1
|
Ferreira Dantas KC, Martins Lima da Fonseca PH, Machado Neves Silva KM, Pereira Silva-Caldeira P. Nanoencapsulation of ascorbic acid loaded in pluronic® F127 coated by chitosan-alginate polyelectrolyte complex and application of a direct quantification method to enhance its accuracy. Int J Biol Macromol 2025; 306:141372. [PMID: 39988162 DOI: 10.1016/j.ijbiomac.2025.141372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Ascorbic acid (AA) is an active ingredient in numerous food, pharmaceutical, and cosmetic products. Due to its high instability and reactivity, encapsulation is a strategy to enhance its bioavailability. However, encapsulating AA is challenging, and assessing its encapsulation efficiency (EE) also poses difficulties because the indirect method typically used is inappropriate for AA, as it does not consider AA's degradation kinetics. The composite nanoparticles (NPs) were prepared by using three biocompatible polymers - pluronic® F127 (PLX), alginate (ALG), and chitosan (CS). PLX micelles loaded with six distinct AA amounts (1 to 20 mg) were coated by CS-ALG polyelectrolyte complex (PEC). SEM images indicated that NPs have an almost spherical shape, while TEM images confirm the presence of PLX micelles within the NPs. The average particle size ranged from 291 to 399 nm, with a Zeta potential exceeding 34 mV and a polydispersity index of <0.32 for AA-loaded NPs formulations. Regarding the inconsistencies in AA quantification, we applied a colorimetric method for quantifying AA directly in the NPs and for accurately quantifying AA in release studies (pH 5.5 and 7.4). CS-ALG PEC NPs showed suitable properties for short-term topical treatments, delivering AA at a constant rate over time.
Collapse
Affiliation(s)
- Kele Cristina Ferreira Dantas
- Chemistry Department, Centro Federal de Educação Tecnológica de Minas Gerais, Avenida Amazonas, 5253, 30421-169, Belo Horizonte, (MG), Brazil
| | | | - Kláudia Maria Machado Neves Silva
- Production Engineering Department, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, 31270-901, Belo Horizonte, (MG), Brazil
| | - Priscila Pereira Silva-Caldeira
- Chemistry Department, Centro Federal de Educação Tecnológica de Minas Gerais, Avenida Amazonas, 5253, 30421-169, Belo Horizonte, (MG), Brazil.
| |
Collapse
|
2
|
Hasannezhad H, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int J Biol Macromol 2025; 294:139248. [PMID: 39740715 DOI: 10.1016/j.ijbiomac.2024.139248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Chitosan, a versatile biopolymer derived from chitin, is increasingly recognized in the milk industry for its multifunctional applications in drug delivery, smart packaging, and biosensor development. This review provides a comprehensive analysis of recent advances in chitosan production techniques. These include chemical, biological, and novel methods such as deep eutectic solvents (DES), microwave-assisted approaches, and laser-assisted processes. Surface modification strategies to enhance its functional properties are also discussed. The review highlights the development of various chitosan-based nanocarriers, including nanoparticles, nanofibers, nanogels, and nanocomposites. It emphasizes their stability when combined with milk bioactive ingredients like lipids, peptides, lactose, and minerals. The gastrointestinal fate and safety of chitosan nanoparticles are critically evaluated, showcasing their potential for safe consumption in dairy-related applications. In drug delivery systems, chitosan exhibits excellent compatibility with milk-derived carbohydrates, proteins, and minerals, enabling the development of innovative drug delivery platforms. Additionally, its incorporation into smart packaging materials enhances the shelf-life and quality of dairy products. Chitosan-based biosensors offer precise contaminant detection in the milk industry by enabling precise detection of contaminants such as Bisphenol A, melamine, bacteria, drugs, antibiotics, toxins, heavy metals, and allergens, thus ensuring food safety and quality. Emerging trends, including the integration of artificial intelligence, advanced gene editing, and multifunctional chitosan, are discussed, offering insights into future personalized delivery systems and merging food and drug technologies. The review concludes by highlighting gaps in current research and offering recommendations for future exploration. These suggestions aim to optimize chitosan's unique properties to address key challenges in the milk industry. This article serves as a valuable resource for researchers, industry professionals, and policymakers aiming to innovate within the dairy sector using chitosan-based technologies.
Collapse
Affiliation(s)
- Hossein Hasannezhad
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Food Science and Technology, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Bakhshi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
3
|
Kim HM, Kim JH, Park BJ, Park HJ. Chitosan Nanoparticle-Encapsulated Cordyceps militaris Grown on Germinated Rhynchosia nulubilis Reduces Type II Alveolar Epithelial Cell Apoptosis in PM 2.5-Induced Lung Injury. Int J Mol Sci 2025; 26:1105. [PMID: 39940873 PMCID: PMC11817496 DOI: 10.3390/ijms26031105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Chitosan nanoparticles (CNPs) were synthesized in this study to enhance the limited bioactivity and stability of Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) and effectively deliver it to target tissues. Under optimized conditions, stable encapsulation of GRC was achieved by setting the chitosan (CHI)-to-tripolyphosphate (TPP) ratio to 4:1 and adjusting the pH of TPP to 2, resulting in a zeta potential of +22.77 mV, which indicated excellent stability. As the concentration of GRC increased, the encapsulation efficiency decreased, whereas the loading efficiency increased. Fourier-transform infrared (FT-IR) spectroscopy revealed shifts in the amide I and II bands of CHI from 1659 and 1578 to 1639 cm⁻1, indicating hydrogen bonding and successful encapsulation of GRC encapsulated with CNPs (GCN). X-ray diffraction (XRD) examination revealed the transition of the nanoparticles from a crystalline to an amorphous state, further confirming successful encapsulation. In vivo experiments demonstrated that GCN treatment significantly reduced lung injury scores in fine particulate matter (PM2.5)-exposed mice (p < 0.05) and alleviated lung epithelial barrier damage by restoring the decreased expression of occludin protein (p < 0.05). In addition, GCN decreased the PM2.5-induced upregulation of MMP-9 and COL1A1 mRNA expression levels, preventing extracellular matrix (ECM) degradation and collagen accumulation (p < 0.05). GCN exhibited antioxidant effects by reducing the mRNA expression of nitric oxide synthase (iNOS) and enhancing both the protein and mRNA expression of superoxide dismutase (SOD-1) caused by PM2.5, thereby alleviating oxidative stress (p < 0.05). In A549 cells, GCN significantly reduced PM2.5-induced reactive oxygen species (ROS) production compared with GRC (p < 0.05), with enhanced intracellular uptake confirmed using fluorescence microscopy (p < 0.05). In conclusion, GCN effectively alleviated PM2.5-induced lung damage by attenuating oxidative stress, suppressing apoptosis, and preserving the lung epithelial barrier integrity. These results emphasize its potential as a therapeutic candidate for preventing and treating the lung diseases associated with PM2.5 exposure.
Collapse
Affiliation(s)
| | | | | | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam-si 13120, Republic of Korea; (H.-M.K.); (J.-H.K.); (B.-J.P.)
| |
Collapse
|
4
|
Farag EAH, Baromh MZ, El-Kalamwi N, Sherif AH. Vitamin E nanoparticles enhance performance and immune status of Nile tilapia. BMC Vet Res 2024; 20:561. [PMID: 39668352 PMCID: PMC11636036 DOI: 10.1186/s12917-024-04398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Vitamin E (VE) is an essential vitamin liposoluble antioxidant in aquatic animals that is usually lost during feed processing and digestion, whereas nano-chitosan, a polysaccharide, could protect VE. In this study, Nile tilapia (70.85 ± 0.2 g) was fed VE (100 mg/kg dry diet) and a chitosan protected-VE nanoparticle (NPs) with gradual percentages of recommended dose 25%, 50%, 75%, and 100% for 4, 6, and 8 weeks. Growth parameters total weight gain (TG), daily weight gain (DWG), and relative growth rate (RGR) were significantly and positively correlated with VENPs additions. Regardless of the addition level, the feed conversion ratio (FCR) was significantly lower in the VENP groups. Lysozyme, serum antibacterial activity, and oxidative burst activity indicated the superiority of VENPs (VENPs75 and VENPs100) in enhancing the fish's innate immunity compared to bulk VE and the control groups. Fish were experimentally challenged with pathogenic Aeromonas hydrophila; those received dietary showed a low mortality rate (MR%), about 40% compared with 70% in the control with lower re-isolation compared to the control and VE groups. VENPs could provide ascending relative protection level during the period of 4 to 8 weeks; RPL ranged from 33.3 to 42.86% (VENPs100), 16.67-42.86% (VENPs75), 0 to 28.57% (VENPs50), and 0 to 14.29% (VENPs25 and VE), respectively. Finally, this study recommended incorporating VENPs into the Nile tilapia diet at 50, 75, and 100 mg/ kg fish feed. Fish in the VENPs75 and VENPs100 groups were immune boosted, becoming less vulnerable to A. hydrophila infection.
Collapse
Affiliation(s)
- Enas A H Farag
- Department of Pharmacology, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Benha, Egypt
| | - Mohamed Z Baromh
- Division of Aquaculture, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Naglaa El-Kalamwi
- Pathology Department, Animal Health Research Institute AHRI, Agriculture Research Center ARC, Dokki, Egypt
| | - Ahmed H Sherif
- Fish Diseases Department, Animal Health Research Institute AHRI, Agriculture Research Centre ARC, Kafrelsheikh, Egypt.
| |
Collapse
|
5
|
Khuntia A, Mitra J. Development and optimization of electrosprayed vitamin C - chitosan nanoparticle: A CCD-RSM approach and characterization of bioactive encapsulant. Food Chem 2024; 458:140257. [PMID: 38954953 DOI: 10.1016/j.foodchem.2024.140257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Electrospraying for Vitamin C (VC) encapsulation in Chitosan (Cs) nanoparticles was investigated and particle size, zeta potential, loading capacity (LC%) and encapsulation efficiency (EE%) were examined. Cs concentration (1-2% w/v) and voltage (21-25 kV) were varied with VC (0.25-0.75 w/w Cs). Twenty experiments in a face-centered CCD-RSM design were evaluated. ANOVA suggested voltage and Cs concentration as significant factors for particle size and VC content affected zeta, LC and EE%. RSM proposed optimum processing parameter at 2% Cs, 0.746 VC: Cs mass ratio and 21 kV voltage with 251.1 ± 59.03 nm particle size, 36.6% LC and an EE of 85.42%. Encapsulated particles were subjected to release behaviour, antioxidant property and analyzed through FTIR, DSC and XRD. Encapsulated VC had better antibacterial properties than Cs nanoparticles, and comparable VC retention in apple juice showed its effectiveness. Overall, nanoencapsulation of VC using electrospraying was successfully developed to be used in numerous food processing applications.
Collapse
Affiliation(s)
- Anjali Khuntia
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Jayeeta Mitra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
6
|
Mishra VK, Rodriguez-Lecompte JC, Ahmed M. Nanoparticles mediated folic acid enrichment. Food Chem 2024; 456:139964. [PMID: 38876059 DOI: 10.1016/j.foodchem.2024.139964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Folate is an essential component of many metabolic processes, and folate deficiency is known to cause various disorders. Folate and folic acid, a synthetic and chemically stable form of folate, enriched diet are typically used to overcome this deficiency. Folic acid and folate however, are susceptible to harsh environment and folates enrichment using nanoparticles is an intensively studied strategy in food industry. This review highlights the current methods and types of matrices utilized to develop folic acid/folate carrying nanoparticles. The folic acid/folate loaded nanoparticles prevent cargo degradation during gut absorption and under harsh food processing conditions including, high temperatures, UV light, and autoclaving. The data demonstrates that nanofortifcation of folates using proteins and biopolymers effectively enhances the bioavailability of the cargo. The encapsulation of folic acid in biopolymers by emulsion, spray drying and ionic gelation represent simplistic methods that can be easily scaled up with applications in food industry.
Collapse
Affiliation(s)
- Vineet Kumar Mishra
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
7
|
Bertrand M, Simonin S, Bach B. Applications of chitosan in the agri-food sector: A review. Carbohydr Res 2024; 543:109219. [PMID: 39047500 DOI: 10.1016/j.carres.2024.109219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Chitosan is a natural and renewable polysaccharide that can form biopolymers. It is derived from the deacetylation of chitin mainly from crustaceans' shells, but also from fungi and insects. Thanks to unique characteristics such as antimicrobial effects, antioxidant properties or film forming capacities, it has triggered an important amount of research in the last decade about possible applications in industrial fields. The main application field of chitosan is the food industry where it can be used for preservation purposes and shelf-life improvement for fresh food products such as fruits or meat. For beverages, it is used for clarification and fining as well as elimination of spoilage flora in beverages like fruit juices or wine. And in agriculture, it can be used as a plant protection product through different mechanisms like the elicitation of plant defences. The mechanisms of action of chitosan on microorganisms are multiple and complex but revolve mostly around the disturbance of microorganisms' membranes and cell walls resulting in the leakage of cell material. The use of chitosan is still minor but is promising in finding environmentally friendly alternatives to synthetic chemicals and plastics. Therefore, its characterization is primordial for the future of sustainable production and preservation processes.
Collapse
Affiliation(s)
- Mathilde Bertrand
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260, Nyon, Switzerland.
| | - Scott Simonin
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260, Nyon, Switzerland
| | - Benoit Bach
- Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260, Nyon, Switzerland
| |
Collapse
|
8
|
Castro NR, Pinto CDSC, Dos Santos EP, Mansur CRE. Nanosystems with potential application as carriers for skin depigmenting actives. NANOTECHNOLOGY 2024; 35:402001. [PMID: 38901412 DOI: 10.1088/1361-6528/ad5a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Hyperpigmentation is a skin disorder characterized by excessive production of melanin in the skin and includes dyschromias such as post-inflammatory hyperchromias, lentigens, melasma and chloasma. Topical products containing depigmenting agents offer a less aggressive treatment option for hyperpigmentation compared to methods like chemical peels and laser sessions. However, some of these agents can cause side effects such as redness and skin irritation. Encapsulating these actives in nanosystems shows promise in mitigating these effects and improving product safety and efficacy. In addition, nanocarriers have the ability to penetrate the skin, potentially allowing for targeted delivery of actives to the affected areas. The most commonly investigated nanosystems are nanoemulsions, vesicular nanosystems and nanoparticles, in which different materials can be used to generate different compositions in order to improve the properties of these nanocarriers. Nanocarriers have already been widely explored, but it is necessary to understand the evolution of these technologies when applied to the treatment of skin hyperchromias. Therefore, this literature review aims to present the state of the art over the last 15 years on the use of nanosystems as a potential strategy for encapsulating depigmenting actives for potential application in cosmetic products for skin hyperchromia. By providing a comprehensive overview of the latest research findings and technological advances, this article can contribute to improving the care and quality of life of people affected by this skin condition.
Collapse
Affiliation(s)
- Natalia Ruben Castro
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Cristal Dos Santos C Pinto
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Elisabete P Dos Santos
- Federal University of Rio de Janeiro, Faculty of Pharmacy, Department of Drugs and Medicines, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Claudia Regina E Mansur
- Federal University of Rio de Janeiro, Institute of Macromolecules, Center of Technology, Ilha do Fundão, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Santamaría E, Lizarreta N, Vílchez S, González C, Maestro A. Formation of Microcapsules of Pullulan by Emulsion Template Mechanism: Evaluation as Vitamin C Delivery Systems. Gels 2024; 10:355. [PMID: 38920902 PMCID: PMC11202853 DOI: 10.3390/gels10060355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Pullulan is a polysaccharide that has attracted the attention of scientists in recent times as a former of edible films. On the other hand, its use for the preparation of hydrogels needs more study, as well as the formation of pullulan microcapsules as active ingredient release systems for the food industry. Due to the slow gelation kinetics of pullulan with sodium trimetaphosphate (STMP), capsules cannot be formed through the conventional method of dropping into a solution of the gelling agent, as with other polysaccharides, since the pullulan chains migrate to the medium before the capsules can form by gelation. Pullulan microcapsules have been obtained by using inverse water-in-oil emulsions as templates. The emulsion that acts as a template has been characterized by monitoring its stability and by optical microscopy, and the size of the emulsion droplets has been correlated with the size of the microcapsules obtained, demonstrating that it is a good technique for their production. Although some flocs of droplets form, these remain dispersed during the gelation process and two capsule size distributions are obtained: those of the non-flocculated droplets and the flocculated droplets. The microcapsules have been evaluated as vitamin C release systems, showing zero-order release kinetics for acidic pH and Fickian mechanism for neutral pH. On the other hand, the microcapsules offer good protection of vitamin C against oxidation during an evaluation period of 14 days.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Naroa Lizarreta
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
| | - Susana Vílchez
- Institute of Advanced Chemistry of Catalonia, Consejo Superior de Investigaciones Científicas (IQAC-CSIC) and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Carme González
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| | - Alicia Maestro
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona, Marti i Franques, 1, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
10
|
Soltani A, Ncibi S, Djebbi T, Laabidi A, Mahmoudi H, Mediouni-Ben Jemâa J. Eco-friendly management strategies of insect pests: long-term performance of rosemary essential oil encapsulated into chitosan and gum Arabic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2315-2332. [PMID: 37584334 DOI: 10.1080/09603123.2023.2245775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023]
Abstract
This study focused on encapsulation of Rosmarinus officinalis essential oil (EO) on chitosan and gum Arabic matrix in various ratios and with varying essential oil concentrations. Additionally, UV/VIS spectroscopy was used to determine cumulative-release profiles. The insecticidal activity was tested against Tribolium castaneum and Oryzaephilus surinamensis, both pests of stored products. In terms of encapsulation efficiency (EE%) and loading capacity (LC%), capsules had EE at 45.8% and LC at 2.31%. Furthermore, many minor compounds were lost after encapsulation, until identifying only 1,8-cineole, α-terpineol, and camphor after 60 d of storage. The fumigant tests demonstrated that encapsulated EO exhibited an effective control against insect pest during storage periods, namely, 30, 45, and 60 d with 99, 66, and 46% mortality for T. castaneum and 100, 84, 82% mortality for O. surinamensis.
Collapse
Affiliation(s)
- Abir Soltani
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Sarra Ncibi
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Tasnim Djebbi
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| | - Amina Laabidi
- Laboratory of Biological Sciences, Higher Institute of Biotechnology of Beja
| | - Hela Mahmoudi
- Laboratory of Biological Sciences, Higher Institute of Biotechnology of Beja
| | - Jouda Mediouni-Ben Jemâa
- Laboratory of Biotechnology Applied to Agriculture, National Agricultural Research Institute of Tunisia (INRAT), University of Carthage, Tunis, Tunisia
| |
Collapse
|
11
|
Leelawattanachai J, Panyasu K, Prasertsom K, Manakasettharn S, Duangdaw H, Budthong P, Thepphornbanchakit N, Chetprayoon P, Muangnapoh K, Srinives S, Waraho-Zhmayev D, Triampo D. Highly stable and fast-dissolving ascorbic acid-loaded microneedles. Int J Cosmet Sci 2023; 45:612-626. [PMID: 37133325 DOI: 10.1111/ics.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/14/2023] [Accepted: 05/01/2023] [Indexed: 05/04/2023]
Abstract
OBJECTIVES Ascorbic acid has many benefits to the skin. Numerous attempts to promote its topical delivery show great challenges since its chemical instability and poor skin impermeability. Microneedle delivery is a simple, safe, painless and effective means to deliver therapeutic or nourishing molecules into the skin. The purpose of this study was twofold: (a) to develop a new formulation of ascorbic acid-loaded microneedles to enhance ascorbic acid stability by investigating an optimal amount of polyethyleneimine as an additive to the dextran-based microneedle formulation and (b) to assess microneedle properties in terms of dissolving rate, skin penetration ability, biocompatibility and antimicrobial activity. METHODS The microneedles formulated with ascorbic acid and varied polyethyleneimine concentrations were fabricated and subsequently tested for ascorbic acid stability using 2,2-diphenyl-1-picrylhydrazyl assay. The dissolution rate and skin penetration depth were investigated in porcine skin and the reconstructed human full-thickness skin model respectively. The skin irritation tests were done according to the Organisation for Economic Co-operation and Development Test Guideline No. 439. An antimicrobial disc susceptibility test was performed against Escherichia coli, Staphylococcus aureus and Staphylococcus epidermidis. RESULTS Among varied amounts of 0%, 1.5%, 3.0% and 4.5% (w/v), the 3.0% polyethyleneimine showed the most desirable characteristics, including well-preserved shape integrity after demoulding, significantly improved stability of ascorbic acid (p < 0.001) from 33% to 96% antioxidant activity after 8 weeks of storage at 40°C, increased dissolving rate (p < 0.001) by being completely dissolved within 2 min after the skin insertion, passing skin penetration and biocompatibility tests as well as having a broad spectrum of antimicrobial property. CONCLUSION With a safety profile and enhanced properties, the new formulation of ascorbic acid-loaded microneedles shows outstanding potential as commercially available cosmetics and healthcare products.
Collapse
Affiliation(s)
- Jeerapond Leelawattanachai
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kedsara Panyasu
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kornkanok Prasertsom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Supone Manakasettharn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Hathaiphat Duangdaw
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Pitchaon Budthong
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok, Thailand
| | | | - Paninee Chetprayoon
- Toxicology and Bio Evaluation Service Center (TBES), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kullachate Muangnapoh
- National Metal and Material Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sira Srinives
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom, Thailand
| | - Dujduan Waraho-Zhmayev
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Darapond Triampo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
12
|
Elamawy A, Hegazi E, Nassef E, Abouzed TK, Zaki AG, Ismail T. Dietary inclusion of nano-phosphorus improves growth performance, carcass quality, and growth-related traits of Nile tilapia (Oreochromis niloticus) and alleviates water phosphorus residues. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:529-542. [PMID: 37138041 DOI: 10.1007/s10695-023-01199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Supplementation of phosphorus nanoparticles is a promising strategy to reduce water pollution, improve phosphorus concentration in fish diet, and provide better production quality. We used 300 fingerlings of Nile tilapia that were randomly distributed into 3 groups; each one was attributed to 5 replicates of 20 fish per aquarium with initial weight (gm) (156 ± 1.25). The first diet contained traditional Di-calcium phosphate (D-group), the second supplemented with phosphorus nanoparticles in a dose equal to the previous conventional one (N-D group), and the last one included with phosphorus nanoparticles with the half dose of the conventional phosphorus group (1/2 N-D group). After 3 months of feeding, the N-D group showed the best growth performance including its feed conversion ratio (FCR), feed intake (FI), or body weight gain (BWG). Furthermore, the growth-related gene expression findings considering growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF-1) were upregulated as well. Moreover, whole body chemical composition revealed higher Fe, Zn, P, and crude protein level in the N-D group than the other two groups. Lipoprotein lipase (LPL) and fatty acid synthetase (FAS) mRNA expression showed a significant increase in 1/2 N-D and N-D groups compared with the control group. To sum up, using of nano-phosphorus particles improved the growth rate and immunity response of Nile tilapia, besides decreasing water pollution.
Collapse
Affiliation(s)
- Anwar Elamawy
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh, Egypt
| | - Elsayed Hegazi
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh, Egypt
| | - Eldsokey Nassef
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abeer G Zaki
- Biotechnology Department, Animal Health Research Institute, Giza, Egypt
| | - Taha Ismail
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh, Egypt.
| |
Collapse
|
13
|
Uyanga VA, Ejeromedoghene O, Lambo MT, Alowakennu M, Alli YA, Ere-Richard AA, Min L, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Chitosan and chitosan‑based composites as beneficial compounds for animal health: Impact on gastrointestinal functions and biocarrier application. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
14
|
Kumar N, Singh DK, Chandan NK, Thorat ST, Patole PB, Gite A, Reddy KS. Nano‑zinc enhances gene regulation of non‑specific immunity and antioxidative status to mitigate multiple stresses in fish. Sci Rep 2023; 13:5015. [PMID: 36977939 PMCID: PMC10050481 DOI: 10.1038/s41598-023-32296-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
The toxicity of ammonia surged with arsenic pollution and high temperature (34 °C). As climate change enhances the pollution in water bodies, however, the aquatic animals are drastically affected and extinct from nature. The present investigation aims to mitigate arsenic and ammonia toxicity and high-temperature stress (As + NH3 + T) using zinc nanoparticles (Zn-NPs) in Pangasianodon hypophthalmus. Zn-NPs were synthesized using fisheries waste to developing Zn-NPs diets. The four isonitrogenous and isocaloric diets were formulated and prepared. The diets containing Zn-NPs at 0 (control), 2, 4 and 6 mg kg-1 diets were included. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-s-transferase (GST) were noticeably improved using Zn-NPs diets in fish reared under with or without stressors. Interestingly, lipid peroxidation was significantly reduced, whereas vitamin C and acetylcholine esterase were enhanced with supplementation of Zn-NPs diets. Immune-related attributes such as total protein, globulin, albumin, myeloperoxidase (MPO), A:G ratio, and NBT were also improved with Zn-NPs at 4 mg kg-1 diet. The immune-related genes such as immunoglobulin (Ig), tumor necrosis factor (TNFα), and interleukin (IL1b) were strengthening in the fish using Zn-NPs diets. Indeed, the gene regulations of growth hormone (GH), growth hormone regulator (GHR1), myostatin (MYST) and somatostatin (SMT) were significantly improved with Zn-NPs diets. Blood glucose, cortisol and HSP 70 gene expressions were significantly upregulated by stressors, whereas the dietary Zn-NPs downregulated the gene expression. Blood profiling (RBC, WBC and Hb) was reduced considerably with stressors (As + NH3 + T), whereas Zn-NPs enhanced the RBC, WBC, and Hb count in fish reread in control or stress conditions. DNA damage-inducible protein gene and DNA damage were significantly reduced using Zn-NPs at 4 mg kg-1 diet. Moreover, the Zn-NPs also enhanced the arsenic detoxification in different fish tissues. The present investigation revealed that Zn-NPs diets mitigate ammonia and arsenic toxicity, and high-temperature stress in P. hypophthalmus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India.
| | - Dilip Kumar Singh
- ICAR-Central Institute of Fisheries Education, Kolkata Center, Kolkata, 700091, India
| | | | - Supriya Tukaram Thorat
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Pooja Bapurao Patole
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Archana Gite
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| | - Kotha Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, 413115, India
| |
Collapse
|
15
|
Bedhiafi T, Idoudi S, Fernandes Q, Al-Zaidan L, Uddin S, Dermime S, Billa N, Merhi M. Nano-vitamin C: A promising candidate for therapeutic applications. Biomed Pharmacother 2023; 158:114093. [PMID: 36495664 DOI: 10.1016/j.biopha.2022.114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin C is an important nutrient implicated in different physiological functions in humans. Despite its important biological functions, therapeutic applications of vitamin C are rare and its use is further impacted by low chemical stability. Several nano-encapsulation techniques have been described in the literature and yet, there are only a handful of clinical investigations dedicated to unlocking the therapeutic applications of nano-encapsulated vitamin C. Clearly, further investigations are warranted in order to affirm the promising clinical potential of nano-encapsulated vitamin C. In this review, we describe the mechanisms of vitamin C activity as a modulator of crucial therapeutic uses in biological systems. We look at key factors affecting the chemical stability of vitamin C alone and in nano-encapsulated and explore pre-clinical and clinical evidence on current vitamin C nano-formulations along with their therapeutic applications. Finally, we critically appraise the gaps and opportunities prevailing in nano-vitamin C research and its potential translation towards relevant clinical outcomes.
Collapse
Affiliation(s)
- Takwa Bedhiafi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | | | - Queenie Fernandes
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Maysaloun Merhi
- Translational Cancer Research Facility, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
16
|
Kamali ND, Alishahi AR, Heidarieh M, Rajabifar S, Mirsadeghi SH, Kordjazi M. Evaluation of the Relationship between Penetration Percent of Chitosan and Its Nanoparticles and Qualitative Traits in Huso huso Fillet Using 67Ga Radiolabeling of Chitosan. RADIOCHEMISTRY 2022. [DOI: 10.1134/s1066362222060157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
17
|
Ruiz-Pulido G, Quintanar-Guerrero D, Serrano-Mora LE, Medina DI. Triborheological Analysis of Reconstituted Gastrointestinal Mucus/Chitosan:TPP Nanoparticles System to Study Mucoadhesion Phenomenon under Different pH Conditions. Polymers (Basel) 2022; 14:4978. [PMID: 36433107 PMCID: PMC9696252 DOI: 10.3390/polym14224978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Polymeric nanoparticles have attracted much attention as pharmaceutical delivery vehicles to prolong residence time and enhance the bioavailability of therapeutic molecules through the mucoadhesive phenomenon. In this study, chitosan:TPP nanoparticles were synthetized using the ionic gelation technique to analyze their mucoadhesive interaction with reconstituted porcine gastrointestinal mucus from a triborheological point of view under different pH conditions (pH = 2.0, 4.0, 6.0 and 7.0). The triborheological profile of the reconstituted mucus was evaluated at different pH environments through the oscillation frequency and the flow sweep tests, demonstrating that the reconstituted mucus exhibits shear thinning behavior regardless of pH, while its viscoelastic properties showed a change in behavior from a polymeric solution performance under neutral pH conditions to a viscoelastic gel under acidic conditions. Additionally, a rheological synergism analysis was performed to visualize the changes that occur in the viscoelastic properties, the viscosity and the coefficient of friction of the reconstituted mucus samples as a consequence of the interaction with the chitosan:TPP nanoparticles to determine or to discard the presence of the mucoadhesion phenomenon under the different pH values. Mucoadhesiveness evaluation revealed that chitosan:TPP exhibited strong mucoadhesion under highly acidic pH conditions, below its pKa value of 6.5. In contrast, at neutral conditions or close to its pKa value, the chitosan:TPP nanoparticles' mucoadhesiveness was negligible.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de México, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Luis Eduardo Serrano-Mora
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Dora I. Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
18
|
Ascorbic acid-loaded gliadin nanoparticles as a novel nutraceutical formulation. Food Res Int 2022; 161:111869. [DOI: 10.1016/j.foodres.2022.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
|
19
|
Encapsulation of phenolic compounds through the complex coacervation technique for the enrichment of diet chewable candies. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Heydari S, Esmaeili A. Synthesize of polyurethane/chitosan/Vicia ervilia protein/gelatin/heparin-coated Astragalus gossypinus scaffold for cardiovascular tissue engineering. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Jiang H, Hu X, Jiang W, Guan X, Li Y, Ngai T. Water-in-Oil Pickering Emulsions Stabilized by Hydrophobized Protein Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12273-12280. [PMID: 36172706 DOI: 10.1021/acs.langmuir.2c01904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Water-in-oil (w/o) Pickering emulsions have gained considerable attention in colloid science and daily applications. However, for the formation of w/o emulsions, especially those with high internal water content, the particulate stabilizers are required to be sufficiently hydrophobic, and synthetic or chemically modified particles have been mostly reported until now, which are not biocompatible and sustainable. We present a zein protein-based microsphere derived from the Pickering emulsion template, in which protein microspheres are feasibly in situ hydrophobized by silica nanoparticles, enabling the stabilization of w/o Pickering emulsions. The effects of microsphere concentration, water/oil volume ratio, oil types, and pH on the stabilization of prepared w/o emulsions are systematically studied, revealing prominent characteristics of the controllable size, high water fraction, universal adaptation of oils, as well as broad pH stability. As a demonstration, the Pickering emulsion effectively encapsulates vitamin C and shows high stability for long storage duration against ultraviolet radiation/heat. Therefore, this novel proteinaceous particle-stabilized w/o Pickering emulsion has great potential in the delivery and protection of water-soluble bioactive substrates.
Collapse
Affiliation(s)
- Hang Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiaofeng Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Weijie Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin Guan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong 00852, P. R. China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong 00852, P. R. China
| |
Collapse
|
22
|
Soleymanfallah S, Khoshkhoo Z, Hosseini SE, Azizi MH. Preparation, physical properties, and evaluation of antioxidant capacity of aqueous grape extract loaded in chitosan-TPP nanoparticles. Food Sci Nutr 2022; 10:3272-3281. [PMID: 36249981 PMCID: PMC9548353 DOI: 10.1002/fsn3.2891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Accepted: 04/03/2022] [Indexed: 11/09/2022] Open
Abstract
Grape extract is reportedly rich in phenolic compounds that possess strong antioxidant activities. Encapsulation of such extracts in nanoparticles (NPs) is an effective way to preserve various food products. In the present study, grapes were first extracted, and the amount of total phenolic content and different types of phenolic acids was determined. The extracts at different chitosan/extract weight ratios (1:0.25, 1:0.5, 1:0.75, and 1:1) were then encapsulated in chitosan nanoparticles (NPs) using the ionic gelation method. The extract-loaded chitosan nanoparticles were characterized by their physicochemical properties using the dynamic light scattering (DLS) technique, chemical properties using Fourier-transform infrared (FTIR) spectroscopy, and X-ray powder diffraction technique (XRD), the morphological properties using scanning electron microscopy (SEM), and the antioxidant activity using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) test. The encapsulation efficiency (EE) and loading capacity (LC) were also assessed. Our findings showed that the free radical inhibition effect of NPs significantly increased with an increase in extract concentration. Chitosan NPs presented acceptable encapsulation efficiency and loading capacity (LC), and the encapsulation process enhanced the antioxidant activity of the free grape extracts. At the weight ratio of 1:0.5, the particle size and zeta potential of the NPs were 177.5 ± 2.12 nm and 32.95 ± 0.49 mV, respectively. FTIR and XRD analyses verified the credibility of the encapsulated grape extract in chitosan NPs. These NPs can be an efficient way to increase the shelf-life of food products.
Collapse
Affiliation(s)
- Sepideh Soleymanfallah
- Department of Food Science and TechnologyNorth Tehran Branch Islamic Azad UniversityTehranIran
| | - Zhaleh Khoshkhoo
- Department of Food Science and TechnologyNorth Tehran Branch Islamic Azad UniversityTehranIran
| | - Seyed Ebrahim Hosseini
- Department of Food Science and TechnologyTehran Science and Research BranchIslamic Azad UniversityTehranIran
| | - Mohammad Hossein Azizi
- Department of Food Science and TechnologyCollege of Agriculture, Tarbiat Modares UniversityTehranIran
| |
Collapse
|
23
|
Preparation and evaluation of ascorbyl glucoside and ascorbic acid solid in oil nanodispersions for corneal epithelial wound healing. Int J Pharm 2022; 627:122227. [PMID: 36155791 DOI: 10.1016/j.ijpharm.2022.122227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/20/2022]
Abstract
The objective of this study was to develop and evaluate an effective topical formulation to promote corneal epithelial wound healing. Ascorbyl glucoside (AA-2G), a stable prodrug of AA, was formulated in solid in oil (S/O) nanodispersions by emulsifying AA-2G solutions in cyclohexane using Span 85 as an emulsifying agent and freeze-drying emulsions to produce AA-2G - surfactant complex. The complexes were then dispersed in castor oil to produce S/O nanodispersions which were evaluated in terms of their particle size, polydispersity index, encapsulation efficiency, morphology, physical stability as well as the transcorneal permeation and accumulation of AA-2G. The same preparation procedure was used to prepare S/O nanodispersions of AA. S/O nanodispersions of AA and AA-2G were formulated into oily drops that were tested for efficacy in promoting wound healing after corneal epithelial depredation. AA-2G was loaded efficiently in S/O nanodispersions (EE > 99%) in the form of spherical nanoparticles. S/O nanodispersions were physically stable and resulted in improved permeation (18x) and accumulation (7x) of AA-2G in transcorneal diffusion experiments in comparison to AA-2G solutions. Oily eye drops of AA-2G and AA showed no irritation and significant improvement in epithelial healing in vivo in comparison to AA-2G and AA solutions.
Collapse
|
24
|
Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology 2022; 20:362. [PMID: 35933341 PMCID: PMC9356434 DOI: 10.1186/s12951-022-01539-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Oral delivery of therapeutics is the preferred route of administration due to ease of administration which is associated with greater patient medication adherence. One major barrier to oral delivery and intestinal absorption is rapid clearance of the drug and the drug delivery system from the gastrointestinal (GI) tract. To address this issue, researchers have investigated using GI mucus to help maximize the pharmacokinetics of the therapeutic; while mucus can act as a barrier to effective oral delivery, it can also be used as an anchoring mechanism to improve intestinal residence. Nano-drug delivery systems that use materials which can interact with the mucus layers in the GI tract can enable longer residence time, improving the efficacy of oral drug delivery. This review examines the properties and function of mucus in the GI tract, as well as diseases that alter mucus. Three broad classes of mucus-interacting systems are discussed: mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems. For each class of system, the basis for mucus interaction is presented, and examples of materials that inform the development of these systems are discussed and reviewed. Finally, a list of FDA-approved mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems is reviewed. In summary, this review highlights the progress made in developing mucus-interacting systems, both at a research-scale and commercial-scale level, and describes the theoretical basis for each type of system.
Collapse
Affiliation(s)
- Deepak A Subramanian
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Meng Y, Qiu C, Li X, McClements DJ, Sang S, Jiao A, Jin Z. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:187-201. [PMID: 35930011 DOI: 10.1080/10408398.2022.2105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharides are natural polymers isolated from plants, microorganisms, algae, and some animals they are composed of aldoses or ketoses linked by glycosidic bonds. Due to the affordability, abundance, safety, and functionality, polysaccharides are widely used in the foods and medicines to construct oral delivery systems for sensitive bioactive ingredients. In this article, the characteristics and applications of nanoscale polysaccharide-based delivery carriers are reviewed, including their ability to encapsulate, protect, and deliver bioactive ingredients. This review discusses the sources, characteristics, and functional properties of common food polysaccharides, including starch, pectin, chitosan, xanthan gum, and alginate. It also highlights the potential advantages of using polysaccharides for the construction of nano-delivery systems, such as nanoparticles, nanogels, nanoemulsions, nanocapsules, and nanofibers. Moreover, the application of delivery systems assembled from polysaccharides is summarized, with a focus on pH-responsive delivery of bioactives. There are some key findings and conclusions: Nanoscale polysaccharide delivery systems provide several advantages, including improved water-dispersibility, flavor masking, stability enhancement, reduced volatility, and controlled release; Polysaccharide nanocarriers can be used to construct pH-responsive delivery vehicles to achieve intestinal-targeted delivery and controlled release of bioactive ingredients; Polysaccharides can be used in combination with other biopolymers to form composite delivery systems with enhanced functional attributes.
Collapse
Affiliation(s)
- Yaxu Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, United States
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
26
|
Nezammahalleh H, Ghanati F, Rezaei S, Badshah MA, Park J, Abbas N, Ali A. Biochemical Interactions through Microscopic Techniques: Structural and Molecular Characterization. Polymers (Basel) 2022; 14:2853. [PMID: 35890632 PMCID: PMC9318543 DOI: 10.3390/polym14142853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Many researchers and scientists have contributed significantly to provide structural and molecular characterizations of biochemical interactions using microscopic techniques in the recent decade, as these biochemical interactions play a crucial role in the production of diverse biomaterials and the organization of biological systems. The properties, activities, and functionalities of the biomaterials and biological systems need to be identified and modified for different purposes in both the material and life sciences. The present study aimed to review the advantages and disadvantages of three main branches of microscopy techniques (optical microscopy, electron microscopy, and scanning probe microscopy) developed for the characterization of these interactions. First, we explain the basic concepts of microscopy and then the breadth of their applicability to different fields of research. This work could be useful for future research works on biochemical self-assembly, biochemical aggregation and localization, biological functionalities, cell viability, live-cell imaging, material stability, and membrane permeability, among others. This understanding is of high importance in rapid, inexpensive, and accurate analysis of biochemical interactions.
Collapse
Affiliation(s)
- Hassan Nezammahalleh
- Faculty of Biological Science, Tarbiat Modares University, Tehran 14115-111, Iran; (H.N.); (F.G.)
- Research and Development Department, Hamyarapply Group, Tehran 14115-111, Iran
| | - Faezeh Ghanati
- Faculty of Biological Science, Tarbiat Modares University, Tehran 14115-111, Iran; (H.N.); (F.G.)
| | - Shima Rezaei
- Department of Microbiology, Faculty of Biological Science, Ardebil Branch, Islamic Azad University, Ardebil 5615731567, Iran;
| | - Mohsin Ali Badshah
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA;
| | - Joobee Park
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, MA 02163, USA;
| | - Naseem Abbas
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea
| | - Ahsan Ali
- Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Korea
| |
Collapse
|
27
|
In vitro bioaccessibilities of vitamin C in baby biscuits prepared with or without UHT cow’s milk. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Fathima E, Nallamuthu I, Anand T, Naika M, Khanum F. Enhanced cellular uptake, transport and oral bioavailability of optimized folic acid-loaded chitosan nanoparticles. Int J Biol Macromol 2022; 208:596-610. [PMID: 35292282 DOI: 10.1016/j.ijbiomac.2022.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/04/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
Folic acid is a synthetic form of folate widely used for food fortification. However, its bioavailability is limited due to its inherent instability at several conditions. Therefore, a suitable encapsulation system is highly required. In the present study, the fabrication condition for folic acid-loaded chitosan nanoparticle (FA-Chi-NP) was optimized and then subjected to characterization. The optimized formulation had the particle size, zeta potential, and encapsulation efficiency of 180 nm, +52 mV, and 90%, respectively. In vitro release profile showed a controlled release of folic acid from the nanoparticles. Treatment of Caco-2 cells with the formulation showed no adverse effects based on MTT and LDH assays, and also, the cellular uptake was significantly higher after 2 h compared to free folic acid. Further, the oral administration of rats with FA-Chi-NPs (1 mg/kg BW) increased the plasma level of both folic acid (3.2-fold) and its metabolites such as tetrahydrofolate (2.3-fold) and 5-methyltetrahydrofolate (1.6-fold) significantly compared to free folic acid. In a bio-distribution study, duodenum and jejunum were found to be the primary sites for absorption. These findings suggest that chitosan may be a promising carrier for the delivery of folic acid and, therefore, could be exploited for various food applications.
Collapse
Affiliation(s)
- Eram Fathima
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - Ilaiyaraja Nallamuthu
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - T Anand
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India.
| | - Mahadeva Naika
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| | - Farhath Khanum
- Nutrition, Biochemistry and Toxicology Division, Defence Food Research Laboratory (DRDO-DFRL), Mysore 570011, India
| |
Collapse
|
29
|
Razavizadeh BM, Shahidi Noghabi M, Molaveisi M. A Ternary blending of Soy protein Isolate/ Maltodexterin/Inulin for Encapsulation Bioactive Oils: Optimization of Wall material and Release Studies. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bibi Marzieh Razavizadeh
- Department of Food safety and quality control Research Institute of Food Science and Technology Mashhad Iran
| | | | - Mohammad Molaveisi
- Department of Food chemistry Research Institute of Food Science and Technology Mashhad Iran
| |
Collapse
|
30
|
Yin X, Chen K, Cheng H, Chen X, Feng S, Song Y, Liang L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants (Basel) 2022; 11:153. [PMID: 35052657 PMCID: PMC8773188 DOI: 10.3390/antiox11010153] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The L-enantiomer of ascorbic acid is commonly known as vitamin C. It is an indispensable nutrient and plays a key role in retaining the physiological process of humans and animals. L-gulonolactone oxidase, the key enzyme for the de novo synthesis of ascorbic acid, is lacking in some mammals including humans. The functionality of ascorbic acid has prompted the development of foods fortified with this vitamin. As a natural antioxidant, it is expected to protect the sensory and nutritional characteristics of the food. It is thus important to know the degradation of ascorbic acid in the food matrix and its interaction with coexisting components. The biggest challenge in the utilization of ascorbic acid is maintaining its stability and improving its delivery to the active site. The review also includes the current strategies for stabilizing ascorbic acid and the commercial applications of ascorbic acid.
Collapse
Affiliation(s)
- Xin Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kaiwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuai Feng
- Luwei Pharmaceutical Group Co., Ltd., Shuangfeng Industrial Park, Zibo 255195, China;
| | - Yuanda Song
- Colin Raledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Encapsulation of olive leaf extract (Olea europaea L.) in gelatin/tragacanth gum by complex coacervation for application in sheep meat hamburger. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Klettenhammer S, Ferrentino G, Zendehbad HS, Morozova K, Scampicchio M. Microencapsulation of linseed oil enriched with carrot pomace extracts using Particles from Gas Saturated Solutions (PGSS) process. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Naderi S, Esmaeili A. Fabrication and characterization of 3D printing scaffold technology by extract oils from plant and its applications in the cardiovascular blood. Sci Rep 2021; 11:24409. [PMID: 34949772 PMCID: PMC8702541 DOI: 10.1038/s41598-021-03951-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
Extract oils from plants used in 3D polysaccharides modified with natural protein polymer modified polymer scaffolds can help to reduce blood pressure. This study aimed to use extract oils from plant (EOP)as blood pressure-reducing, bind them to magnetic iron nanoparticles (Fe3O4@NPs), then bind them to polymeric 3D print scaffolds [chitosan, polylactic acid, and polyurethane (CS/PLA/PU), modified with natural protein and finally separate them. This method made it possible to investigate different variables for nanoparticles. In this project, synthesis polymer, modified gelatin (Mo-Ge), PEGylation, extract oils from plant loading and release process in nanocarrier with different concentrations were examined and cell proliferation was optimized. The results show that 75% of the extract oils from plant loaded on iron magnetic nanoparticles containing PEGylated polymer scaffolds was released. Cell proliferation was performed for the sample. In this process, modification of scaffolding with polysaccharides modified with natural protein and extract oils from plant increased the efficiency of nanoparticles among the studied Allium sativum and Zingiber officinale. The size of A. sativum and Z. officinale were 29.833 nm and 150.02 nm size, respectively. These behaved very similarly to each other and A. sativum had the biggest effect in lowering blood pressure. The application of extract oils from plant in 3D mode scaffolding has not been studied before and this is the first analysis to do so, using nanoparticles.
Collapse
Affiliation(s)
- Soheila Naderi
- Department of Chemical Engineering, North Tehran Branch, Islamic Azad University, P.O. Box 1651153311, Tehran, Iran
| | - Akbar Esmaeili
- Department of Chemical Engineering, North Tehran Branch, Islamic Azad University, P.O. Box 1651153311, Tehran, Iran.
| |
Collapse
|
34
|
Ventura-Aguilar RI, Díaz-Galindo EP, Bautista-Baños S, Mendoza-Acevedo S, Munguía-Cervantes JE, Correa-Pacheco ZN, Bosquez-Molina E. Monitoring the infection process of Rhizopus stolonifer on strawberry fruit during storage using films based on chitosan/polyvinyl alcohol/polyvinylpyrrolidone and plant extracts. Int J Biol Macromol 2021; 182:583-594. [PMID: 33831451 DOI: 10.1016/j.ijbiomac.2021.03.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/11/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022]
Abstract
Different formulations based on nanoparticles of chitosan-plant extracts were evaluated to detect the infection process from the earliest stage of the fungus Rhizopus stolonifer on strawberry fruit during storage. Chitosan/polyvinyl alcohol (Ch/PVA) and chitosan/polyvinylpyrrolidone (Ch/PVP) films enriched with nanoparticles (NPs) of chitosan blended with plant extracts were prepared. They were placed inside a plastic package containing inoculated fruits and stored at 25 °C for 72 h. The thickness values of the films were in the range of 0.10 to 0.25 mm. All samples showed a maximum absorbance peak of about 300-320 nm; however, the Ch/PVP films enriched with NPs of chitosan and 10% of radish extract had an evident decrease in the optical absorbance as the fungal infection progressed. Additionally, as observed by scanning electron microscopy, the cross-section and surface morphology of films were not modified during storage, and the growth of R. stolonifer was evident after 48 h. Therefore, the Ch/PVP films enriched with chitosan NPs blended with 10% radish extract could be a reliable indicator of this fungus's growth.
Collapse
Affiliation(s)
- Rosa Isela Ventura-Aguilar
- CONACYT-Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla km 6, San Isidro, Yautepec, Morelos 62731, Mexico.
| | - Edaena Pamela Díaz-Galindo
- Facultad de Química, Universidad Autónoma del Estado de México, km 115 Car, Toluca-Ixtlahuaca, El Cerillo Piedras Blancas, Toluca 50295, Mexico
| | - Silvia Bautista-Baños
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla km 6, San Isidro, Yautepec, Morelos 62731, Mexico
| | - Salvador Mendoza-Acevedo
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Zacatenco, Ciudad de México 07738, Mexico
| | - Jacobo Esteban Munguía-Cervantes
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Zacatenco, Ciudad de México 07738, Mexico
| | - Zormy Nacary Correa-Pacheco
- CONACYT-Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla km 6, San Isidro, Yautepec, Morelos 62731, Mexico
| | - Elsa Bosquez-Molina
- Biotechnology Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Colonia Vicentina, Mexico City, 09340, Mexico
| |
Collapse
|
35
|
Baek J, Ramasamy M, Willis NC, Kim DS, Anderson WA, Tam KC. Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules. Curr Res Food Sci 2021; 4:215-223. [PMID: 33937869 PMCID: PMC8076697 DOI: 10.1016/j.crfs.2021.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/22/2021] [Accepted: 03/28/2021] [Indexed: 11/18/2022] Open
Abstract
Vitamin C (VC), widely used in food, pharmaceutical and cosmetic products, is susceptible to degradation, and new formulations are necessary to maintain its stability. To address this challenge, VC encapsulation was achieved via electrostatic interaction with glycidyltrimethylammonium chloride (GTMAC)-chitosan (GCh) followed by cross-linking with phosphorylated-cellulose nanocrystals (PCNC) to form VC-GCh-PCNC nanocapsules. The particle size, surface charge, degradation, encapsulation efficiency, cumulative release, free-radical scavenging assay, and antibacterial test were quantified. Additionally, a simulated human gastrointestinal environment was used to assess the efficacy of the encapsulated VC under physiological conditions. Both VC loaded, GCh-PCNC, and GCh-Sodium tripolyphosphate (TPP) nanocapsules were spherical with a diameter of 450 ± 8 and 428 ± 6 nm respectively. VC-GCh-PCNC displayed a higher encapsulation efficiency of 90.3 ± 0.42% and a sustained release over 14 days. The release profiles were fitted to the first-order and Higuchi kinetic models with R2 values greater than 0.95. VC-GCh-PCNC possessed broad-spectrum antibacterial activity with a minimum inhibition concentration (MIC) of 8–16 μg/mL. These results highlight that modified CNC-based nano-formulations can preserve, protect and control the release of active compounds with improved antioxidant and antibacterial properties for food and nutraceutical applications. Vitamin C (VC) was encapsulated by modified chitosan and cellulose nanocrystals. Phosphorylated cellulose nanocrystal (PCNC) was used as a cross-linking agent. The encapsulation efficiency of the prepared VC-GCh-PCNC was 90.3 ± 0.42%. At 14 days, nanocapsules prepared using PCNC and TPP released 10% and 70% VC respectively. GTMAC-chitosan (GCh) and VC contributed antibacterial function to the nanocomplex.
Collapse
Affiliation(s)
- Jiyoo Baek
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
| | - Mohankandhasamy Ramasamy
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
| | - Natasha Carly Willis
- Department of System and Design Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
| | - Dae Sung Kim
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
| | - William A. Anderson
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
| | - Kam C. Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue, Waterloo, ON N2L 3G1, Canada
- Corresponding author.
| |
Collapse
|
36
|
A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Wang YS, Yang WH, Gao W, Zhang L, Wei F, Liu H, Wang SY, Li YY, Zhao WM, Ma T, Wang Q. Combination and efficiency: preparation of dissolving microneedles array loaded with two active ingredients and its anti-pigmentation effects on guinea pigs. Eur J Pharm Sci 2021; 160:105749. [PMID: 33581260 DOI: 10.1016/j.ejps.2021.105749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/26/2021] [Accepted: 02/06/2021] [Indexed: 11/30/2022]
Abstract
Hyperpigmentation is a common skin disorder caused by excessive melanogenesis and uneven dispersion of melanin in the skin. To combine multiple active agents with an efficient transdermal drug delivery system is an effective strategy to combat UV induced skin pigmentation. In this work, Arbutin (Arb) and Vitamin C (Vc) mixed in 1:1 were found to have the greatest inhibition effects on melanogenesis and tyrosinase activity in B16 murine melanoma cells. And hyaluronic acid (HA) based dissolving microneedles array (DMNA) was employed to overcome the skin barriers for improved topical drug delivery, which exhibited the most desirable features, including morphology, mechanical properties, dissolving ability, and the highest drug loading. Furthermore, DMNA could greatly increase the stability of Vc during storage without adding any antioxidant which is an important issue for Vc administration. Pharmacodynamics study showed that DMNA loaded with Arb and Vc could synergistically suppress UVB-induced hyperpigmentation in guinea pig skin. This work provides a promising treatment strategy and solution for skin pigmentation and other skin problems.
Collapse
Affiliation(s)
- Yu-Shuai Wang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Wei-Han Yang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Wei Gao
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Lu Zhang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Fang Wei
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Hang Liu
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Shu-Ya Wang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Ying-Ying Li
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Wei-Man Zhao
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Tao Ma
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China
| | - Qingqing Wang
- Faculty of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu 233030, China.
| |
Collapse
|
38
|
Yun P, Devahastin S, Chiewchan N. Microstructures of encapsulates and their relations with encapsulation efficiency and controlled release of bioactive constituents: A review. Compr Rev Food Sci Food Saf 2021; 20:1768-1799. [PMID: 33527760 DOI: 10.1111/1541-4337.12701] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/24/2020] [Accepted: 12/15/2020] [Indexed: 12/26/2022]
Abstract
Vitamins, peptides, essential oils, and probiotics are examples of health beneficial constituents, which are nevertheless heat-sensitive and possess poor chemical stability. Various encapsulation methods have been applied to protect these constituents against thermal and chemical degradations. Encapsulates prepared by different methods and/or at different conditions exhibit different microstructures, which in turn differently influence the encapsulation efficiency as well as retention of encapsulated core materials. This review provides a summary of various microstructures resulted from the use of selected encapsulation methods or systems, namely, spray coating; co-extrusion; emulsion-, micelle-, and liposome-based; coacervation; and ionic gelation encapsulation, at different conditions. Subsequent effects of the different microstructures on encapsulation efficiency and retention of encapsulated core materials are mentioned and discussed. Encapsulates having compact microstructures resulted from the use of low-surface tension and low-viscosity encapsulants, high-stability encapsulation systems, lower loads of core materials to total solids of encapsulants and appropriate solidification conditions have proved to exhibit higher encapsulation efficiencies and better retention of encapsulated core materials. Encapsulates with hollow, dent, shrunken microstructures or thinner walls resulted from inappropriate solidification conditions and higher loads of core materials, on the other hand, possess lower encapsulation efficiencies and protection capabilities. Encapsulates having crack, blow-hole or porous microstructures resulted from the use of high-viscosity encapsulants and inappropriate solidification conditions exhibit the lowest encapsulation efficiencies and poorest protection capabilities. Compact microstructures and structures formed between ionic biopolymers could be used to regulate the release of encapsulated cores.
Collapse
Affiliation(s)
- Pheakdey Yun
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Naphaporn Chiewchan
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Tungkru, Bangkok, Thailand
| |
Collapse
|
39
|
Dietary Chitosan Nanoparticles: Potential Role in Modulation of Rainbow Trout ( Oncorhynchus mykiss) Antibacterial Defense and Intestinal Immunity against Enteric Redmouth Disease. Mar Drugs 2021; 19:md19020072. [PMID: 33572960 PMCID: PMC7911277 DOI: 10.3390/md19020072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Bio-nanotechnology employing bio-sourced nanomaterial is an emerging avenue serving the field of fish medicine. Marine-sourced chitosan nanoparticles (CSNPs) is a well-known antimicrobial and immunomodulatory reagent with low or no harm side effects on fish or their human consumers. In this study, in vitro skin mucus and serum antibacterial activity assays along with intestinal histology, histochemical, and gene expression analyses were performed to evaluate the impact of dietary CSNPs (5 g kg−1 dry feed) on rainbow trout resistance against ‘enteric redmouth’ disease. Two treatment conditions were included; short-term prophylactic-regimen for 21 days before the bacterial challenge, and long-term therapeutic-regimen for 21 days before the challenge and extended for 28 days after the challenge. Our results revealed higher antibacterial defense ability and positive intestinal histochemical and molecular traits of rainbow trout after dietary CSNPs. The prophylactic-regimen improved trout health while the therapeutic regimen improved their disease resistance and lowered their morbidity. Therefore, it is anticipated that CSNPs is an effective antibacterial and immunomodulatory fish feed supplement against the infectious threats. However, the CSNPs seem to be more effective in the therapeutic application rather than being used for short-term prophylactic applications.
Collapse
|
40
|
Comunian T, Babazadeh A, Rehman A, Shaddel R, Akbari-Alavijeh S, Boostani S, Jafari S. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit Rev Food Sci Nutr 2020; 62:3301-3322. [DOI: 10.1080/10408398.2020.1865258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- T. Comunian
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - A. Babazadeh
- Center for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - A. Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - R. Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Boostani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S.M. Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
41
|
CARNEIRO APDG, AGUIAR ALLD, SILVA RBCD, RICHTER AR, SOUSA PHMD, SILVA LMRD, FIGUEIREDO RWD. Acerola by-product as a renewable source of bioactive compounds: arabic gum and maltodextrin nanocapsules. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.22819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Ramachandraiah K, Hong GP. Polymer Based Nanomaterials for Strategic Applications in Animal Food Value Chains. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1821212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Geun-Pyo Hong
- Department of Food Science and Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
43
|
|
44
|
Co-encapsulation of vitamins B 12 and D 3 using spray drying: Wall material optimization, product characterization, and release kinetics. Food Chem 2020; 335:127642. [PMID: 32739814 DOI: 10.1016/j.foodchem.2020.127642] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
Spray drying is the most commonly used encapsulation technique to stabilize sensitive bioactive compounds and sometimes enhances their performance. Vitamin B12 and vitamin D3 deficiencies are reported worldwide and co-encapsulation can provide a combined solution to this problem. The present work aimed at encapsulation of vitamin B12 and D3 by spray drying using experimental design to optimize wall material combination. Optimized solution obtained from the experimental design (gum acacia : Hi-Cap® 100 : maltodextrin = 38:60:2) provided spherical particles with smooth surface and better stability of both the vitamins. In vitro release mechanism showed a slow release for both the vitamins after encapsulation. The optimized co-encapsulated microcapsules obtained in this work showed an improved bioavailability of 151% for vitamin B12 and 109% for vitamin D3 in comparison with the control. This study delivered a suitable medium to provide water soluble vitamin B12 and fat soluble vitamin D3 in single product.
Collapse
|
45
|
New synthetic chitosan hybrids bearing some heterocyclic moieties with potential activity as anticancer and apoptosis inducers. Int J Biol Macromol 2020; 150:1323-1330. [DOI: 10.1016/j.ijbiomac.2019.10.142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/19/2019] [Accepted: 10/15/2019] [Indexed: 11/18/2022]
|
46
|
Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr Polym 2020; 234:115920. [DOI: 10.1016/j.carbpol.2020.115920] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/12/2023]
|
47
|
Kabanov VL, Novinyuk LV. CHITOSAN APPLICATION IN FOOD TECHNOLOGY: A REVIEW OF RESCENT ADVANCES. ACTA ACUST UNITED AC 2020. [DOI: 10.21323/2618-9771-2020-3-1-10-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- V. L. Kabanov
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| | - L. V. Novinyuk
- All-Russia Research Institute for Food Additives — Branch of V. M. Gorbato Federal Research Center for Food Systems of RAS
| |
Collapse
|
48
|
Antioxidants in Cancer Therapy: Recent Trends in Application of Nanotechnology for Enhanced Delivery. Sci Pharm 2020. [DOI: 10.3390/scipharm88010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recently, the occurrence of cancer has significantly increased; it represents the second-most frequent cause of death after cardiovascular diseases. Many dietary antioxidants have shown large impact as effective agents for cancer prevention by reducing oxidative stress, which has been a part in the development of many diseases, including cancer. One of the obstacles in the delivery of antioxidant therapies into the required domain lies in the inadequate delivery of these agents to their intended site of action. Using nanotechnology in delivery of antioxidants leads to increased therapeutic index and higher drug concentration in tumor tissues, thus enhancing anticancer treatment. In this review, we discuss the role of different antioxidants in cancer therapy and their improved therapeutic effect through their formulation using nanotechnology.
Collapse
|
49
|
Rabelo RS, Tavares GM, Prata AS, Hubinger MD. Complexation of chitosan with gum Arabic, sodium alginate and κ-carrageenan: Effects of pH, polymer ratio and salt concentration. Carbohydr Polym 2019; 223:115120. [DOI: 10.1016/j.carbpol.2019.115120] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
|
50
|
Yousefi M, Khorshidian N, Mortazavian AM, Khosravi-Darani K. Preparation optimization and characterization of chitosan-tripolyphosphate microcapsules for the encapsulation of herbal galactagogue extract. Int J Biol Macromol 2019; 140:920-928. [DOI: 10.1016/j.ijbiomac.2019.08.122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
|