1
|
Sun Y, Sun J, Zhao M, Zhao M, Shi H, Liu Z, Zhang X, Xia G. Utilization of layer-by-layer deposition to improve the stability of astaxanthin emulsions: Triple-layer coatings formed using sodium caseinate-pectin-chitosan. Food Chem 2025; 478:143636. [PMID: 40043434 DOI: 10.1016/j.foodchem.2025.143636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 04/06/2025]
Abstract
This study aimed to develop a good multilayered emulsion delivery system to improve the stability of astaxanthin. The layer-by-layer (LBL) electrostatic deposition technique was utilized to prepare sodium caseinate-pectin-chitosan astaxanthin multilayered emulsions. The stabilities of the emulsions and astaxanthin under different environmental stresses were investigated. Results showed that the droplet size of sodium caseinate-pectin double-layer emulsion (CS/P-e), sodium caseinate-chitosan double-layer emulsion (CS/CTS-e) and sodium caseinate-pectin-chitosan triple-layer emulsion (CS/P/CTS-e) varied less with pH and salt ions than that of sodium caseinate single-layer emulsion (CS-e). The droplet size of triple-layer emulsion changed the least after storage and freeze-thaw cycles compared with that of single- and double-layer emulsions. After thermal, freeze-thaw cycle, storage, and ultraviolet irradiation treatments, the stability of astaxanthin in multilayered emulsions was higher than that in single-layer emulsion, and the retention rate of astaxanthin increased as the number of interfacial layers increased. Furthermore, the free fatty acid (FFA) release of CS/P-e and CS-e was higher than that of CS/CTS-e and CS/P/CTS-e, and multilayered emulsions improved the bioaccessibility of astaxanthin. These findings provided a theoretical basis for triple-layer emulsions to deliver bioactive substances.
Collapse
Affiliation(s)
- Ying Sun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Jiahui Sun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mantong Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
2
|
Molet-Rodríguez A, Martín-Belloso O, Salvia-Trujillo L. Incorporation of β-carotene O/W emulsions into dairy foods: Impact of the colloidal stability during in vitro digestion on the lipolysis and bioaccessibility. Food Chem 2025; 484:144464. [PMID: 40286720 DOI: 10.1016/j.foodchem.2025.144464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/17/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
O/W emulsions have been proposed as delivery systems of lipophilic bioactive compounds into water-based foods. This work aimed to study the impact of the food matrix on the colloidal stability of β-carotene-loaded O/W emulsion incorporated into dairy products (milk and yogurt) before and during in vitro gastrointestinal (GI) digestion. The relationship between colloidal stability, lipolysis and β-carotene bioaccessibility was also evaluated. The colloidal stability of the O/W emulsion was maintained once it was incorporated into dairy products and during GI conditions, without a significant impact of the food matrix. However, lipolysis, as FFA release, was faster and higher once the O/W emulsion (64.58 ± 2.76 %) was co-digested with dairy products (>81 %). Nevertheless, they presented non-significant differences in β-carotene bioaccessibility (38-44 %), thus dairy matrices would limit mixed micelles formation or β-carotene micellarization. This work provides valuable insight for designing dairy products fortified with bioactive compounds by using emulsions as delivery systems.
Collapse
Affiliation(s)
- Anna Molet-Rodríguez
- Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Olga Martín-Belloso
- Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Laura Salvia-Trujillo
- Department of Food Technology, University of Lleida, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain; Agrotecnio CERCA Center, Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
3
|
Hu Y, Fu D, Wang Y, Li Y, Guo Q, McClements DJ, Wang L. Diversity of structure and gastrointestinal fate of O/W emulsion induced by potato-soluble starch. Int J Biol Macromol 2025; 311:143269. [PMID: 40250681 DOI: 10.1016/j.ijbiomac.2025.143269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
The purpose of this study was to examine the effect of potato-soluble starch on the structure, stability, and gastrointestinal fate of O/W emulsion. O/W emulsion was emulsified by whey protein isolate, and potato-soluble starch (0.0-16.0 %) was incorporated to alter its structure and digestibility. With progressing soluble starch, this system changed from liquid to gel-like, with turbidity and viscosity significantly increased. In the observation of macrostructure, this structure altered from an irregular lamellar structure to a dense comb-like three-dimensional network structure, with emulsion droplets embedded in the interstice. During the gastrointestinal tract, discrepant digestive behavior was observed, suggesting that the presence of potato-soluble starch could affect the gastrointestinal fate of O/W emulsion. And the lipid digestion result indicated that the structure transformation had an important effect on the rate and extent of lipid digestion. The final extent of lipid digestion reduced from 131.4 % to 66.4 % with different soluble starch content, indicating that the soluble starch incorporation contributed to the inhabitation of lipid digestion. Moreover, nutraceutical bioaccessibility has also significantly changed. This research indicated that potato soluble starch has potential in the modulation and design of emulsion systems with diversified structure and digestibility.
Collapse
Affiliation(s)
- Yuying Hu
- School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, China.; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.; Department of Food Science, University of Massachusetts, Amherst, MA, 01003, USA..
| | - Dongli Fu
- School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Yudong Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yanhong Li
- School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industry Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, China
| | - Qing Guo
- School of Food Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | | | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China..
| |
Collapse
|
4
|
Wang Y, Li C, Huang J, Zeng Q, Li L, Yang P, Wang P, Chu M, Luo J, Ren F, Zhang H. Composition and structural characteristics of lipids in yak, buffalo, and cow colostrum based on untargeted lipidomics. NPJ Sci Food 2025; 9:37. [PMID: 40122937 PMCID: PMC11931005 DOI: 10.1038/s41538-025-00406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025] Open
Abstract
Lipids play pivotal roles in supplying energy and promoting gut health. While yak and buffalo milk are known for their high nutritional values, the lipid compositions of yak colostrum (YC) and buffalo colostrum (BC) remain poorly explored. Here, untargeted lipidomics were applied to analyze YC, BC, and cow colostrum (CC). 546, 353, and 417 differential lipids were identified in the comparisons of YC-CC, BC-CC, and YC-BC, respectively. Compared to CC, YC exhibited a higher content of C18:2, while BC was marked by lower levels of saturated fatty acids. Additionally, specific lipid biomarkers were identified: triacylglycerol (TG) (16:0_10:0_22:6), TG (4:0_12:3_16:0), TG (4:0_8:0_18:2), TG (6:0_6:0_22:6), TG (6:0_8:0_22:6), and TG (6:0_8:0_8:0) were more for YC, while ceramide (Cer) (d19:1_24:1), diacylglycerol (DG) (36:2), hexosyl ceramide (Hex1Cer) (d37:1), TG (40:2e), TG (4:0_12:0_18:2), and zymosteryl (ZyE) (24:7) were biomarkers for BC. These findings provide a theoretical basis for optimizing the use of colostrum in various applications.
Collapse
Affiliation(s)
- Yuzhuo Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changhui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiaxiang Huang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Qingkun Zeng
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Ling Li
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Pan Yang
- Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Pengjie Wang
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Min Chu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, China
| | - Jie Luo
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Fazheng Ren
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Hao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
- Beijing Laboratory of Food Quality and Safety, Department of Nutrition and Health, China Agricultural University, Beijing, China.
- Food Laboratory of Zhongyuan, Luohe, China.
| |
Collapse
|
5
|
Michels D, Verkempinck SHE, den Broeck LV, Spaepen R, Vermeulen K, Roelants S, Wealleans A, Grauwet T. Molecular characteristics of glycolipids determine oil-water interfacial behavior and in vitro lipid digestion kinetics. Food Res Int 2025; 202:115714. [PMID: 39967168 DOI: 10.1016/j.foodres.2025.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025]
Abstract
An extensive amount of research has been conducted on a multitude of emulsifiers regarding their effect on o/w emulsion characteristics and lipolysis kinetics. However, there is an emerging need towards the understanding of biobased emulsifier characteristics. Therefore, this research studied the effect of 6 glycolipids on interfacial tension, emulsion microstructure throughout in vitro digestion, and lipolysis kinetics. Findings showed that molecular differences between glycolipids, such as the degree of acetylation, lactonization, and symmetry, substantially affected their behavior on the oil-water (o/w) interface, lowering the interfacial tensions to values ranging between 2 and 18 mN/m. Glycolipids with a higher amount of acetyl groups, lower tendency to self-assemble, and/or smaller molecular volume on the interface, decreased the interfacial tension substantially more. Therefore, acetylated lactonic sophorolipid decreased the interfacial tension most, while non-acetylated sophoroside showed the smallest effect on the interfacial tension. While all emulsions were stable and initially had similar droplet sizes, some were unstable throughout the simulated upper digestive tract, resulting in significantly different hydrolysis behaviors. Acetylated lactonic sophorolipid and non-acetylated glucolipid were more hydrophobic than the remaining 4 glycolipids, causing this gastric instability resulting in lower lipolysis extents by the end of the small intestinal phase. The acetylated sophoroside emulsion was unstable during the small intestinal phase, attributed to bile salt interactions. Therefore, this research concludes that molecular changes between glycolipids give rise to significantly different emulsion and digestion properties. These insights can be used in future work to optimize glycolipid structure and subsequent functional properties.
Collapse
Affiliation(s)
- Daphne Michels
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Sarah H E Verkempinck
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Lore Van den Broeck
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Riet Spaepen
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium.
| | - Karen Vermeulen
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium.
| | | | - Alexandra Wealleans
- Kemin Animal Nutrition and Health, Kemin Europa N.V., Toekomstlaan 42, 2200 Herentals, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
6
|
Mei J, Shi X, Chen M, Cui Y, Fang C, Yang L. Unfolding bovine serum albumin decorated selenium nanoparticles crosslinking with chitosan: Achieve stabilization of Pickering emulsions gel and enhance resveratrol bioaccessibility. Int J Biol Macromol 2025; 289:138798. [PMID: 39689794 DOI: 10.1016/j.ijbiomac.2024.138798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Resveratrol (Res) is a natural polyphenol exhibiting anti-oxidant and anti-inflammatory activity. However, the applications of Res have been limited due to its low stability and water solubility. To enhance the bioaccessibility of Res, unfolding bovine serum albumin-modified selenium nanoparticles (UBSA@SeNPs) encapsulated within chitosan (CS)-coated Pickering emulsions (CS-UBSA@SeNPs-PE) were used to load Res. The results showed that Res-loaded CS(0.06 %)-UBSA@SeNPs-PE has small droplet size (16.13 μm), high gel properties and excellent antioxidant properties. During the simulated digestion process, CS reduced the release rate of Res from Res-loaded CS(0.06 %)-UBSA@SeNPs-PE (42.27 %) to reach a slow release effect. Importantly, Res could quickly release from CS-UBSA@SeNPs-PE within intestinal fluid or in the presence of chitosanase. In simulated absorption experiments, the intestinal permeability of Res in Res-loaded CS(0.06 %)-UBSA@SeNPs-PE were enhanced by 292.31 % compare to Res-loaded CS(0 %)-UBSA@SeNPs-PE. In pharmacokinetic studies, Res-loaded CS(0.06 %)-UBSA@SeNPs-PE had an area under the curve (AUC) up to 3467.99 ± 127.43 ng*h/mL. Furthermore, CS also improved the mucoadhesive nature of UBSA@SeNPs-PE, resulting in a gut-retention time of Res-loaded CS(0.06 %)-UBSA@SeNPs-PE that reached up to 60 h. In conclusion, CS-UBSA@SeNPs-PE can serve as an effective oral delivery system for improving the bioaccessibility of Res.
Collapse
Affiliation(s)
- Jingtao Mei
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yanan Cui
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chaoping Fang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
7
|
Zhang F, Chen W, Zou K, Hou Z, Hao J, Alouk I, Gong G, Ren S, Wang Y, Xu D. Designing calcium-fortified milk for improving stability and calcium bioaccessibility by solid dispersion emulsification. Food Res Int 2024; 196:115103. [PMID: 39614572 DOI: 10.1016/j.foodres.2024.115103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Approximately 70 % of the calcium intake in the adult diet worldwide is derived from dairy products. However, insoluble calcium salts, which are usually added directly during dairy production, have poor suspension stability and are prone to precipitation. The current study aimed to address the constraints of conventional production methods by utilizing solid dispersion emulsification technology to inhibit the aggregation of calcium salts. Calcium-fortified milk samples with different calcium content were prepared and compared with the commercial calcium-fortified milk, and their physicochemical, microstructural, and digestive properties were characterized. The results of this study demonstrated that all the prepared calcium-fortified milk samples exhibited a particle size of approximately 270 nm and a zeta-potential of approximately -40 mV. The calcium-fortified milk, which has been produced using solid dispersed emulsion technology, has been found to have 1.8 times more physical stability than commercial milk. Microstructural studies showed that aggregation of milk with more than 225 mg/100 mL calcium content occurred. During in-vitro digestion, it was found that the increasing calcium loading did not impact protein digestion without the creation of new fragments in the calcium-fortified milk. Calcium bioaccessibility was enhanced by approximately 50 % in comparison with the commercial product. While the release of free fatty acids was found to decrease with increasing calcium content. This study facilitates the development and utilization of calcium-fortified and low-fat foods and provides a new idea for the addition of milk minerals in dairy products.
Collapse
Affiliation(s)
- Fengru Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Kaiyi Zou
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhanqun Hou
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co., Ltd, Hohhot 010080, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Jia Hao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Ikram Alouk
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Guangyi Gong
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co., Ltd, Hohhot 010080, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Shuai Ren
- Inner Mongolia Dairy Technology Research Institute Co., Ltd, Hohhot 010110, China; Inner Mongolia Yili Industrial Group, Co., Ltd, Hohhot 010080, China; National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Yanbo Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Duoxia Xu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
8
|
Zhou L, Bian H, Zhang N, Qian W. Real-time tracking of the adsorption of bovine serum albumin on lipid layer and its effect on lipolysis by optical interferometry. Food Chem 2024; 444:138581. [PMID: 38309074 DOI: 10.1016/j.foodchem.2024.138581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
The model proteins bovine serum albumin (BSA) and lipid layer were used to study the effect of proteins on lipolysis. A lipid layer with an interference effect was constructed by loading the triolein into the silica colloidal crystal (SCC) film. The ordered porous layer interferometry (OPLI) system was used to track the changes in lipid layer mass caused by lipase hydrolysis to achieve real-time lipolysis detection. The real-time tracking of the adsorption of BSA on the lipid layer by converting the migration of interference fringes caused by the change of the lipid layer into the optical thickness change (ΔOT). The effect of BSA on the early and late stages of lipolysis was studied, and lipases containing 5 mg/mL BSA degraded the lipid layer 3.4 times faster than lipases containing 0.1 mg/mL BSA in the later stages. This study deepens the understanding of protein-lipid interactions in complex digestive environments.
Collapse
Affiliation(s)
- Lele Zhou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Haixin Bian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Na Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Weiping Qian
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
9
|
Rezhdo O, West R, Kim M, Ng B, Saphier S, Carrier RL. Mathematical model of intestinal lipolysis of a long-chain triglyceride. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592066. [PMID: 38746383 PMCID: PMC11092624 DOI: 10.1101/2024.05.01.592066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Lipids are an important component of food and oral drug formulations. Upon release into gastrointestinal fluids, triglycerides, common components of foods and drug delivery systems, form emulsions and are digested into simpler amphiphilic lipids (e.g., fatty acids) that can associate with intestinal bile micelles and impact their drug solubilization capacity. Digestion of triglycerides is dynamic and dependent on lipid quantity and type, and quantities of other components in the intestinal environment (e.g., bile salts, lipases). The ability to predict lipid digestion kinetics in the intestine could enhance understanding of lipid impact on the fate of co-administered compounds (e.g., drugs, nutrients). In this study, we present a kinetic model that can predict the lipolysis of emulsions of triolein, a model long-chain triglyceride, as a function of triglyceride amount, droplet size, and quantity of pancreatic lipase in an intestinal environment containing bile micelles. The model is based on a Ping Pong Bi Bi mechanism coupled with quantitative analysis of partitioning of lipolysis products in colloids, including bile micelles, in solution. The agreement of lipolysis model predictions with experimental data suggests that the mechanism and proposed assumptions adequately represent triglyceride digestion in a simulated intestinal environment. In addition, we demonstrate the value of such a model over simpler, semi-mechanistic models reported in the literature. This lipolysis framework can serve as a basis for modeling digestion kinetics of different classes of triglycerides and other complex lipids as relevant in food and drug delivery systems.
Collapse
|
10
|
Huang J, Zhang S, Liu D, Feng X, Wang Q, An S, Xu M, Chu L. Preparation and characterization of astaxanthin-loaded microcapsules stabilized by lecithin-chitosan-alginate interfaces with layer-by-layer assembly method. Int J Biol Macromol 2024; 268:131909. [PMID: 38679251 DOI: 10.1016/j.ijbiomac.2024.131909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Astaxanthin is a kind of keto-carotenes with various health benefits. However, its solubility and chemical stability are poor, which leads to low bio-availability. Microcapsules have been reported to improve the solubility, chemical stability, and bio-availability of lipophilic bioactives. Freeze-dried astaxanthin-loaded microcapsules were prepared by layer-by-layer assembly of tertiary emulsions with maltodextrin as the filling matrix. Tertiary emulsions were fabricated by performing chitosan and sodium alginate electrostatic deposition onto soybean lecithin stabilized emulsions. 0.9 wt% of chitosan solution, 0.3 wt% of sodium alginate solution and 20 wt% of maltodextrin were optimized as the suitable concentrations. The prepared microcapsules were powders with irregular blocky structures. The astaxanthin loading was 0.56 ± 0.05 % and the encapsulation efficiency was >90 %. A slow release of astaxanthin could be observed in microcapsules promoted by the modulating of chitosan, alginate and maltodextrin. In vitro simulated digestion displayed that the microcapsules increased the bio-accessibility of astaxanthin to 69 ± 1 %. Chitosan, alginate and maltodextrin can control the digestion of microcapsules. The coating of chitosan and sodium alginate, and the filling of maltodextrin in microcapsules improved the chemical stability of astaxanthin. The constructed microcapsules were valuable to enrich scientific knowledge about improving the application of functional ingredients.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; The East China Science and Technology Research Institute of Changshu Company Limited, Changshu 215500, China.
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dongchen Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qingding Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Shennan An
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Mengting Xu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Shen S, Liu X, Tang D, Yang H, Cheng J. Digestive characteristics of astaxanthin oil in water emulsion stabilized by a casein-caffeic acid-glucose ternary conjugate. Food Chem 2024; 438:138054. [PMID: 38006699 DOI: 10.1016/j.foodchem.2023.138054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
To overcome the barrier of poor oral bioavailability of astaxanthin, a stable oil-in-water emulsion was constructed using casein-caffeic acid-glucose ternary conjugates (CSC) to deliver astaxanthin, and its gastrointestinal behavior was evaluated in vitro with sodium caseinate (CSN) as a control. Results showed that, CSC-stabilized emulsion shower better resistance to the adverse conditions of the gastric environment than CSN-stabilized emulsion, and exhibited lower average particle size and aggregation (4972.33 nm, -5.93 mv) after simulated gastric digestion. Besides, after simulated intestinal digestion, the reducing capacity and astaxanthin transfer efficiency of CSC emulsion into the micellar phase were 686.74 μmol Trolox/100 mL and 26.2 %, which were 2.6 and 4.05-fold higher than that of CSN emulsion. The above results suggest that CSC can be used for better delivery of astaxanthin, which could be useful in designing foods such as functional beverages, pharmaceuticals and nutritional supplements for delivery of lipophilic bioactives.
Collapse
Affiliation(s)
- Shuangwei Shen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Xueming Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Daobang Tang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China
| | - Huaigu Yang
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| | - Jingrong Cheng
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, PR China.
| |
Collapse
|
12
|
Li X, Cheng Y, Xu Z, Lin X, Xu B, Wang Z, Li P, Nian B. Interface chemistry affected the digestion fate of ketogenic diet based on medium- and long-chain triglycerides. Food Res Int 2024; 180:114059. [PMID: 38395552 DOI: 10.1016/j.foodres.2024.114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ketogenic diet, characterized by high fat and low carbohydrate content, is gradually becoming a new perspective in the human diet; however, the mechanism of digestion of ketogenic diet remains unknown. In this study, we explored the oil-water interface to elucidate the digestion of a ketogenic diet based on typical representative medium- and long-chain triglycerides. The free fatty acids (FFAs) release indicated that glycerol trioctanoate with a shorter carbon chain (FFA = 920.55 ± 10.17 μmol) was significantly more digestible than glycerol tripalmitate (851.36 ± 9.48 μmol) and glycerol tristearate (805.81 ± 10.03 μmol). Particle size analysis revealed that the length of the carbon chain increased the size of triglycerides, resulting in a decreased contact area with lipase. The interfacial phenomenon indicated that the longer the carbon chain of triglycerides, the greater the reduction in binding capacity with salt ions in the digestive solution. Fluorescence spectroscopy analysis showed that the length of the carbon chain induced the displacement of the lipase peak, suggesting that the carbon chain length could alter the structure of lipase. Molecular dynamics simulation showed that the longer the carbon chain of triglycerides, the easier it was to loosen the structure of lipase. Bond energy analysis showed that the carbon chain length of triglycerides was positively correlated with the bond energy strength of the ester bonding. In conclusion, this study emphasizes that the ketogenic diet should primarily consist of shorter carbon chain triglycerides because carbon chain length can alter the digestion of triglycerides. This provides a new perspective on the quest for more effective ketogenic diet, in line with the current view of healthy diet.
Collapse
Affiliation(s)
- Xue Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yang Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiujun Lin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Bolin Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ziwei Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Pan Li
- Hunan Guanglu Testing Co., Ltd., Changsha 410000, China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
13
|
Fu Y, Zhao S, Ma N, Zhang Y, Cai S. Exploring the Transmembrane Behaviors of Dietary Flavonoids under Intestinal Digestive Products of Different Lipids: Insights into the Structure-Activity Relationship In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:794-809. [PMID: 38131329 DOI: 10.1021/acs.jafc.3c07239] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
This study aimed to investigate the transmembrane transport behavior and structure-activity relationships of various dietary flavonoids in the presence of dietary lipids derived from different sources in vitro. Results revealed that the digestion products of soybean oil (SOED) and lard (LOED) augmented the apparent permeability coefficients of most dietary flavonoids, and SOED exhibited higher transport compared with LOED. The structural properties of flavonoids and the potential interactions between fatty acids in these digestion products and flavonoids may influence the outcomes. 3D quantitative structure-activity relationship analyses revealed that incorporating small-volume groups at position 8 of the A-ring augmented the transmembrane transfer of flavonoids in the LOED system compared with the control group. By contrast, the integration of hydrophobic groups at position 5 of the A-ring and hydrogen bonding acceptor groups at position 6 of the A-ring enhanced the transmembrane transportation of flavonoids in the SOED system. Molecular dynamics simulations revealed that the SOED system may facilitate the interactions with flavonoids to form more stable and compact fatty acid-flavonoid complexes compared to the LOED system. These findings may provide valuable insights into flavonoid absorption to facilitate the development and utilization of functional foods or dietary supplements based on dietary flavonoids.
Collapse
Affiliation(s)
- Yishan Fu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Shuai Zhao
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Nan Ma
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Yuanyue Zhang
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan Province, People's Republic of China
| |
Collapse
|
14
|
Wang N, Zhang K, Chen Y, Hu J, Jiang Y, Wang X, Ban Q. Tuning whey protein isolate/hyaluronic acid emulsion gel structure to enhance quercetin bioaccessibility and in vitro digestive characteristics. Food Chem 2023; 429:136910. [PMID: 37478604 DOI: 10.1016/j.foodchem.2023.136910] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Quercetin (Que), a health-promoting polyphenol, has limited applicability in food products due to its susceptibility to degradation in the gastrointestinal tract. To overcome this problem, Que-loaded emulsion gels were produced using whey protein isolate (WPI) and hyaluronic acid (HA) by combining heating and CaCl2 treatment. The effects of HA addition on the structural and rheological properties of the emulsion gels were evaluated, and the protective effect of the gel on Que under simulated digestion was investigated in vitro. Microstructural observations indicated that HA leads to a more compact and uniform network structure, which significantly enhances the textural and rheological properties of emulsion gels. In vitro digestion experiments revealed that WPI-HA emulsion gels exhibited a higher Que bioaccessibility (55.01%) compared to that produced by WPI alone (21.26%). This innovative delivery carrier has potential applications in food products to accomplish sustained nutrient release along with improved stability.
Collapse
Affiliation(s)
- Ningzhe Wang
- Key Laboratory of Dairy Science, Ministry of Education and College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kaida Zhang
- Key Laboratory of Dairy Science, Ministry of Education and College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yurou Chen
- Key Laboratory of Dairy Science, Ministry of Education and College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jie Hu
- Key Laboratory of Dairy Science, Ministry of Education and College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunqing Jiang
- Key Laboratory of Dairy Science, Ministry of Education and College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xibo Wang
- Key Laboratory of Dairy Science, Ministry of Education and College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Qingfeng Ban
- Key Laboratory of Dairy Science, Ministry of Education and College of Food Science, Northeast Agricultural University, Harbin 150030, China; Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining 272007, China; Moxibustion College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
15
|
Martínez-Sánchez V, Visitación Calvo M, Viera I, Girón-Calle J, Fontecha J, Pérez-Gálvez A. Mechanisms for the interaction of the milk fat globule membrane with the plasma membrane of gut epithelial cells. Food Res Int 2023; 173:113330. [PMID: 37803640 DOI: 10.1016/j.foodres.2023.113330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 10/08/2023]
Abstract
The milk fat globule membrane (MFGM) provides infants and adults with several health benefits. These are not derived solely from its unique composition, but also from arrangement of lipids in the MFGM that, in the case of newborns, could reach the intestine partially intact. Fluorochromes associated with lipid derivatives were used to prove a fusion process between the MFGM and the cellular membrane of differentiated Caco-2 cells. To explore the mechanism of this interaction, incubations of MFGM with Caco-2 cells were carried out in the presence of fusogenic agents or compounds that block other MFGM interaction pathways with cells. Confocal fluorescence microscopy provided visual evidence of the fusion process. Lastly, determination on the lipid profile of cells after their interaction with MFGM indicated a metabolic rearrangement of lipids leading to accumulation of triacylglycerols.
Collapse
Affiliation(s)
- Victoria Martínez-Sánchez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain
| | - M Visitación Calvo
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain
| | - I Viera
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain
| | - J Girón-Calle
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain
| | - J Fontecha
- Food Lipid Biomarkers and Health Group, Institute of Food Science Research (CSIC-UAM), 28049 Madrid, Spain
| | - Antonio Pérez-Gálvez
- Group of Chemistry and Biochemistry of Pigments, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain.
| |
Collapse
|
16
|
Molet-Rodríguez A, Ramezani M, Salvia-Trujillo L, Martín-Belloso O. Impact of the lipid phase composition and state on the in vitro digestibility and chlorophyllin bioaccessibility of W 1/O/W 2 emulsions into whole milk. Food Res Int 2023; 173:113455. [PMID: 37803781 DOI: 10.1016/j.foodres.2023.113455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Water-in-oil-in-water (W1/O/W2) emulsions offer the potential to deliver hydrophilic bioactive compounds into foods, yet their application remains limited due to their instability. Thus, the impact of lipid phase composition and state on the colloidal stability, in vitro lipid digestibility and chlorophyllin (CHL) bioaccessibility of W1/O/W2 emulsions before and after incorporation into whole milk was studied. Medium-chain triglyceride oil (MCT) was used as a liquid lipid phase and MCT with glyceryl stearate (GS) or pure hydrogenated palm oil (HPO) as gelled lipid phases. The lipid phase composition was crucial to forming W1/O/W2 emulsions. MCT or MCT+GS allowed the successful formation of W1/O/W2 emulsions, being more stable upon gastric conditions those formulated with MCT+GS than pure MCT. In contrast, the use of HPO led to phase separation, which was maintained after the gastric conditions. Regarding their lipid digestibility, W1/O/W2 emulsions formulated with MCT or MCT+GS were fully digested, whereas only 40% of the lipid was digested using HPO. In accordance, the CHL bioaccessibility was higher using MCT or MCT+GS than HPO. When co-digested with whole milk, the colloidal stability and lipid digestibility of the W1/O/W2 emulsions with MCT or MCT+GS were not altered, whereas the W1/O/W2 emulsion-HPO showed enhanced colloidal stability and lipid digestibility (57.71 ± 3.06%), due to the surface-active properties of milk protein. The present study provides useful information to develop stable functional foods enriched with hydrophilic bioactive compounds by using W1/O/W2 emulsions.
Collapse
Affiliation(s)
- Anna Molet-Rodríguez
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Mohsen Ramezani
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Laura Salvia-Trujillo
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| | - Olga Martín-Belloso
- Department of Food Technology, Engineering and Science, University of Lleida, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; Agrotecnio - CERCA Center, Av. Rovira Roure, 191, 25198 Lleida, Spain.
| |
Collapse
|
17
|
Xu Q, Wang W, Sun-Waterhouse D, Yan M, Zou Q, Liu X, Lan D, Wang Y. Exploring the fates and molecular changes of different diacylglycerol-rich lipids during in vitro digestion. Food Chem 2023; 416:135677. [PMID: 36898341 DOI: 10.1016/j.foodchem.2023.135677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
This study aimed to support the pursuit of healthy oils and investigate the relationships between lipid compositions and digestion fates of diacylglycerol (DAG)-rich lipids using an in vitro digestion model. Soybean-, olive-, rapeseed-, camellia-, and linseed-based DAG-rich lipids (termed SD, OD, RD, CD, and LD, respectively) were selected. These lipids exhibited identical lipolysis degrees (92.20-94.36 %) and digestion rates (0.0403-0.0466 s-1). The lipid structure (DAG or triacylglycerol) was a more important factor affecting the lipolysis degree than other indices (glycerolipid composition and fatty acid composition). For RD, CD and LD with similar fatty acid compositions, the same fatty acid had different release levels, probably due to their different glycerolipid compositions (causing different distributions of the fatty acid in UU-DAG, USa-DAG and SaSa-DAG; U: unsaturated fatty acids, Sa: saturated fatty acids). This study provides insights into the digestion behaviors of different DAG-rich lipids and supports their food or pharmaceutical applications.
Collapse
Affiliation(s)
- Qingqing Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Dongxiao Sun-Waterhouse
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Menglei Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qian Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Youmei Institute of Inteligent Bio-manufacturing Co., Ltd, Foshan, Guangdong 528200, China.
| |
Collapse
|
18
|
Morzel M, Ramsamy S, Le Feunteun S. Feasibility of using a realistic food bolus for semi-dynamic in vitro gastric digestion of hard cheese with pH-stat monitoring of protein hydrolysis. Food Res Int 2023; 169:112818. [PMID: 37254396 DOI: 10.1016/j.foodres.2023.112818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Oral processing of solid foods leads to boluses made of a human saliva and particles distributed in the size range ∼ 0 to 5 mm. However, studies on the release of nutrients from realistic solid food boluses during digestion are scarce because such mechanisms are difficult to investigate in vivo, and in vitro experiments generally recommend to extensively mince solid foods during the oral stage. Similarly, it has previously been shown that the peptic hydrolysis of protein solutions during in vitro gastric digestion can be monitored by acid titration in both static and dynamic pH conditions, but such approach has never been evaluated in the presence of particles of several millimetres in size. The first objective of the study was therefore to test the feasibility of using a realistic food bolus for gastric digestion studies with a pH-stat monitoring of proteolysis, using Emmental cheese as a solid food and with consideration of gastric acidifying kinetics. Degree of hydrolysis (DH) of proteins was monitored from two series of experiments performed in the presence and absence of pepsin. Other DH measurements, estimated from an independent approach based on the amount of free NH2 groups (OPA method) contained by peptides released in the supernatant (UV absorbance) validated the pH-stat results. A second objective of this work was to test the possible influence of human saliva on gastric proteolysis (in comparison with a water-based bolus). Results showed that saliva slightly delayed initiation of proteolysis, which could be explained by the slightly higher initial pH of the saliva-based bolus, but had no statistical effects on pepsin activity. We conclude that acid titration with a pH-stat system can be a valuable approach to monitor the gastric in vitro proteolysis of realistic solid food boluses in dynamic pH conditions.
Collapse
|
19
|
alsedfy M, Said A, alfattah KA, mahmoud M. The impact of ascorbic acid (E 300) on digestion of different nutrients using In Vitro digestion model.. [DOI: 10.21203/rs.3.rs-3108018/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Ascorbic acid is a very common antioxidant food additive and vitamin supplement which is used by human on daily basis. Especially during corona virus pandemic because it is included in COVID-19 treatment guidelines. During this study the physicochemical properties as well as cytotoxicity, antioxidant activity and anti-diabetic activity were determined. Moreover, the effect of ascorbic acid on the digestibility of different nutrients including proteins, and fats were evaluated using INFOGEST in vitro digestion model. The structural analysis of ascorbic acid reveals that it has a monoclinic crystal structure with particle size in the nanoscale (41.496 ± 12.96 nm ). Cytotoxicity and antioxidant activity measurements proved that ascorbic acid is a powerful antioxidant with high safety profile. Moreover, it stimulates cell growth and proliferation at a dose dependent manner (12.5, 25, 50,100, and 200 mM). Ascorbic acid showed to have a low inhibition effect on alpha glucosidase enzyme, even at high concentrations (22.1% at 1800 ppm ). Digestibility measurements demonstrates that it has a positive effect on proteins and fats digestibility with a concentration dependent manner.
Collapse
Affiliation(s)
| | - Alaa Said
- faculty of science south valley university
| | | | | |
Collapse
|
20
|
Zou Q, Wang W, Xu Q, Yan M, Lan D, Wang Y. Influence of Proteins on Bioaccessibility of α-Tocopherol Encapsulation within High Diacylglycerol-Based Emulsions. Foods 2023; 12:2483. [PMID: 37444221 DOI: 10.3390/foods12132483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
α-Tocopherol has been widely used in medicine, cosmetics, and food industry as a nutritional supplement and antioxidant. However, α-tocopherol showed low bioaccessibility, and there is a widespread α-tocopherol deficiency in society today. The preparation of oil-in-water emulsions with high safety and low-calorie property is necessary. The aim of this research was to investigate the effects of different protein emulsifiers (whey protein isolate (WPI), soy protein isolate (SPI), and sodium casein (SC)) on the properties of emulsions delivery system, and diacylglycerol (DAG) was picked as a low-accumulated lipid. The interfacial changes, microstructural alterations, and possible interactions of the protein-stabilized DAG emulsions were investigated during the in vitro digestion. The results show that different proteins affect the degree of digestibility and α-tocopherol bioaccessibility of the emulsions. Both WPI- and SPI-coated emulsions showed good digestibility and α-tocopherol bioaccessibility (77.64 ± 2.93%). This might be due to the strong hydrolysis resistance of WPI (β-lactoglobulin) and the good emulsification ability of SPI. The SC-coated emulsion showed the lowest digestibility and α-tocopherol bioaccessibility, this might be due to the emulsification property of hydrolysis products of SC and the potential interaction with calcium ions. This study provides new possibilities for the application of DAG emulsions in delivery systems.
Collapse
Affiliation(s)
- Qian Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Qingqing Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Menglei Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Yue-Shan Special Nutrition Technology Co., Ltd., Foshan 528000, China
| |
Collapse
|
21
|
Manca M, Zhang C, Vasconcelos de Melo Freire R, Scheffold F, Salentinig S. Single particle investigation of triolein digestion using optical manipulation, polarized video microscopy, and SAXS. J Colloid Interface Sci 2023; 649:1039-1046. [PMID: 37406476 DOI: 10.1016/j.jcis.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023]
Abstract
HYPOTHESIS Understanding how soft colloids, such as food emulsion droplets, transform based on their environment is critical for various applications, including drug and nutrient delivery and biotechnology. However, the mechanisms behind colloidal transformations within individual oil droplets still need to be better understood. EXPERIMENTS This study employs optical micromanipulation with microfluidics and polarized optical video microscopy to investigate the pancreatic lipase- and pH-triggered colloidal transformations in a single triolein droplet. Small-angle X-ray scattering (SAXS) provides complementary statistical insights and allows for detailed structural assignment. FINDINGS Optical video microscopy recorded the transformation of individual triolein emulsion droplets, with the smooth surface of these spherical particles becoming rough and the entire volume eventually being affected. The polarized microscopy revealed the coexistence of at least two distinct structures in a single particle during digestion, with their ratio and distribution altered by pH. The SAXS analysis assigned the optical anisotropy to emulsified inverse hexagonal- and multilamellar phases, coexisting with isotropic structures such as the micellar cubic phase. These results can help understand the phase transformations inside an emulsion droplet during triglyceride digestion and guide the design of advanced food emulsions.
Collapse
Affiliation(s)
- Marco Manca
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Chi Zhang
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | | | - Frank Scheffold
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
22
|
Li K, Guo Z, Li H, Ren X, Sun C, Feng Q, Kou S, Li Q. Nanoemulsion containing Yellow Monascus pigment : Fabrication, characterization, storage stability, and lipase hydrolytic activity in vitro digestion. Colloids Surf B Biointerfaces 2023; 224:113199. [PMID: 36801744 DOI: 10.1016/j.colsurfb.2023.113199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/14/2023]
Abstract
The natural pigment of monascus is favored by human for its special coloring and physiological activity, and its development and application have attracted much attention. In this study, a novel corn oil-based nanoemulsion encapsulated with Yellow Monascus Pigment crude extract (CO-YMPN) was successfully prepared via the phase inversion composition method. The fabrication and stable conditions of the CO-YMPN including Yellow Monascus pigment crude extract (YMPCE) concentration, emulsifier ratio, pH, temperature, ionic strength, monochromatic light and storage time were investigated systemically. The optimized fabrication conditions were the emulsifier ratio (5:3 ratio of Tween 60 to Tween 80) and the YMPCE concentration (20.00% wt%)). Additionally, the DPPH radical scavenging capability of the CO-YMPN (19.47 ± 0.52%) was more excellent than each YMPCE or corn oil. Moreover, the kinetic analysis results based on Michaelis-Menten equation and constant revealed that CO-YMPN could improve lipase hydrolysis capacity. Therefore, the CO-YMPN complex had excellent storage stability and water solubility in the final water system, and the YMPCE showed brilliant stability.
Collapse
Affiliation(s)
- Kexin Li
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zhenlong Guo
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hui Li
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xueyong Ren
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Changxia Sun
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Quandong Feng
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China
| | - Shunli Kou
- Zhejiang University of Science & Technology, Zhejiang 310023, China
| | - Qiang Li
- Department of Chemistry, College of Science, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
23
|
Michels D, Verkempinck SH, Staes E, Spaepen R, Vermeulen K, Wealleans A, Grauwet T. Unravelling the impact of emulsifier blends on interfacial properties and in vitro small intestinal lipolysis of oil-in-water emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
24
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Enhancing in vivo retinol bioavailability by incorporating β-carotene from alga Dunaliella salina into nanoemulsions containing natural-based emulsifiers. Food Res Int 2023; 164:112359. [PMID: 36737947 DOI: 10.1016/j.foodres.2022.112359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/03/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The use of microalgae as a source of bioactive compounds has gained interest since they present advantages vs higher plants. Among them, Dunaliella salina is one of the best sources of natural β-carotene, which is the precursor of vitamin A. However, β-carotene shows reduced oral bioavailability due to its chemical degradation and poor absorption. The work aimed to evaluate the influence of the emulsifier and oil concentration on the digestive stability of Dunaliella Salina-based nanoemulsions and study their influence on the digestibility and the β-carotene bioaccessibility. In addition, the effect of the emulsifier nature on the absorption of β-carotene and its conversion to retinol in vivo was also investigated. Results showed that the coalescence observed in soybean lecithin nanoemulsion during the gastrointestinal digestion reduced the digestibility and β-carotene bioaccessibility. In contrast, whey protein nanoemulsion that showed aggregation in the gastric phase could be redispersed in the intestinal phase facilitating the digestibility and bioaccessibility of the compound. In vivo results confirmed that whey protein nanoemulsion increased the bioavailability of retinol to a higher extent (Cmax 685 ng/mL) than soybean lecithin nanoemulsion (Cmax 394 ng/mL), because of an enhanced β-carotene absorption.
Collapse
Affiliation(s)
- Júlia Teixé-Roig
- Department of Food Technology University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Gemma Oms-Oliu
- Department of Food Technology University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Isabel Odriozola-Serrano
- Department of Food Technology University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain
| | - Olga Martín-Belloso
- Department of Food Technology University of Lleida - Agrotecnio CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
| |
Collapse
|
25
|
In vitro digestibility of O/W emulsions co-ingested with complex meals: Influence of the food matrix. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Luo N, Ye A, Wolber FM, Singh H. Digestion behaviour of capsaicinoid-loaded emulsion gels and bioaccessibility of capsaicinoids: Effect of emulsifier type. Curr Res Food Sci 2023; 6:100473. [PMID: 36910917 PMCID: PMC9993031 DOI: 10.1016/j.crfs.2023.100473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/31/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In this study, the effect of emulsifier type, i.e. whey protein versus Tween 80, on the digestion behaviour of emulsion gels containing capsaicinoids (CAPs) was examined. The results indicate that the CAP-loaded Tween 80 emulsion gel was emptied out significantly faster during gastric digestion than the CAP-loaded whey protein emulsion gel. The Tween-80-coated oil droplets appeared to be in a flocculated state in the emulsion gel, had no interactions with the protein matrix and were easily released from the protein matrix during gastric digestion. The whey-protein-coated oil droplets showed strong interactions with the protein matrix, and the presence of thick protein layer around the oil droplets protected their liberation during gastric digestion. During intestinal digestion, the CAP-loaded Tween 80 emulsion gel had a lower extent of lipolysis than the CAP-loaded whey protein emulsion gel, probably because the interfacial layer formed by Tween 80 was resistance to displacement by bile salts, and/or because Tween 80 formed interfacial complexes with bile salts/lipolytic enzymes. Because of the softer structure of the CAP-loaded Tween 80 emulsion gel, the gel particles were broken down much faster and the oil droplets were liberated from the protein matrix more readily than for the CAP-loaded whey protein emulsion gel during intestinal digestion; this promoted the release of CAP molecules from the gel. In addition, the Tween 80 molecules displaced from the interface would participate in the formation of mixed micelles and would help to solubilize the released CAP molecules, leading to improved bioaccessibility of CAP. Information obtained from this study could be useful in designing functional foods for the delivery of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Nan Luo
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand.,School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Frances M Wolber
- School of Food and Advanced Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| |
Collapse
|
27
|
Zhao W, Wei Z, Xue C, Meng Y. Development of food-grade oleogel via the aerogel-templated method: Oxidation stability, astaxanthin delivery and emulsifying application. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Teixé-Roig J, Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Enhancing the Gastrointestinal Stability of Curcumin by Using Sodium Alginate-Based Nanoemulsions Containing Natural Emulsifiers. Int J Mol Sci 2022; 24:ijms24010498. [PMID: 36613938 PMCID: PMC9820608 DOI: 10.3390/ijms24010498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Curcumin presents interesting biological activities but low chemical stability, so it has been incorporated into different emulsion-based systems in order to increase its bioaccessibility. Many strategies are being investigated to increase the stability of these systems. Among them, the use of polysaccharides has been seen to highly improve the emulsion stability but also to modulate their digestibility and the release of the encapsulated compounds. However, the effect of these polysaccharides on nanoemulsions depends on the presence of other components. Then, this work aimed to study the effect of alginate addition at different concentrations (0-1.5%) on the gastrointestinal fate and stability of curcumin-loaded nanoemulsions formulated using soybean lecithin or whey protein as emulsifiers. Results showed that, in the absence of polysaccharides, whey protein was more effective than lecithin in preventing curcumin degradation during digestion and its use also provided greater lipid digestibility and higher curcumin bioaccessibility. The addition of alginate, especially at ≥1%, greatly prevented curcumin degradation during digestion up to 23% and improved the stability of nanoemulsions over time. However, it reduced lipid digestibility and curcumin bioaccessibility. Our results provide relevant information on the use of alginate on different emulsifier-based nanoemulsions to act as carriers of curcumin.
Collapse
|
29
|
Vitalini S, Garzoli S, Sisto F, Pezzani R, Argentieri MP, Scarafoni A, Ciappellano S, Zorzan M, Capraro J, Collazuol D, Iriti M. Digestive and gastroprotective effects of Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (syn. A. moschata Wulfen) (Asteraceae): From traditional uses to preclinical studies. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115670. [PMID: 36038090 DOI: 10.1016/j.jep.2022.115670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (syn. A. moschata Wulfen) (Asteraceae) is an alpine endemic plant whose aerial parts are harvested by the locals mainly for the digestive properties. Despite its widespread use, few studies have been conducted to date to verify its bioactivity. AIM OF THE STUDY The purpose of the work was to meet the tradition confirming with experimental data the popular belief that the consumption of this species offers beneficial effects to the gastrointestinal system. MATERIALS AND METHODS Using Soxhlet apparatus, the dried aerial parts of A. erba-rotta subsp. moschata were successively extracted with petroleum ether (PET), dichloromethane (DCM) and methanol (MeOH). The essential oil (EO) was obtained by hydrodistillation using a Clevenger apparatus while infusion (AE) was prepared following the traditional local recipe. Their chemical characterization was performed by various techniques including SPME-GC/MS, GC/MS and HPLC/MS-MS. An in vitro biological screening was carried out. The influence of AE on lipid digestion was monitored by titration of free fatty acids (FFA) during pancreatic lipase activity with the pH-stat method. For all extracts and EO, the anti-Helicobacter pylori activity was assessed by the broth microdilution method, the influence on cell viability was evaluated against NCI-N87, OE21 and Caco-2 cell lines and a preliminary toxicity evaluation was done using Brine Shrimp lethality (BSL) assay. The anti-inflammatory potential was evidenced by interleukin IL-1- induced IL8 expression on Caco-2 cells. RESULTS AE increased by 15% the FFA releasing compared to the pancreatic lipase alone. PET, DCM and MeOH extracts as well as AE and EO were considered active against the growth of both antimicrobial susceptible and resistant strains of H. pylori with MIC values starting from 16 μg/mL. PET and DCM (IC50 = 89 μg/mL and 96 μg/mL, respectively, against Caco-2 cell line) extracts showed the high effect on cell viability while the EO reduced in 50% of cell viability at 1.48 μL/mL (NCI-N87 cells), 1.42 μL/mL (OE21 cells), and 3.44 μL/mL (Caco-2 cells) corroborating the BSL results. In different degrees, all extracts and EO inhibited the IL-1β-stimulated IL-8 production in Caco-2 cells. CONCLUSIONS The obtained data are encouraging and provide a scientific basis for the traditional use of A. erba-rotta subsp. moschata as a digestive agent although they need to be further corroborated by studies involving the investigation of both the in vivo activities and the role of the compounds detected in the extracts.
Collapse
Affiliation(s)
- Sara Vitalini
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Pascal 36, 20133, Milan, Italy; National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, P. le Aldo Moro 5, 00185, Rome, Italy.
| | - Francesca Sisto
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Pascal 36, 20133, Milan, Italy.
| | - Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy; AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy.
| | - Maria Pia Argentieri
- Department of Pharmacy - Pharmaceutical Sciences, Università degli Studi di Bari "Aldo Moro", via Orabona 4, 70125, Bari, Italy.
| | - Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy.
| | - Salvatore Ciappellano
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy.
| | - Maira Zorzan
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy.
| | - Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy.
| | - Daniela Collazuol
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, Padova, 35128, Italy.
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, via G. Pascal 36, 20133, Milan, Italy; National Interuniversity Consortium of Materials Science and Technology, via G. Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
30
|
Li MM, Wudabala Q, Zhang X, Zhao G, Hanigan MD. Comparison of a three-step in vitro method and the mobile nylon bag technique for determining the intestinal digestibility of rumen-protected products in dairy cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Zheng Y, Zhang H, Wei X, Fang H, Tian J. Application of Curcumin Emulsion Carrier from Ultrasonic-Assisted Prepared Octenyl Succinic Anhydride Rice Starch. Molecules 2022; 27:6955. [PMID: 36296554 PMCID: PMC9612171 DOI: 10.3390/molecules27206955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 11/25/2022] Open
Abstract
The emulsification of ultrasonic-assisted prepared octenyl succinic anhydride (OSA) rice starch on curcumin was investigated in the present study. The results indicated that the encapsulation efficiency of curcumin in emulsions stabilized by OSA-ultrasonic treatment rice starch was improved, from 81.65 ± 0.14% to 89.03 ± 0.09%. During the in vitro oral digestion, the particle size and Zeta potential of the curcumin emulsion did not change significantly (p > 0.05). During the in vitro digestive stage of the stomach and small intestine, the particle size of the curcumin emulsion continued to increase, and the absolute potential continued to decrease. Our work showed that OSA-pre-treatment ultrasonic rice starch could improve curcumin bioavailability by increasing the encapsulation efficiency with stronger stability to avoid the attack of enzymes and high intensity ion, providing a way to develop new emulsion-based delivery systems for bioactive lipophilic compounds using OSA starch.
Collapse
Affiliation(s)
- Yuxue Zheng
- Ningxia Key Laboratory for Food Microbial Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huiling Zhang
- Ningxia Key Laboratory for Food Microbial Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China
| | - Xiaobo Wei
- Ningxia Key Laboratory for Food Microbial Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial Applications Technology and Safety Control, Ningxia University, Yinchuan 750021, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
- Food and Healthy Researcher Center, Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
32
|
Intrinsic lipolysis rate for systematic design of lipid-based formulations. Drug Deliv Transl Res 2022; 13:1288-1304. [PMID: 36209313 PMCID: PMC10102029 DOI: 10.1007/s13346-022-01246-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
Lipid-based formulations (LBFs) are used by the pharmaceutical industry in oral delivery systems for both poorly water-soluble drugs and biologics. Digestibility is key for the performance of LBFs and in vitro lipolysis is commonly used to compare the digestibility of LBFs. Results from in vitro lipolysis experiments depend highly on the experimental conditions and formulation characteristics, such as droplet size (which defines the surface area available for digestion) and interfacial structure. This study introduced the intrinsic lipolysis rate (ILR) as a surface area-independent approach to compare lipid digestibility. Pure acylglycerol nanoemulsions, stabilized with polysorbate 80 at low concentration, were formulated and digested according to a standardized pH-stat lipolysis protocol. A methodology originally developed to calculate the intrinsic dissolution rate of poorly water-soluble drugs was adapted for the rapid calculation of ILR from lipolysis data. The impact of surfactant concentration on the apparent lipolysis rate and lipid structure on ILR was systematically investigated. The surfactant polysorbate 80 inhibited lipolysis of tricaprylin nanoemulsions in a concentration-dependent manner. Coarse-grained molecular dynamics simulations supported these experimental observations. In the absence of bile and phospholipids, tricaprylin was shielded from lipase at 0.25% polysorbate 80. In contrast, the inclusion of bile salt and phospholipid increased the surfactant-free area and improved the colloidal presentation of the lipids to the enzyme, especially at 0.125% polysorbate 80. At a constant and low surfactant content, acylglycerol digestibility increased with decreasing acyl chain length, decreased esterification, and increasing unsaturation. The calculated ILR of pure acylglycerols was successfully used to accurately predict the IRL of binary lipid mixtures. The ILR measurements hold great promise as an efficient method supporting pharmaceutical formulation scientists in the design of LBFs with specific digestion profiles.
Collapse
|
33
|
Boyd AP, Acevedo NC, Talbert JN. Evaluation of Pure Bile Salts in Place of Bile Extract in the Standardized INFOGEST Digestion Protocol for Quantification of Sterol Bioaccessibility. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11554-11559. [PMID: 36070527 DOI: 10.1021/acs.jafc.2c04210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Improving standardized in vitro digestion protocols for phytosterols (PSs) is critical for understanding their bioaccessibility (BA) in food products and supplements. In this study, in vitro BA of phytosterol esters (PSEs) and free cholesterol (Ch) was compared under modified digestion conditions. The addition of Ch esterase (CE) to the INFOGEST model containing bovine bile resulted in a 70% increase in PS BA and an 18.5% reduction in Ch micellarization. Relative to the standardized INFOGEST model, substitution of pure bile salts (PBSs) did not significantly change PS BA or Ch micellarization. In the presence of CE, the substitution resulted in a 49.9% reduction in PS BA and a 13% increase in Ch micellarization. The differing results may be due to inhibitory effects of PBSs on the activity of intestinal enzymes, including CE. These results suggest that the INFOGEST model should include Ch esterase and the continued use of bile extract to evaluate PS BA.
Collapse
Affiliation(s)
- Abigail P Boyd
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Ln, Ames, Iowa 50011, United States
| | - Nuria C Acevedo
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Ln, Ames, Iowa 50011, United States
| | - Joey N Talbert
- Department of Food Science and Human Nutrition, Iowa State University, 536 Farm House Ln, Ames, Iowa 50011, United States
| |
Collapse
|
34
|
Guo Z, Liu Y, Luo Y. Mechanisms of carotenoid intestinal absorption and the regulation of dietary lipids: lipid transporter-mediated transintestinal epithelial pathways. Crit Rev Food Sci Nutr 2022; 64:1791-1816. [PMID: 36069234 DOI: 10.1080/10408398.2022.2119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary lipids are key ingredients during cooking, processing, and seasoning of carotenoid-rich fruits and vegetables, playing vitals in affecting the absorption and utilization of carotenoids for achieving their health benefits. Besides, dietary lipids have also been extensively studied to construct various delivery systems for carotenoids, such as micro/nanoparticles, micro/nanoemulsions, and liposomes. Currently, the efficacies of these techniques on improving carotenoid bioavailability are often evaluated using the micellization rate or "bioaccessibility" based on in vitro models. However, recent studies have found that dietary lipids may also affect the carotenoid uptake via intestinal epithelial cells and the efflux of intracellular chyle particles via lipid transporters. An increasing number of studies reveal the varied impact of different dietary lipids on the absorption of different carotenoids and some lipids may even have an inhibitory effect. Consequently, it is necessary to clarify the relationship between the addition of dietary lipids and the intestinal absorption of carotenoid to fully understand the role of lipids during this process. This paper first introduces the intestinal absorption mechanism of carotenoids, including the effect of bile salts and lipases on mixed micelles, the types and regulation of lipid transporters, intracellular metabolizing enzymes, and the efflux process of chyle particles. Then, the regulatory mechanism of dietary lipids during intestinal carotenoid absorption is further discussed. Finally, the importance of selecting the dietary lipids for the absorption and utilization of different carotenoids and the design of an efficient delivery carrier are emphasized. This review provides suggestions for precise dietary carotenoid supplementation and offere an important reference for constructing efficient transport carriers for liposoluble nutrients.
Collapse
Affiliation(s)
- Zixin Guo
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Marine Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, People's Republic of China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
35
|
Zhang Y, Zheng Z, Liu C, Tan CP, Xie K, Liu Y. A comparative study between freeze-dried and spray-dried goat milk on lipid profiling and digestibility. Food Chem 2022; 387:132844. [DOI: 10.1016/j.foodchem.2022.132844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/30/2022] [Accepted: 03/26/2022] [Indexed: 11/04/2022]
|
36
|
Optimization of Wall Material Composition for Production of Spray-dried Sacha Inchi Oil Microcapsules with Desirable Physicochemical Properties. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Yu Y, Liu Q, Wang C, Zhang D, Jiang B, Shan Y, Fu F, Ding S. Zein/pullulan complex colloidal particle-stabilized Pickering emulsions for oral delivery of polymethoxylated flavones: protection effect and in vitro digestion. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:3952-3963. [PMID: 34958458 DOI: 10.1002/jsfa.11742] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/05/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polymethoxylated flavones (PMFs) show multiple biological functions, while their high hydrophobicity leads to a low bioaccessibility and limits their wide applications. The design of a reasonable food-grade drug delivery system is an effective strategy to improve the low bioaccessibility of PMFs. In this study, sinensetin, tangeretin and nobiletin were encapsulated in Pickering emulsions stabilized by zein/pullulan complex colloidal particles (ZPPs), and the protection effect and in vitro digestion were characterized. RESULTS Rheological analysis revealed that ZPP-Pickering emulsion loading with PMFs maintained a strong gel-like network structure. Moreover, the ability to scavenge free radicals of PMFs was improved by the emulsion delivery system. The antioxidant activity of PMFs encapsulated in Pickering emulsion was positively correlated with the oil volume fraction (φ). ZPP-Pickering emulsion loading with PMFs can effectively delay lipid oxidation, and the φ (70%) of Pickering emulsion showed the most pronounced effects, in which the lipid hydroperoxide content and malondialdehyde content decreased by 64.3% and 38.3% after 15 days of storage, compared with the bulk oil group, respectively. The bioaccessibility of the three PMFs has been increased by ZPP-Pickering emulsion simultaneously and it presented the highest values as its φ was 50%, in which the bioaccessibility of sinensetin, tangeretin and nobiletin increased by 2.5, 3.2 and 3.9 times, compared with the bulk oil group, respectively. CONCLUSION Pickering emulsion stabilized by ZPPs is an excellent nutrient delivery system for delivering three PMFs simultaneously and imparting functional properties to bioactive delivery systems. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Yu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Qian Liu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Chen Wang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Dali Zhang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Bing Jiang
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Yang Shan
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Fuhua Fu
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| | - Shenghua Ding
- Longping Branch Graduate School, Hunan University, Changsha, China
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Changsha, China
- Hunan Province International Joint Lab on Fruits and Vegetables Processing, Quality and Safety, Changsha, China
| |
Collapse
|
38
|
Zhang C, Li B. Fabrication of nanoemulsion delivery system with high bioaccessibility of carotenoids from Lycium barbarum by spontaneous emulsification. Food Sci Nutr 2022; 10:2582-2589. [PMID: 35959269 PMCID: PMC9361457 DOI: 10.1002/fsn3.2863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 12/01/2022] Open
Abstract
The interest in incorporating carotenoids into foods and beverages is growing due to their potential health benefits. However, the poor water solubility and low bioavailability of carotenoids are still challenges in food application. This work aimed to study the influence of system composition and preparation conditions on the physical properties of carotenoids-loaded nanoemulsions prepared by spontaneous emulsification. Furthermore, the bioaccessibility of carotenoids in the nanoemulsions was evaluated. The nanoemulsions with the smallest droplet size were produced when the ratio of Span 80:Tween 80 was 1.5:8.5. The droplet size increased slightly with the increase of organic phase content (24%-40%). The droplet size decreased gradually with the increase of stirring speed (200-1000 rpm (revolutions per minute)). The ratio of mixed surfactants and surfactant-to-oil ratio (SOR) had an appreciable impact on the droplet size. Carotenoids-loaded nanoemulsions with small mean droplet size (d < 50 nm) could be prepared with the optimized conditions. The initial digestion rate decreased as the SOR increased. The bioaccessibility could reach up to about 80% at SOR=2-5 in vitro digestion. These results have important implications for the design of effective delivery systems to encapsulate carotenoids and other lipophilic bioactive components in food applications.
Collapse
Affiliation(s)
- Chunlan Zhang
- College of Life SciencesTarim UniversityAlarChina
- College of Food Science and TechnologyHuazhong Agriculture UniversityWuhanChina
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern XinjiangAlarChina
| | - Bin Li
- College of Food Science and TechnologyHuazhong Agriculture UniversityWuhanChina
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)Ministry of EducationChina
| |
Collapse
|
39
|
Sterol bioaccessibility in a plant sterol-enriched beverage using the INFOGEST digestion method: Influence of gastric lipase, bile salts and cholesterol esterase. Food Chem 2022; 382:132305. [PMID: 35134721 DOI: 10.1016/j.foodchem.2022.132305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 11/24/2022]
Abstract
This study evaluates the influence of increasing bile salts and the addition of key enzymes of the lipidic metabolism in the INFOGEST digestion method on sterol bioaccessibility from a plant sterol (PS)-enriched beverage. The assayed modifications were increasing concentration of bovine bile salts (10 vs. 17.5 mM), and addition of gastric lipase (GL) (60U/mL), cholesterol esterase (CE) (0.075 or 2U/mL) or both. Compared to the original method (10 mM bile salts without enzymes), the assayed conditions significantly reduced bioaccessibility of individual (from 11.3 to 19.7 to 5.1-16.6%) and total PS (13.7 to 6.9-8.0%), and cholesterol (52.8 to 20.9-26.1%), except only when CE is added not allowing cholesterol quantification. The bioaccessibility achieved when lipolytic enzymes were tested was similar for all sterols. For a more physiological approach to in vivo conditions, incorporation of bile salts (10 mM), GL (60U/mL) and CE (0.075U/mL) to the INFOGEST method is proposed, although it increases the cost compared to the established method.
Collapse
|
40
|
Chabni A, Bañares C, Reglero G, Torres CF. A comparative study of in vitro gastrointestinal digestion of three strategic edible oils. J Food Sci 2022; 87:3268-3278. [PMID: 35860984 DOI: 10.1111/1750-3841.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/07/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
Three strategic edible oils, that is, olive oil, microalgae oil, and shea butter, with a significantly different composition of fatty acids (FA), have been studied in a static in vitro digestion model to evaluate the rate of hydrolysis, bioaccessibility, and micellar phases formed in the process. Lipid composition of each phase and how the lipids are distributed in the different phases have been obtained using this in vitro digestion model. We demonstrate that the composition in FA and the physical properties of the oil are the key factors determining the distribution of lipids in the different phases. The fastest rate of hydrolysis was observed for olive oil and the highest triacylglycerol conversion was attained for shea butter. In contrast, the most abundant precipitate phase was obtained for shea butter, which also produces the highest co-crystallization of cholesterol among the three edible oils studied. This study reveals that digestibility of edible oils is directly related with the initial rate of hydrolysis.
Collapse
Affiliation(s)
- Assamae Chabni
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| | - Celia Bañares
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| | - Guillermo Reglero
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain.,Department of Production and Development of Foods for Health, IMDEA-Food Institute, CEI (UAM-CSIC), Madrid, Spain
| | - Carlos F Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
41
|
Korkus E, Dąbrowski G, Szustak M, Czaplicki S, Madaj R, Chworoś A, Koziołkiewicz M, Konopka I, Gendaszewska-Darmach E. Evaluation of the anti-diabetic activity of sea buckthorn pulp oils prepared with different extraction methods in human islet EndoC-betaH1 cells. NFS JOURNAL 2022. [DOI: 10.1016/j.nfs.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Suwannasang S, Zhong Q, Thumthanaruk B, Vatanyoopaisarn S, Uttapap D, Puttanlek C, Rungsardthong V. Physicochemical properties of yogurt fortified with microencapsulated Sacha Inchi oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Shi Y, Ye F, Zhu Y, Miao M. Development of dendrimer-like glucan-stabilized Pickering emulsions incorporated with β-carotene. Food Chem 2022; 385:132626. [PMID: 35305435 DOI: 10.1016/j.foodchem.2022.132626] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/29/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023]
Abstract
The impact of sugary maize dendrimer-like glucan octenyl succinate (OSA-SMDG) on the storage stability and antioxidant activity of β-carotene (BC)-loaded emulsions as well as bioaccessibility were investigated. The encapsulation efficiency of β-carotene in emulsions containing 3% OSA-SMDG (3OSA-SMDG-BC) or 5% OSA-SMDG (5OSA-SMDG-BC) was 89.6% and 94.9%, respectively. The antioxidant activity of both emulsions was higher than that of pure β-carotene. During simulated digestion, the particle size of emulsions was immediately reduced, whereas zeta-potential was continuously increased in intestinal digestion. After 2 h digestion, the free fatty acids (FFA) release rate of 3OSA-SMDG-BC and 5OSA-SMDG-BC was significantly higher than that of blank emulsion. Bioaccessibility of β-carotene encapsulated in 3OSA-SMDG-BC and 5OSA-SMDG-BC was also significantly higher than that of blank emulsion. FFA release rate and β-carotene bioaccessibility of 5OSA-SMDG-BC were higher than that of 3OSA-SMDG-BC. These results demonstrated that OSA-SMDG could be used to fabricate food-grade O/W Pickering emulsion as a delivery system for bioactive compounds.
Collapse
Affiliation(s)
- Yaning Shi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Fan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yingjie Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
44
|
Guo Y, Xu Y, Zhang T, Wang Y, Liu R, Chang M, Wang X. Medium and long-chain structured triacylglycerol enhances vitamin D bioavailability in an emulsion-based delivery system: combination of in vitro and in vivo studies. Food Funct 2022; 13:1762-1773. [PMID: 35112696 DOI: 10.1039/d1fo03407c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vitamin D (VitD) is an essential fat-soluble micronutrient required for maintaining and regulating calcium homeostasis. Although sunlight can provide VitD, epidemiological studies indicate that the occurrence of VitD deficiency and insufficiency is widespread. Lipids are required at all stages of VitD digestion and absorption. In this research two different medium and long-chain triacylglycerol structures, possessing identical fatty acid composition lipids, namely structured triacylglycerol (STG), and physical mixtures of medium/long-chain triacylglycerol (MCT/LCT), were selected. Our results demonstrated that STG had a significant VitD bioavailability compared to MCT/LCT. In terms of the lipid digestion and absorption, the extent of the higher free fatty acid released (69.42%, p < 0.05), extent of lipolysis (89.28%, p < 0.05), lipolysis rate (0.06 s-1, p < 0.05), and the ratio of the long-chain fatty acid to medium-chain fatty acid of STG (4.8, p < 0.05), result in a higher capacity for accommodating VitD when forming mixed micelles (61.31%, p < 0.05). An in vivo animal study also demonstrated that STG significantly increases the delivery ability of VitD (18.75 ng mL-1, p < 0.05). The findings of this work may have unique applications for designing novel interesterified lipids with an effective delivery capacity for fat-soluble nutrients.
Collapse
Affiliation(s)
- Yiwen Guo
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Xu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tao Zhang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yandan Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruijie Liu
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Chang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xingguo Wang
- International Joint Research Laboratory for Oil Nutrition and Safety, Jiangnan University, Wuxi, Jiangsu, 214122, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
45
|
Vo CVT, Luu NVH, Nguyen TTH, Nguyen TT, Ho BQ, Nguyen TH, Tran TD, Nguyen QT. Screening for pancreatic lipase inhibitors: evaluating assay conditions using p-nitrophenyl palmitate as substrate. ALL LIFE 2022. [DOI: 10.1080/26895293.2021.2019131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Cam-Van T. Vo
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Nhan V. H. Luu
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Thoai T. H. Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Truc T. Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Bach Q. Ho
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Thuong H. Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Thanh-Dao Tran
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| | - Quoc-Thai Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh city, Vietnam
| |
Collapse
|
46
|
Wang Y, Cao M, Liu R, Chang M, Wei W, Jin Q, Wang X. The enzymatic synthesis of EPA-rich medium- and long-chain triacylglycerol improves the digestion behavior of MCFA and EPA: evidence on in vitro digestion. Food Funct 2022; 13:131-142. [PMID: 34870663 DOI: 10.1039/d1fo02795f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medium-chain triglyceride (MCT) and eicosapentaenoic acid (EPA) have been widely applied in nutritional supplementation. However, when administered individually or mixed, they were unable to maximize their nutritional value. Hence, EPA-rich medium- and long-chain triacylglycerol (MLCT) was synthesized from MCT and EPA-rich fish oil (FO) by enzymatic transesterification. The fatty acids in triglyceride (TAG) were rearranged which resulted in significant changes in TAG profiles compared to the physical mixture of MCT and FO (PM). EPA-containing MML (MML, MLM and LMM) and LLM (LLM, LML and MLL) type TAGs account for 70.21%. The fate of different oils (MCT, FO, PM, and MLCT) across the gastrointestinal tract was subsequently simulated using an in vitro digestion model. The results showed that the physical and structural characteristics of different oils during digestion depended upon the oil type and the microenvironment they were in. After 120 min of small intestine digestion, the degree of hydrolysis for MLCT was higher than that for the other three oils. The final FFA release level was in the following order: MLCT (102.79%) > MCT (95.20%) > PM (85.81%) > FO (74.18%). This can be attributed to the composition and positional distribution of fatty acids in TAGs. What's more, LCFAs (EPA) in MLCT mainly existed in the form of sn-2 MAG, which was conducive to their subsequent absorption and transport. These results may aid in the future rational design of structural lipids, thereby regulating lipid digestion and maximizing the nutritional value of oils.
Collapse
Affiliation(s)
- Yandan Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Minjie Cao
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ruijie Liu
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ming Chang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Wei
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Qingzhe Jin
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xingguo Wang
- State Key Lab of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
47
|
Kour P, Afzal S, Gani A, Zargar MI, Nabi Tak U, Rashid S, Dar AA. Effect of nanoemulsion-loaded hybrid biopolymeric hydrogel beads on the release kinetics, antioxidant potential and antibacterial activity of encapsulated curcumin. Food Chem 2021; 376:131925. [PMID: 34973641 DOI: 10.1016/j.foodchem.2021.131925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 12/16/2022]
Abstract
Nanoemulsion encapsulated in the hydrogel beads are important entrants for loading hydrophobic active ingredients for enhancing their bioavailability and biological activities relevant in the pharmaceutical, food and cosmetic industries. Herein, we report the formulation of curcumin-loaded nanoemulsion encapsulated in ionotropic hybrid hydrogel beads of alginate, chitosan, gelatin and polyethylene oxide for effective delivery of curcumin. The release behaviour in simulated gastric and intestinal fluids (SGF and SIF) at 37 °C showed faster release in SGF which could be explained on the basis of mesh size, the extent of hydration and the complexation of the curcumin with the Ca2+ ions present within the hydrogel network. The free radical scavenging and antibacterial activities of the released curcumin in SGF were significantly greater than in SIF. This study shows promises of such hybrid systems, ignored so far, for proper encapsulation, protection and delivery of curcumin for the development of functional foods and pharmaceutics. The high structural stability of these nanoemulsion carriers and their effective delivery of curcumin provide a novel and tailored formulation out of existing polymers with plethora of advantages for oral drug delivery. Moreover, this study opens new door for different possibilities to improve the physicochemical characteristics and delivery of bioactive molecules like curcumin.
Collapse
Affiliation(s)
- Pawandeep Kour
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Saima Afzal
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Umar Nabi Tak
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Showkat Rashid
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India
| | - Aijaz Ahmad Dar
- Soft Matter Research Group, Physical Chemistry Section, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar 190006, J&K, India.
| |
Collapse
|
48
|
Yao Y, Tan P, Kim JE. Effects of dietary fats on the bioaccessibility and bioavailability of carotenoids: a systematic review and meta-analysis of in vitro studies and randomized controlled trials. Nutr Rev 2021; 80:741-761. [PMID: 34897461 DOI: 10.1093/nutrit/nuab098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
CONTEXT Dietary fats are one of the well-known stimulators of carotenoid absorption, but the effects of the quantity and the type of dietary fats on carotenoid absorption have not yet been studied systematically. OBJECTIVE This review aimed to analyze data from both in vitro studies and randomized controlled trials (RCTs) to examine the effects of dietary fats on the bioaccessibility and bioavailability of carotenoids. DATA SOURCES A systematic search of 5 databases (Scopus, PubMed, Embase, CINAHL and the Cochrane Library) was conducted. STUDY SELECTION In vitro studies and RCTs were selected according to the PICOS criteria and were reviewed independently by 2 investigators. DATE EXTRACTION Key study characteristics from the eligible in vitro studies and RCTs were extracted independently by 2 investigators using a standardized table. RESULTS A total of 27 in vitro studies and 12 RCTs were included. The meta-regression of in vitro studies showed that the bioaccessibility of carotenoids, except for lycopene, was positively associated with the concentration of dietary fats. The meta-analysis of RCTs showed that the bioavailability of carotenoids was enhanced when a higher quantity of dietary fats was co-consumed. Moreover, fats rich in unsaturated fatty acids resulted in greater improvement in carotenoid bioavailability (SMD 0.90; 95%CI, 0.69-1.11) as compared with fats rich in saturated fatty acids (SMD 0.27; 95%CI, 0.08-0.47). CONCLUSIONS Co-consuming dietary fats, particularly those rich in unsaturated fatty acids, with carotenoid-rich foods can improve the absorption of carotenoids. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42020188539.
Collapse
Affiliation(s)
- Yuanhang Yao
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Peiyi Tan
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Jung Eun Kim
- Y. Yao, P. Tan, and J.E. Kim are with the Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| |
Collapse
|
49
|
Effect of the emulsifier type on the physicochemical stability and in vitro digestibility of a lutein/zeaxanthin-enriched emulsion. Food Sci Biotechnol 2021; 30:1509-1518. [PMID: 34868700 DOI: 10.1007/s10068-021-00987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022] Open
Abstract
Lutein (L) and zeaxanthin (Z), as macular pigments, are water-insoluble, chemically unstable, and have low bioaccessibilities; they are often emulsified to overcome these limitations. This study investigated the impact of various emulsifiers (ethyl lauroyl arginate (LAE); Tween 80; and sodium dodecyl sulfate (SDS)) on the physicochemical properties and in vitro digestibilities of L/Z-fortified oil-in-water emulsions. Droplet aggregation and creaming extents were dependent on the emulsifier type. The ζ-potentials of emulsions stabilized by LAE, Tween 80, and SDS were + 87, - 26, and - 95 mV, respectively. SDS-stabilized emulsion had the smallest particles, while the particle sizes for the LAE- and Tween 80-stabilized emulsions were larger and not significantly different. The rates of L/Z degradation were sensitive to the emulsifier type and to heat, not to light. The L/Z bioaccessibility was the highest for the Tween 80 emulsion. Surfactants should therefore be carefully selected to optimize L/Z physicochemical stability and bioaccessibility in emulsions.
Collapse
|
50
|
Acevedo-Fani A, Singh H. Biophysical insights into modulating lipid digestion in food emulsions. Prog Lipid Res 2021; 85:101129. [PMID: 34710489 DOI: 10.1016/j.plipres.2021.101129] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
During the last decade, major scientific advances on understanding the mechanisms of lipid digestion and metabolism have been made, with a view to addressing health issues (such as obesity) associated with overconsumption of lipid-rich and sucrose-rich foods. As lipids in common foods exist in the form of emulsions, the structuring of emulsions has been one the main strategies for controlling the rate of lipid digestion and absorption, at least from a colloid science viewpoint. Modulating the kinetics of lipid digestion and absorption offers interesting possibilities for developing foods that can provide control of postprandial lipaemia and control the release of lipophilic compounds. Food emulsions can be designed to achieve considerable differences in the kinetics of lipid digestion but most research has been applied to relatively simple model systems and in in vitro digestion models. Further research to translate this knowledge into more complex food systems and to validate the results in human studies is required. One promising approach to delay/control lipid digestion is to alter the stomach emptying rate of lipids, which is largely affected by interactions of emulsion droplets with the food matrices. Food matrices with different responses to the gastric environment and with different interactions between oil droplets and the food matrix can be designed to influence lipid digestion. This review focuses on key scientific advances made during the last decade on understanding the physicochemical and structural modifications of emulsified lipids, mainly from a biophysical science perspective. The review specifically explores different approaches by which the structure and stability of emulsions may be altered to achieve specific lipid digestion kinetics.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|