechanisms against soft rot bacterial pathogens.
Collapse
|
35
|
Ghafoor K, Özcan MM, Juhaimi FA, Babiker EE, Ahmed IAM. Influence of Sumac Extract on the Physico-chemical Properties and Oxidative Stability of Some Cold Pressed Citrus Seed Oils. J Oleo Sci 2020; 69:307-315. [PMID: 32132351 DOI: 10.5650/jos.ess19292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The acidity values changed between 1.03 mgKOH/100g (control) and 1.11 mgKOH/100g (0.1% extract) for orange oil, 1.06 mgKOH/100g (0.5% extract) and 1.13 mgKOH/100g (0.1% extract) and 1.25 mgKOH/100g (0.5% extract) and 1.31 mgKOH/100g (control) for mandarin oil. The peroxide values were determined between1.37 meqO2/kg (0.5% extract) and 1.43 meqO2/kg (0.1% extract) for orange oil, between 1.24 meqO2/kg (control) and 1.27 meqO2/kg (0.1% extract) for lemon and 1.60 meqO2/kg (0.5% extract) and 1.71 meqO2/kg (control) in mandarin oil samples. The viscosity values of samples changed between 0.051 Pa.S (control) and 0.065 Pa.S (0.5% extract) for orange, 0.051 Pa.S (control) and 0.067 Pa.S (0.5% extract) lemon and 0.044 Pa.S (control) and 0.057 Pa.S (0.5% extract) in mandarin oil samples. At the end of storage study (28th day), the acidity values significantly changed, and their values ranged between 2.28 mgKOH/100g (0.5% extract) and 3.64 mgKOH/100g (control) in orange, 1.67 mgKOH/100g (0.5% extract) and 2.28 mgKOH/100g (control) in lemon and 1.74 mgKOH/100g (0.5% extract) and 2.36 mgKOH/100g (control) in mandarin oil samples. While peroxide values vary between 11.68 meqO2/kg (0.5% extract) and 32.57 meqO2/kg (control) for orange, 12.55 meqO2/kg (0.5% extract) and 34.63 meqO2/kg (control) for lemon and between 17.56 meqO2/kg (0.5% extract) and 37.81 meqO2/kg (control) for mandarin oils, viscosity values after 28 day storage changed between 0.123 Pa.S (0.5% extract) and 0.675 Pa.S (control) in orange, 0.257 Pa.S (0.5% extract) and 0.697 Pa.S (control) in lemon and 0.215 Pa.S (0.5% extract) and 0.728 Pa.S (control) in mandarin oil samples.
Collapse
Affiliation(s)
- Kashif Ghafoor
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture, University of Selçuk
| | - Fahad Al Juhaimi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Elfadıl E Babiker
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Isam A Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University
| |
Collapse
|
36
|
El‐Hadary AE, Taha M. Pomegranate peel methanolic-extract improves the shelf-life of edible-oils under accelerated oxidation conditions. Food Sci Nutr 2020; 8:1798-1811. [PMID: 32328245 PMCID: PMC7174205 DOI: 10.1002/fsn3.1391] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 11/16/2022] Open
Abstract
Natural antioxidants extracted from agri-waste resources have gained increased economic, sustainable, and health attention due to their sustainability, safer food-applications, and beneficial components. Pomegranate peel extracts (Punica Granatum L.) have natural phytochemicals with superior protective effects stabilizing a variety of the most common vegetable oils consumed globally. Among five different pomegranate peel extracts, methanolic extract has maximum total phenolic content of 18.89%, a total flavonoid content of 13.95 mg QE kg-1, and a relative antioxidant activity of 93% when compared to other pomegranate peel extracts. Additionally, the HPLC analysis of pomegranate peel methanolic extract exhibited the maximum number of phenolic and flavonoid fractions. HPLC fractions showed that pyrogallol and ellagic acids were the most abundant phenolic compounds with 453 and 126 mg kg-1, respectively. In terms of flavonoid fractions, hesperidine and quercetrin were the highest detected-flavonoids with about 50 and 35 mg kg-1, respectively, from HPLC flavonoids fractions. Therefore, pomegranate peel methanolic extract was selected at different concentrations (100, 200, 400, and 600 ppm) for the stabilizing experiment of Egyptian freshly refined edible oils (sunflower, soybean, and corn oils) in comparison with synthetic antioxidant (tert-butyl hydroquinone TBHQ-200 ppm) during accelerated storage at 70°C for 10 days. The results from the accelerated storage experiment indicated that pomegranate peel methanolic extract (at different concentrations: 200, 400, and 600 ppm) exhibited stronger antioxidant capability in all tested oils rather than negative controls (without antioxidant) and synthetic antioxidant TBHQ-200. Under accelerated oxidation conditions, pomegranate peel methanolic extract have the potential capability to improve the shelf life of edible oils in comparison with the most powerful synthetic antioxidant (TBHQ-200 ppm).
Collapse
Affiliation(s)
| | - Mohamed Taha
- Department of BiochemistryFaculty of AgricultureBenha UniversityToukhEgypt
- Centre for Environmental Sustainability and RemediationRMIT UniversityBundooraMelbourneVICAustralia
| |
Collapse
|
37
|
Effect of Ultrasound-Treated Arabinoxylans on the Oxidative Stability of Soybean Oil. Antioxidants (Basel) 2020; 9:antiox9020147. [PMID: 32050540 PMCID: PMC7070310 DOI: 10.3390/antiox9020147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Arabinoxylans (AX) are polysaccharides with antioxidant activity and emulsifying properties, which make them an attractive alternative for its potential application as a natural antioxidant in oils. Therefore, this work aimed to investigate the effect of ultrasonic treatment of AX on their antioxidant capacity and its ability to improve the oxidative stability of soybean oil. For this purpose, AX were exposed to ultrasonic treatment at 25% (100 W, AX-1) and 50% (200 W, AX-2) power and an operating frequency of 20 KHz during 15 min, and their macromolecular properties (weight average molecular weight (Mw), polydispersity index and intrinsic viscosity) were evaluated. The antioxidant capacity of AX was determined by the DPPH assay and Rancimat test. Results showed that ultrasonic treatment did not affect the molecular identity of the polysaccharide but modified its Mw distribution. AX-1 showed the highest antioxidant activity (75% inhibition) at 533 µg/mL by the DPPH method compared to AX and AX-2. AX at 0.25% (w/v) and AX-1 at 0.01% (w/v) exerted the highest protective effects on oxidative stability of soybean oil with induction periods of 7.69 and 5.54 h, respectively. The results indicate that AX could be a good alternative for the potential application as a natural antioxidant in oils.
Collapse
|
38
|
Collazo-Bigliardi S, Ortega-Toro R, Chiralt A. Using lignocellulosic fractions of coffee husk to improve properties of compatibilised starch-PLA blend films. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Fierascu RC, Fierascu I, Avramescu SM, Sieniawska E. Recovery of Natural Antioxidants from Agro-Industrial Side Streams through Advanced Extraction Techniques. Molecules 2019; 24:E4212. [PMID: 31757027 PMCID: PMC6930540 DOI: 10.3390/molecules24234212] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 01/18/2023] Open
Abstract
Large amounts of agro-industrial waste are being generated each year, leading to pollution and economic loss. At the same time, these side streams are rich source of active compounds including antioxidants. Recovered compounds can be re-utilized as food additives, functional foods, nutra-/pharmaceuticals, cosmeceuticals, beauty products, and bio-packaging. Advanced extraction techniques are promising tools to recover target compounds such as antioxidants from agro-industrial side streams. Due to the disadvantages of classical extraction techniques (such as large amounts of solvents, increased time of extraction, large amounts of remaining waste after the extraction procedure, etc.), and advanced techniques emerged, in order to obtain more efficient and sustainable processes. In this review paper aspects regarding different modern extraction techniques related to recovery of antioxidant compounds from wastes generated in different industries and their applications are briefly discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Fierascu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- National Institute for Research & Development in Chemistry and Petrochemistry – ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Sorin Marius Avramescu
- University of Agronomic Science and Veterinary Medicine, 59 Marasti Blvd., 011464 Bucharest, Romania; (R.C.F.); (S.M.A.)
- Research Center for Environmental Protection and Waste Management, University of Bucharest, 36-46 Mihail Kogalniceanu Blvd., 050107 Bucharest, Romania
| | - Elwira Sieniawska
- Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki, 20-093 Lublin, Poland
| |
Collapse
|
40
|
Selim S, Hussein E. Production performance, egg quality, blood biochemical constituents, egg yolk lipid profile and lipid peroxidation of laying hens fed sugar beet pulp. Food Chem 2019; 310:125864. [PMID: 31780225 DOI: 10.1016/j.foodchem.2019.125864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
The effect of including sugar beet pulp (SBP) in laying hen diets on performance, egg quality, blood chemistry and egg lipid peroxidation was studied. A total of 200 laying hens were randomly assigned into 4 groups and were offered diets containing SBP at the level of 0%, 3%, 5%, and 7%. The dietary inclusion of SBP linearly (P < 0.01) increased feed intake, egg production, egg weight and mass, and improved feed conversion ratio, yolk color core and Haugh unit. Eggs laid by hens receiving SBP had linearly (P < 0.01) greater protein and lower ether extract. Dietary inclusion of SBP linearly (P < 0.01) decreased egg yolk malondialdehyde, cholesterol, and triglyceride, while increased glutathione peroxidase. Laying hens fed SBP had lower (P < 0.01) serum total lipids, cholesterol, alanine aminotransferase, aspartate aminotransferase, and creatinine. Dietary inclusion of SBP could improve hen performance, health, egg quality, and egg shelf life.
Collapse
Affiliation(s)
- Shaimaa Selim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, University of Menoufia, Shibin El-kom 32514, Egypt.
| | - Eman Hussein
- Department of Poultry and Fish Production, Faculty of Agriculture, University of Menoufia, Shibin El-kom 32514, Egypt
| |
Collapse
|
41
|
Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108290] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Sharma S, Cheng SF, Bhattacharya B, Chakkaravarthi S. Efficacy of free and encapsulated natural antioxidants in oxidative stability of edible oil: Special emphasis on nanoemulsion-based encapsulation. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Bordón MG, Meriles SP, Ribotta PD, Martinez ML. Enhancement of Composition and Oxidative Stability of Chia (Salvia hispanica L.) Seed Oil by Blending with Specialty Oils. J Food Sci 2019; 84:1035-1044. [PMID: 30990893 DOI: 10.1111/1750-3841.14580] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/30/2022]
Abstract
Chia seed (Salvia hispanica L.) oil is mainly composed of ω-3 fatty acids (61% to 70%). Despite being nutritionally favorable, higher amounts of polyunsaturated fatty acids result in poorer oxidative stability. Thus, the aim of this work was to produce edible vegetable oil blends rich in ω-3 fatty acids and with greater oxidative stability than pure chia oil. Blending of chia with other specialty oils (walnut, almond, virgin, and roasted sesame oils) was assessed in the following respective proportions: 20:80, 30:70, and 40:60 (v/v). An accelerated storage test was conducted (40 ± 1 °C, 12 days). Primary and secondary oxidation products, free fatty acid content, antioxidant compounds, fatty acid composition, and induction time were determined. The blends presented higher oxidative stability indices than chia oil. Sensory analysis showed that, given a pure oil, judges did not identify statistically significant differences among the blends. The results suggest that blending of chia oil is an adequate alternative to obtain ω-3-enriched oils with higher oxidative stability indices. PRACTICAL APPLICATION: Vegetable oil blending is a widely used practice in the edible oil industry to produce blended oils with enhanced stability and nutritional and sensory properties at affordable prices. The blends developed in this study from chia, sesame, walnut, and almond oils take advantage of the properties of each parent oil to yield products with improved oxidative stability, essential fatty acid presence, and sensory characteristics. To achieve a daily intake of 2.22 g/day of ω-3 fatty acids as recommended by the Intl. Society for the Study of Fatty Acids and Lipids (ISSFAL), it is necessary to consume approximately one spoonful of the formulated mixtures.
Collapse
Affiliation(s)
- María Gabriela Bordón
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC - CONICET), Univ. Nacional de Córdoba, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nacional de Córdoba, Córdoba, Argentina.,Dept. de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Patricia Meriles
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC - CONICET), Univ. Nacional de Córdoba, Córdoba, Argentina
| | - Pablo Daniel Ribotta
- Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC - CONICET), Univ. Nacional de Córdoba, Córdoba, Argentina.,Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nacional de Córdoba, Córdoba, Argentina.,Dept. de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nacional de Córdoba, Córdoba, Argentina
| | - Marcela Lilian Martinez
- Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nacional de Córdoba, Córdoba, Argentina.,Dept. de Química Industrial y Aplicada, Facultad de Ciencias Exactas, Físicas y Naturales, Univ. Nacional de Córdoba, Córdoba, Argentina.,Instituto Multidisciplinario de Biología Vegetal (IMBIV, CONICET), Univ. Nacional de Córdoba, Av. Vélez Sársfield 1611, 5000, Córdoba, Argentina
| |
Collapse
|
44
|
Oudjedi K, Manso S, Nerin C, Hassissen N, Zaidi F. New active antioxidant multilayer food packaging films containing Algerian Sage and Bay leaves extracts and their application for oxidative stability of fried potatoes. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
45
|
Oxidative stability of enriched walnut oil with phenolic extracts from walnut press-cake under accelerated oxidation conditions and the effect of ultrasound treatment. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9917-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Gebrechristos HY, Chen W. Utilization of potato peel as eco-friendly products: A review. Food Sci Nutr 2018; 6:1352-1356. [PMID: 30258575 PMCID: PMC6145310 DOI: 10.1002/fsn3.691] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/03/2018] [Accepted: 05/02/2018] [Indexed: 12/02/2022] Open
Abstract
An eco-friendly product has been the primary agenda of twenty-first century of the global scientists. One of the main focuses is by-product recycling of food processing industries. It has been long time since food industry byproduct converted into energy and value added products. Potato processing is newly emerging food processing factories in developing countries, and potato is the fourth important crop globally. A dramatic food demand increment had shown in the past two decades. This leads to increase the number of food processing industries. Nowadays, food processing industries particularly processed potato manufactures are expanding and generate a huge volume of potato peel. This by-product causes environmental pollution due to decomposition. However, food byproducts like potato peel have essential organic matter. So this review introduces the potential use of potato peel as food preservative, pharmaceutical ingredient, renewable energy, and animal feed to promote eco-friendly food industries.
Collapse
Affiliation(s)
| | - Weihua Chen
- Institute of Food Science and Technology CAASBeijingChina
- Key Laboratory of Agro‐products Quality and Safety Control in Storage and Transport ProcessMinistry of AgricultureBeijingChina
| |
Collapse
|
47
|
Turan S, Solak R, Kiralan M, Ramadan MF. Bioactive lipids, antiradical activity and stability of rosehip seed oil under thermal and photo-induced oxidation. GRASAS Y ACEITES 2018. [DOI: 10.3989/gya.1114172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the present report, the fatty acids, tocopherols, and sterol profiles as well as the total phenolics and carotenoids of rosehip (Rosa canina) seed oil were determined. The major fatty acids in the oil were linoleic and linolenic acids, comprising 54.80% and 23.47% of the total fatty acids, respectively. Other bioactive lipids in the oil included total tocopherols (786.3 mg/kg), total phenolics (37.97 mg/kg) and total carotenoids (218.8 mg/kg). Rosehip oil was rich in γ-tocopherol (472.0 mg/kg) and β‑sitosterol (78.0% of total sterols). The DPPH· (2,2′-diphenyl-1-picrylhydrazyl) radical scavenging activity of the oil showed 1.08 mg α-tocopherol/g oil and 4.18 μmol TEAC (Trolox equivalent antioxidant capacity)/g oil, respectively. The ABTS+ (2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity of the oil showed 1.00 mg α-tocopherol/g oil and 3.02 μmol TEAC/g oil, respectively. The induction period (IP) of the oil was 3.46 h for the Rancimat test (110 °C), while the IP of oil in differential scanning calorimetry (DSC) test (100-150 °C) ranged between 0.26 and 58.06 min. The oxidative stability of the oil was determined under thermal and photo oxidation conditions. The progression of oxidation at 30 °C (under UV light) and at 60 °C (in the dark) was followed by recording the ultraviolet absorption (K232 and K270) and degradation of total tocopherols, γ-tocopherol and total carotenoids. Rapid deterioration occurred in the oil stored under UV light conditions. The information provided in the present work is of importance for using rosehip seed oil in different food and non-food applications.
Collapse
|
48
|
Delfanian M, Razavi SMA, Haddad Khodaparast MH, Esmaeilzadeh Kenari R, Golmohammadzadeh S. Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates. Food Res Int 2018; 108:136-143. [PMID: 29735042 DOI: 10.1016/j.foodres.2018.03.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/15/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
In this study, the effect of natural macromolecules as carrier agents on the biological activity of nano-encapsulated Bene hull polyphenols (Pistacia atlantica subsp. Mutica) through W/O/W emulsions was evaluated. The W/O microemulsions as primary emulsions and a complex of soy protein isolate and basil seed gum (SPI-BSG), whey protein isolate and basil seed gum (WPI-BSG) and also Hi-Cap 100 in the outer aqueous phase were used to produce W/O/W nano-emulsions. Z-average size of emulsions stabilized by Hi-Cap, WPI-BSG, and SPI-BSG was 318, 736.9 and 1918 nm, respectively. The encapsulation efficiency of polyphenols for powders produced by Hi-Cap, WPI-BSG, and SPI-BSG was 95.25, 90.9 and 92.88%, respectively, which was decreased to 72.47, 67.12 and 64.44% after 6 weeks storage at 30 °C. The antioxidant activity of encapsulated polyphenols at 100, 200 and 300 ppm was measured in oil by peroxide and p-anisidine values during storage and was compared to non-encapsulated extract and synthetic antioxidant. Results showed oxidative alterations in oils containing encapsulated polyphenols was lower than unencapsulated form, which among them capsules produced by SPI-BSG exhibited higher antioxidant effects due to the better gradual release. Generally, the higher antioxidant potential was achieved with increased solubility and controlled release of polyphenols through their nano-encapsulation.
Collapse
Affiliation(s)
- Mojtaba Delfanian
- Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), PO Box: 91775-1163, Mashhad, Iran
| | - Seyed M A Razavi
- Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), PO Box: 91775-1163, Mashhad, Iran.
| | | | - Reza Esmaeilzadeh Kenari
- Department of Food Science and Technology, Sari Agriculture and Natural Resources University, Sari, Iran
| | - Shiva Golmohammadzadeh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Effects of some herbal extracts on oxidative stability of corn oil under accelerated oxidation conditions in comparison with some commonly used antioxidants. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Smetanska I. Sustainable Production of Polyphenols and Antioxidants by Plant In Vitro Cultures. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54600-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|