1
|
Kaur A, Singh S, Mujwar S, Singh TG. Molecular Mechanisms Underlying the Therapeutic Potential of Plant-Based α-Amylase Inhibitors for Hyperglycemic Control in Diabetes. Curr Diabetes Rev 2025; 21:e020724231486. [PMID: 38956911 DOI: 10.2174/0115733998304373240611110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Diabetes mellitus (DM), arising from pancreatic β-cell dysfunction and disrupted alpha-amylase secretion, manifests as hyperglycemia. Synthetic inhibitors of alphaamylase like acarbose manage glucose but pose adverse effects, prompting interest in plantderived alternatives rich in antioxidants and anti-inflammatory properties. OBJECTIVE The current review investigates plant-based alpha-amylase inhibitors, exploring their potential therapeutic roles in managing DM. Focusing on their ability to modulate postprandial hyperglycemia by regulating alpha-amylase secretion, it assesses their efficacy, health benefits, and implications for diabetes treatment. METHODS This review examines plant-derived alpha-amylase inhibitors as prospective diabetic mellitus treatments using PubMed, Google Scholar, and Scopus data. RESULTS Plant-derived inhibitors, including A. deliciosa, B. egyptiaca, and N. nucifera, exhibit anti-inflammatory and antioxidant properties, effectively reducing alpha-amylase levels in diabetic conditions. Such alpha-amylase inhibitors showed promising alternative treatment in managing diabetes with reduced adverse effects. CONCLUSION The current literature concludes that plant-derived alpha-amylase inhibitors present viable therapeutic avenues for diabetes management by modulating alpha-amylase secretion by regulating inflammatory, oxidative stress, and apoptotic mechanisms involved in the pathogenesis of diabetes. Further investigation into their formulations and clinical efficacy may reveal their more comprehensive diabetes therapeutic significance, emphasizing their potential impact on glucose regulation and overall health.
Collapse
Affiliation(s)
- Amritpal Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
2
|
Liu H, Wang S, Qiu K, Zheng C, Tan H. Preparation, structural characterization, and biological activities of lotus polysaccharides: A review. Int J Biol Macromol 2024; 279:135191. [PMID: 39216588 DOI: 10.1016/j.ijbiomac.2024.135191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Lotus (Nelumbo nucifera), belonging to the family of Nelumbonaceae, is a beautiful aquatic perennial plant. It has been used as an ancient horticulture plant and famous agricultural crop for thousands of years. Modern phytochemical and pharmacological experiments have proved that polysaccharide is one of the most pivotal bioactive constituents of lotus. Hence, the systematic review covering the fundamental research advances and developing prospects of N. nucifera polysaccharides (NNPs) is an urgent demand to provide theoretical basis for their further research and application. The present review summarizes current emerging research progresses on the polysaccharides isolated from lotus, and it focuses on advanced extraction and purification methods, unique structural features, engaging biological activities, potential molecular mechanisms, as well as the relationship of structure and activity of NNPs. This review sheds light on the potential values of NNPs in affording functionally bioactive agents in food industry or therapeutically effective medicines for health care. In addition, this review will provide valuable insights for further commercial product development and promising industrial application of NNPs in both of the fundamental research communities and food or pharmaceutical industries in future.
Collapse
Affiliation(s)
- Hongxin Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Sasa Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, China
| | - Kaidi Qiu
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zheng
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Haibo Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Kakar MU, Karim H, Shabir G, Iqbal I, Akram M, Ahmad S, Shafi M, Gul P, Riaz S, Rehman R, Salari H. A review on extraction, composition, structure, and biological activities of polysaccharides from different parts of Nelumbo nucifera. Food Sci Nutr 2023; 11:3655-3674. [PMID: 37457175 PMCID: PMC10345683 DOI: 10.1002/fsn3.3376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 07/18/2023] Open
Abstract
Nelumbo nucifera (lotus plant) is an important member of the Nelumbonaceae family. This review summarizes the studies conducted on it since the past 15 years to provide an understanding on future areas of focus. Different parts of this plant, that is, leaves, roots, and seeds, have been used as food and for the treatment of various diseases. Polysaccharides have been extracted from different parts using different methods. The manuscript reviews the methods of extraction of polysaccharides used for leaves, roots, and seeds, along with their yield. Some methods can provide better yield while some provide better biological activity with low yield. The composition and structure of extracted polysaccharides have been determined in some studies. Although monosaccharide composition has been determined in various studies, too little information about the structure of polysaccharides from N. nucifera is available in the current literature. Different useful biological activities have been explored using in vivo and in vitro methods, which include antioxidant, antidiabetic, antitumor, anti-osteoporotic, immunomodulatory, and prebiotic activities. Antitumor activity from polysaccharides of lotus leaves is yet to be explored, besides lotus root has been underexplored as compared to other parts (leaves and seeds) according to our literature survey. Studies dedicated to the successful use of combination of extraction methods can be conducted in future. The plant provides a therapeutic as well as nutraceutical potential; however, antimicrobial activity and synergistic relationships of polysaccharides from different parts of the plant need further exploration.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Hammad Karim
- Sheikh Zayed Medical CollegeRahim Yar KhanPunjabPakistan
| | | | - Imran Iqbal
- Department of Information and Computational SciencesSchool of Mathematical Sciences and LMAMPeking UniversityBeijingChina
| | - Muhammad Akram
- Department of Life Sciences, School of ScienceUniversity of Management and Technology (UMT)LahorePakistan
| | - Sajjad Ahmad
- Faculty of Veterinary and Animal SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Muhammad Shafi
- Faculty of Marine SciencesLasbela University of Agriculture, Water and Marine Sciences (LUAWMS)UthalBalochistanPakistan
| | - Pari Gul
- Institute of BiochemistryUniversity of BalochistanQuettaPakistan
| | - Sania Riaz
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Rizwan‐ur‐ Rehman
- Department of Bioinformatics and BiosciencesCapital University of Science and TechnologyIslamabadPakistan
| | - Hamid Salari
- Department of Horticulture, Faculty of AgricultureKabul UniversityKabulAfghanistan
| |
Collapse
|
4
|
Recent advances on bioactive compounds, biosynthesis mechanism, and physiological functions of Nelumbo nucifera. Food Chem 2023; 412:135581. [PMID: 36731239 DOI: 10.1016/j.foodchem.2023.135581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
Nelumbo nucifera Gaertn, commonly known as lotus, is a genus comprising perennial and rhizomatous aquatic plants, found throughout Asia and Australia. This review aimed to cover the biosynthesis of flavonoids, alkaloids, and lipids in plants and their types in different parts of lotus. This review also examined the physiological functions of bioactive compounds in lotus and the extracts from different organs of the lotus plant. The structures and identities of flavonoids, alkaloids, and lipids in different parts of lotus as well as their biosynthesis were illustrated and updated. In the traditional medicine systems and previous scientific studies, bioactive compounds and the extracts of lotus have been applied for treating inflammation, cancer, liver disease, Alzheimer's disease, etc. We suggest future studies to be focused on standardization of the extract of lotus, and their pharmacological mechanisms as drugs or functional foods. This review is important for the lotus-based food processing and application.
Collapse
|
5
|
Dai G, Wang J, Zheng J, Xia C, Wang Y, Duan B. Bioactive polysaccharides from lotus as potent food supplements: a review of their preparation, structures, biological features and application prospects. Front Nutr 2023; 10:1171004. [PMID: 37448668 PMCID: PMC10338014 DOI: 10.3389/fnut.2023.1171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Lotus is a famous plant of the food and medicine continuum for millennia, which possesses unique nutritional and medicinal values. Polysaccharides are the main bioactive component of lotus and have been widely used as health nutritional supplements and therapeutic agents. However, the industrial production and application of lotus polysaccharides (LPs) are hindered by the lack of a deeper understanding of the structure-activity relationship (SAR), structural modification, applications, and safety of LPs. This review comprehensively comments on the extraction and purification methods and structural characteristics of LPs. The SARs, bioactivities, and mechanisms involved are further evaluated. The potential application and safety issues of LPs are discussed. This review provides valuable updated information and inspires deeper insights for the large scale development and application of LPs.
Collapse
Affiliation(s)
- Guona Dai
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiale Wang
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali, China
| | - Yaping Wang
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali, China
| |
Collapse
|
6
|
Wang M, Hu WJ, Wang QH, Yang BY, Kuang HX. Extraction, purification, structural characteristics, biological activities, and application of the polysaccharides from Nelumbo nucifera Gaertn. (lotus): A review. Int J Biol Macromol 2023; 226:562-579. [PMID: 36521698 DOI: 10.1016/j.ijbiomac.2022.12.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Nelumbo nucifera Gaertn. (lotus) is a widely distributed plant with a long history of cultivation and consumption. Almost all parts of the lotus can be used as foodstuff and nourishment, or as an herb. It is noteworthy that the polysaccharides obtained from lotus exhibit surprisingly and satisfying biological activities, which explains the various benefits of lotus to human health, including anti-diabetes, anti-osteoporosis, antioxidant, anti-inflammatory, anti-tumor, etc. Here, we systematically review the recent major studies on extraction and purification methods of polysaccharides from different parts (rhizome, seed, leaf, plumule, receptacle and stamen) of lotus, as well as the characterization of their chemical structure, biological activity and structure-activity relationship, and the applications of lotus polysaccharides in different fields. This article will give an updated and deeper understanding of lotus polysaccharides and provide theoretical basis for their further research and application in human health and manufacture development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wen-Jing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bing-You Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
7
|
Wu H, Shu L, Liang T, Li Y, Liu Y, Zhong X, Xing L, Zeng W, Zhao R, Wang X. Extraction optimization, physicochemical property, antioxidant activity, and α-glucosidase inhibitory effect of polysaccharides from lotus seedpods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4065-4078. [PMID: 34997594 DOI: 10.1002/jsfa.11755] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/27/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lotus seedpods are an agricultural by-product of lotus (Nelumbo nucifera Gaertn.), which is widely cultivated in Southeast Asia and Australia. Most lotus seedpods are considered waste and are abandoned or incinerated, resulting in significant waste of resources and heavy environmental pollution. For recycling lotus seedpods, the extraction optimization, physicochemical properties, antioxidant activity, and α-glucosidase inhibitory effect of the polysaccharides contained therein were investigated in this study. RESULTS Hot water extraction of lotus seedpod polysaccharides was optimized by using a response surface methodology combined with a Box-Behnken design, with the optimum conditions being as follows: a liquid/solid ratio of 25.0 mL g-1 , an extraction temperature of 98.0 °C, and an extraction time of 138.0 min. Under these conditions, an experimental yield of 5.88 ± 0.06% was obtained. Physicochemical analyses suggested that lotus seedpod polysaccharides belong to acidic heteropolysaccharides and are principally composed of rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid. The polysaccharides content has a broad molecular weight distribution (2.15 × 105 to 1.77 × 107 Da), an α-configuration, and mainly possesses smooth and sheet-like structures. Biological evaluations showed that the polysaccharides possessed good scavenging activity on 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 1,1-diphenyl-2-picryl-hydrozyl, and hydroxyl radicals, and exerted an obvious inhibitory effect on α-glucosidase activity. Moreover, the polysaccharides content was determined to be a mixed-type noncompetitive inhibitor of α-glucosidase. CONCLUSION The results indicate that lotus seedpod polysaccharides have potential as natural antioxidants and hypoglycaemic substitutes. This study provides the theoretical bases for the exploitation and application of polysaccharides from lotus seedpod by-product resources. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huwei Wu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Linping Shu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Tian Liang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanping Li
- Scientific Research Center, Gannan Medical University, Ganzhou, 341000, China
| | - Yuanxiang Liu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Xiuli Zhong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Lingyu Xing
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Wei Zeng
- First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Rui Zhao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoyin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
8
|
Shen L, Chu X, Zhang Z, Wu T. Structural characterization and in vitro anti-inflammatory estimation of an unusual pectin linked by rhamnogalacturonan I and xylogalacturonan from lotus plumule. Int J Biol Macromol 2022; 194:100-109. [PMID: 34863824 DOI: 10.1016/j.ijbiomac.2021.11.178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/05/2022]
Abstract
A novel homogenous polysaccharide LPWF together with its three acid hydrolysis products LPWF1-3 were isolated and prepared from lotus plumule (germs of Nelumbo nucifera). LPWF was composed of rhamnose (Rha), arabinose (Ara), galactose (Gal), xylose (Xyl), and galacturonic acid (GalA) in the molar ratio of 7.3: 34.0: 7.0: 19.1: 32.6 with a molecular weight of 567.6 kDa. The structure of LPWF was elucidated by methylation and NMR analysis of LPWF1-3 and a follow-up structural assembling aided by high-resolution mass spectrometry mapping of oligosaccharides and ROSEY spectra. LPWF was characterized as an unusual pectin linked by rhamnogalacturonan I (RGI, composed of LPWF1-2) and xylogalacturonan (XGA, LPWF3). LPWF1 was an arabinan peeled from the RGI part with a 1,5-linked backbone branching on the O-2 position, while LPWF2 was the remaining part of RGI composed of Rha (36.1%), Gal (17.8%), and GalA (43.7%). LPWF3 was identified as the XGA part with a backbone of α-1,4-linked GalA and branches of mono-xylose substitutions on the O-3 of GalA. LPWF (25 μg/mL) demonstrated significant inhibitions on the expression of IL-1β, IL-6, and TNF-α in LPS-stimulated primary murine microglia cultures. LPWF1 and 2 showed selectively and significantly inhibitory activity against the expression of IL-1β.
Collapse
Affiliation(s)
- Lulu Shen
- Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Green-Valley Pharmaceutical Co., Ltd., Shanghai 201200, China
| | - Xingkun Chu
- Shanghai Green-Valley Pharmaceutical Co., Ltd., Shanghai 201200, China
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Tao Wu
- Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
9
|
Bharathi Priya L, Huang CY, Hu RM, Balasubramanian B, Baskaran R. An updated review on pharmacological properties of neferine-A bisbenzylisoquinoline alkaloid from Nelumbo nucifera. J Food Biochem 2021; 45:e13986. [PMID: 34779018 DOI: 10.1111/jfbc.13986] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/19/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Phytochemicals have recently received a lot of recognition for their pharmacological activities such as anticancer, chemopreventive, and cardioprotective properties. In traditional Indian and Chinese medicine, parts of lotus (Nelumbo nucifera) such as lotus seeds, fruits, stamens, and leaves are used for treating various diseases. Neferine is a bisbenzylisoquinoline alkaloid, a major component from the seed embryos of N. nucifera. Neferine is effective in the treatment of high fevers and hyposomnia, as well as arrhythmia, platelet aggregation, occlusion, and obesity. Neferine has been found to have a variety of therapeutic effects such as anti-inflammatory, anti-oxidant, anti-hypertensive, anti-arrhythmic, anti-platelet, anti-thrombotic, anti-amnesic, and negative inotropic. Neferine also exhibited anti-anxiety effects, anti-cancerous, and chemosensitize to other anticancer drugs like doxorubicin, cisplatin, and taxol. Induction of apoptosis, autophagy, and cell cycle arrest are the key pathways that underlying the anticancer activity of neferine. Therefore, the present review summarizes the neferine biosynthesis, pharmacokinetics, and its effects in myocardium, cancer, chemosensitizing to cancer drug, central nervous system, diabetes, inflammation, and kidney diseases. PRACTICAL APPLICATIONS: Natural phytochemical is gaining medicinal importance for a variety of diseases like including cancer, neurodegenerative disorder, diabetes, and inflammation. Alkaloids and flavonoids, which are abundantly present in Nelumbo nucifera have many therapeutic applications. Neferine, a bisbenzylisoquinoline alkaloid from N. nucifera has many pharmacological properties. This present review was an attempt to compile an updated pharmacological action of neferine in different disease models in vitro and in vivo, as well as to summarize all the collective evidence on the therapeutic potential of neferine.
Collapse
Affiliation(s)
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Centre of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Rouh-Mei Hu
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | | | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
Microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds: Effects of ultrasonic pretreatment on color, antioxidant activity, and rehydration capacity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Polysaccharide Derived from Nelumbo nucifera Lotus Plumule Shows Potential Prebiotic Activity and Ameliorates Insulin Resistance in HepG2 Cells. Polymers (Basel) 2021; 13:polym13111780. [PMID: 34071638 PMCID: PMC8199337 DOI: 10.3390/polym13111780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are key bioactive compounds in lotus plumule tea, but their anti-diabetes activities remain unclear. The purpose of this study was to investigate the prebiotic activities of a novel polysaccharide fraction from the Nelumbo nucifera lotus plumule, and to examine its regulation of glucose metabolism in insulin-resistant HepG2 cells. The N. nucifera polysaccharide (NNP) was purified after discoloration, hot water extraction, ethanol precipitation, and DEAE-cellulose chromatography to obtain purified polysaccharide fractions (NNP-2). Fourier transform infrared spectroscopy was used to analyze the main structural characteristics and functional group of NNP-2. Physicochemical characterization indicated that NNP-2 had a molecular weight of 110.47 kDa and consisted of xylose, glucose, fructose, galactose, and fucose in a molar ratio of 33.4:25.7:22.0:10.5:8.1. The prebiotic activity of NNP-2 was demonstrated in vitro using Lactobacillus and Bifidobacterium. Furthermore, NNP-2 showed bioactivity against α-glucosidase (IC50 = 97.32 µg/mL). High glucose-induced insulin-resistant HepG2 cells were used to study the effect of NNP-2 on glucose consumption, and the molecular mechanism of the insulin transduction pathway was studied using RT-qPCR. NNP-2 could improve insulin resistance by modulating the IRS1/PI3K/Akt pathway in insulin-resistant HepG2 cells. Our data demonstrated that the Nelumbo nucifera polysaccharides are potential sources for nutraceuticals, and we propose functional food developments from the bioactive polysaccharides of N. nucifera for the management of diabetes.
Collapse
|
12
|
Wang Q, Yang F, Jia D, Wu T. Polysaccharides and polyphenol in dried Morinda citrifolia fruit tea after different processing conditions: Optimization analysis using response surface methodology. PeerJ 2021; 9:e11507. [PMID: 34123597 PMCID: PMC8164410 DOI: 10.7717/peerj.11507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/03/2021] [Indexed: 01/02/2023] Open
Abstract
The increasing popularity of Morinda citrifolia has many medical and health benefits because of its rich polysaccharides (PSC) and polyphenols (PPN). It has become popular to brew the dry M. citrifolia fruit slice as tea in some regions of China. In this study, optimize the extraction parameters of M. citrifolia fruit tea polysaccharides and polyphenols using response surface methodology. The results indicated the highest PSC yield of 17% at 46 °C for 11 min and the ratio of water/M. citrifolia fruit powder was 78 mL/g. The optimum extraction of PPN was at 95 °C for 10 min and the ratio of water/M. citrifolia fruit powder 90 mL/g, with 8.93% yield. Using dry M. citrifolia fruit slices as a tea is reported for the first time. Based on the results, the maximum level of PSC can be obtained under condition by infusing about four dried M. citrifolia fruit slice with average thickness and size in warm boiled water for 11 min, taking a 300 mL cup (300 mL of water) for example. The maximum level of PPN can be obtained by adding three slices of dried M. citrifolia fruit slice to boiled water for 10 min. Considering the powder used in our study, the further pulverization of cutting into powder is more conducive to material precipitation. This study provides a scientific basis for obtaining PSC and PPN from dry M. citrifolia fruit slice tea by brewing.
Collapse
Affiliation(s)
- Qingfen Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Fei Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Dandan Jia
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| | - Tian Wu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, Kunming, Yunnan, China
| |
Collapse
|
13
|
Nutritional composition and quality characterization of lotus (Nelumbo nucifera Gaertn.) seed flour supplemented cookies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00622-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
M1 Polarization but Anti-LPS-Induced Inflammation and Anti-MCF-7 Breast Cancer Cell Growth Effects of Five Selected Polysaccharides. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9450246. [PMID: 32308723 PMCID: PMC7132352 DOI: 10.1155/2020/9450246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/16/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Five potential polysaccharides from guava seed (GSPS), common buckwheat (CBPS), bitter buckwheat (BBPS), red Formosa lambsquarters (RFLPS), and yellow Formosa lambsquarters (YFLPS) were selected to measure their effects on mouse peritoneal macrophages in the absence or presence of lipopolysaccharide (LPS). Macrophage-conditioned media (MCM) in the absence or presence of 5 selected polysaccharides were prepared to treat MCF-7 cells. The cell viability was determined using 3-(4,5-dimethylthiazol-2-diphenyl)-2,5-tetrazolium bromide (MTT) assay. Proinflammatory (also known as M1 type) (interleukin- (IL-) 1β, IL-6 and tumor necrosis factor- (TNF-) α) and anti-inflammatory (also known as M2 type) (IL-10) cytokines secreted by macrophages were determined using ELISA. The relationship between MCF-7 cell growth and M1/M2 cytokine secretion profiles in the corresponding MCM were delineated. The results showed that 5 selected polysaccharides, except BBPS, significantly (P < 0.05) and dose-dependently increased M1 (IL-1β + IL-6 + TNF-α)/M2 (IL-10) cytokine secretion ratios by macrophages in the absence of LPS, suggesting that four selected polysaccharides have M1 polarization property. However, all of 5 selected polysaccharides significantly (P < 0.05) decreased proinflammatory (IL-1β + IL-6 + TNF-α)/anti-inflammatory (IL-10) cytokine secretion ratios by LPS-stimulated macrophages, exhibiting that all of the 5 selected polysaccharides, particularly GSPS, have anti-inflammatory potential. All MCM prepared with these selected polysaccharides (except YFLPS) significantly enhanced their inhibitory effects on MCF-7 cell growth. A negative correlation was noted between MCF-7 cell viabilities and M1/M2 cytokine secretion ratios ((IL-6 + TNF-α)/IL-10) in the corresponding MCM, suggesting that increases in M1 macrophages in the tumor microenvironment might inhibit MCF-7 cell growth. Particular polysaccharides including RFLPS, GSPS, YFLPS, and CBPS may increase the percentage of M1 macrophages in the tumor environment and further inhibit MCF-7 cell growth via immunotherapy.
Collapse
|
15
|
Chen G, Zhu M, Guo M. Research advances in traditional and modern use of Nelumbo nucifera: phytochemicals, health promoting activities and beyond. Crit Rev Food Sci Nutr 2019; 59:S189-S209. [DOI: 10.1080/10408398.2018.1553846] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, PR China
| | - Mingzhi Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, PR China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, PR China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
16
|
Neferine inhibits proliferation, migration and invasion of U251 glioma cells by down-regulation of miR-10b. Biomed Pharmacother 2018; 109:1032-1040. [PMID: 30551353 DOI: 10.1016/j.biopha.2018.10.122] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Glioma is a common brain tumor, which is a serious threat to the life and health of human with high mortality rate. Recently, neferine (NEF) has been reported to play an important role in various cancers. In the study, we aimed to investigate the effect of NEF on human glioma cell line U251. METHODS U251 cells were pre-treated with different concentrations of NEF, and then CCK-8, BrdU, flow cytometry and transwell assays were used to test cell proliferation, apoptosis, migration and invasion. Subsequently, the expression vectors of miR-10b mimic and miR-10b inhibitor were transfected into U251 cells, and the relative expression of miR-10b was examined by qRT-PCR. The main proteins of CyclinD1/p53/p16, pro-Caspase-3/-9, cleaved-Caspase-3/-9, MMP-9, Vimentin, PTEN/PI3K/AKT and p38MAPK signal pathways were determined by western blot assay. RESULTS NEF significantly suppressed cell proliferation, and induced apoptosis, as well as regulated CyclinD1, p53, p16 and cleaved-Caspase-3/-9 expressions in U251 cells. Moreover, NEF inhibited cell migration, invasion and decreased MMP-9 and Vimentin expression in U251 cells. Additionally, miR-10b expression was down-regulated in NEF-stimulated cells, and overexpression of miR-10b reversed the regulatory effects of NEF on U251 cells proliferation, migration, invasion and apoptosis. Additionally, we found that PTEN was a direct target of miR-10b in U251 cells. Besides, NEF deactivated PTEN/PI3K/AKT and p38MAPK signal pathways by down-regulation of miR-10b in U251 cells. CONCLUSIONS These results suggested that NEF exerted anti-tumor effect by down-regulation of miR-10b and deactivation of PTEN/PI3K/AKT and p38MAPK signal pathways in glioma cells. These findings might provide a novel therapeutic strategy for glioma.
Collapse
|
17
|
Jia X, Liang Y, Zhang C, Wang K, Tu Y, Chen M, Li P, Wan JB, He C. Polysaccharide PRM3 from Rhynchosia minima root enhances immune function through TLR4-NF-κB pathway. Biochim Biophys Acta Gen Subj 2018; 1862:1751-1759. [DOI: 10.1016/j.bbagen.2018.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/29/2018] [Accepted: 05/11/2018] [Indexed: 12/20/2022]
|
18
|
Xiong W, Chen X, Lv G, Hu D, Zhao J, Li S. Optimization of microwave-assisted extraction of bioactive alkaloids from lotus plumule using response surface methodology. J Pharm Anal 2016; 6:382-388. [PMID: 29404007 PMCID: PMC5762927 DOI: 10.1016/j.jpha.2016.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/22/2022] Open
Abstract
In this work, a fast and efficient microwave-assisted extraction (MAE) method was developed to extract main bioactive alkaloids from lotus plumue. To optimize MAE conditions, three main factors were selected using univariate approach experiments, and then central composite design (CCD). The optimal extraction conditions were as follows: methanol concentration of 65%, microwave power of 200 W, and extraction time of 260 s. An high performance liquid chromatography-diode array detector (HPLC-DAD) method was established to quantitatively analyze these phytochemicals in different lotus plumule samples and in different part of lotus. Chromatographic separation was carried out on an Agilent Zorbax Extend-C18 column (4.6 mm×150 mm, 3.5 µm). Gradient elution was applied with the mobile phase constituted with 0.1% triethylamine in water (A) and acetonitrile (B): 40%-70% B at 0-8 min, 70%-100% B at 8-9 min, 100% B for 2 min, and then equilibrated with 40% B for 2 min.
Collapse
Affiliation(s)
| | | | | | | | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | | |
Collapse
|
19
|
Zheng Y, Wang Q, Zhuang W, Lu X, Miron A, Chai TT, Zheng B, Xiao J. Cytotoxic, Antitumor and Immunomodulatory Effects of the Water-Soluble Polysaccharides from Lotus (Nelumbo nucifera Gaertn.) Seeds. Molecules 2016; 21:E1465. [PMID: 27827862 PMCID: PMC6273249 DOI: 10.3390/molecules21111465] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 02/05/2023] Open
Abstract
Lotus is an edible and medicinal plant, and the extracts from its different parts exhibit various bioactivities. In the present study, the hot water-soluble polysaccharides from lotus seeds (LSPS) were evaluated for their cancer cell cytotoxicity, immunomodulatory and antitumor activities. LSPS showed significant inhibitory effects on the mouse gastric cancer MFC cells, human liver cancer HuH-7 cells and mouse hepatocarcinoma H22 cells. The animal studies showed that LSPS inhibited tumor growth in H22 tumor-bearing mice with the highest inhibition rate of 45.36%, which is comparable to that induced by cyclophosphamide (30 mg/kg) treatment (50.79%). The concentrations of white blood cells were significantly reduced in cyclophosphamide-treated groups (p < 0.01), while LSPS showed much fewer side effects according to the hematology analysis. LSPS improved the immune response in H22 tumor-bearing mice by enhancing the spleen and thymus indexes, and increasing the levels of serum cytokines including tumor necrosis factor-α and interleukin-2. Moreover, LSPS also showed in vivo antioxidant activity by increasing superoxide dismutase activity, thus reducing the malondialdehyde level in the liver tissue. These results suggested that LSPS can be used as an antitumor and immunomodulatory agent.
Collapse
Affiliation(s)
- Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Qi Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Institute of Agricultural Engineering, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China.
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Anca Miron
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street, No. 16, Iasi 700115, Romania.
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti Bandar Barat, Kampar 31900, Perak, Malaysia.
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau, China.
| |
Collapse
|
20
|
Zhu M, Liu T, Guo M. Current Advances in the Metabolomics Study on Lotus Seeds. FRONTIERS IN PLANT SCIENCE 2016; 7:891. [PMID: 27379154 PMCID: PMC4913082 DOI: 10.3389/fpls.2016.00891] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/06/2016] [Indexed: 05/08/2023]
Abstract
Lotus (Nelumbo nucifera), which is distributed widely throughout Asia, Australia and North America, is an aquatic perennial that has been cultivated for over 2,000 years. It is very stimulating that almost all parts of lotus have been consumed as vegetable as well as food, especially the seeds. Except for the nutritive values of lotus, there has been increasing interest in its potential as functional food due to its rich secondary metabolites, such as flavonoids and alkaloids. Not only have these metabolites greatly contributed to the biological process of lotus seeds, but also have been reported to possess multiple health-promoting effects, including antioxidant, anti-amnesic, anti-inflammatory, and anti-tumor activities. Thus, comprehensive metabolomic profiling of these metabolites is of key importance to help understand their biological activities, and other chemical biology features. In this context, this review will provide an update on the current technological platforms, and workflow associated with metabolomic studies on lotus seeds, as well as insights into the application of metabolomics for the improvement of food safety and quality, assisting breeding, and promotion of the study of metabolism and pharmacokinetics of lotus seeds; meanwhile it will also help explore new perspectives and outline future challenges in this fast-growing research subject.
Collapse
Affiliation(s)
- Mingzhi Zhu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Ting Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden – Chinese Academy of SciencesWuhan, China
- Sino-Africa Joint Research Center – Chinese Academy of SciencesWuhan, China
| |
Collapse
|
21
|
Zhang L, Tu ZC, Wang H, Kou Y, Wen QH, Fu ZF, Chang HX. Response surface optimization and physicochemical properties of polysaccharides from Nelumbo nucifera leaves. Int J Biol Macromol 2014; 74:103-10. [PMID: 25475842 DOI: 10.1016/j.ijbiomac.2014.11.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/11/2014] [Accepted: 11/16/2014] [Indexed: 01/12/2023]
Abstract
Dynamic high pressure microfluidization (DHPM)-assisted extraction (DHPMAE) of lotus (Nelumbo nucifera) leaves polysaccharides (LLPs) was optimized by response surface methodology. The optimal extraction conditions were: liquid/solid ratio of 35:1 (v/m, mL/g), processing pressure of 180 MPa, processed two times, extraction temperature of 76°C, extraction time of 50 min. Under the optimal extraction conditions, DHPMAE produced a higher polysaccharides yield (6.31%) than leaching (2.95%). Scanning electron microscope (SEM) analysis revealed that DHPM could reduce the particles size and make the surface more unconsolidated. The LLPs prepared by both methods showed similar FT-IR spectrum, and were consisted of the same monosaccharides, including rhamnose, fucose, arabinose, xylose, mannose, glucose and galactose. The content of each monosaccharide in extracts, however, was quite different. The average molecular weight of LLPs prepared by DHPMAE is 550 kDa, smaller than 578 kDa obtained by leaching. The LLPs prepared by DHPMAE exhibited stronger DPPH scavenging ability (IC50 value of 0.38 mg/mL), HO scavenging ability (IC50 value of 0.61 mg/mL) and reducing power. Therefore, DHPMAE can be a promising alternative to traditional extraction techniques for polysaccharides from plants, and lotus leaves might be a potential resource of natural antioxidants.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zong-cai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China; Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Yu Kou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qing-hui Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zhi-feng Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hai-xia Chang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| |
Collapse
|
22
|
Pan D, Liu J, Zeng X, Liu L, Li H, Guo Y. Immunomodulatory activity of selenium exopolysaccharide produced byLactococcus lactissubsp.Lactis. FOOD AGR IMMUNOL 2014. [DOI: 10.1080/09540105.2014.894000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
23
|
Lotus (Nelumbo nucifera Gaertn) plumule polysaccharide ameliorates pancreatic islets loss and serum lipid profiles in non-obese diabetic mice. Food Chem Toxicol 2013; 58:416-22. [PMID: 23707471 DOI: 10.1016/j.fct.2013.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/06/2013] [Accepted: 05/13/2013] [Indexed: 12/12/2022]
Abstract
To unravel possible protective effects of a newly isolated lotus plumule polysaccharide (LPPS) on type 1 diabetes (T1D), this study isolated LPPS and administered it to non-obese diabetic (NOD) female mice for 15 weeks. Oral glucose tolerance, serum ketone body, glucose, insulin, and lipid levels, as well as pancreatic islet cell numbers and the insulin secretion ability of the experimental mice were determined. The results showed that LPPS administration in vivo significantly (P<0.05) increased pancreatic islet cell numbers and slightly enhanced the basal insulin secretion ability compared to the control group. LPPS administration improved serum lipid profiles in the diabetic mice via relatively increasing serum high density lipoprotein-cholesterol, but decreasing low density lipoprotein-cholesterol and total cholesterol levels. The present study suggests that LPPS supplementation may ameliorate T1D progress and its complications through protecting pancreatic islets and modulating serum lipid profiles.
Collapse
|
24
|
Liao CH, Lin JY. Purified active lotus plumule (Nelumbo nucifera Gaertn) polysaccharides exert anti-inflammatory activity through decreasing toll-like receptor-2 and -4 expressions using mouse primary splenocytes. JOURNAL OF ETHNOPHARMACOLOGY 2013; 147:164-173. [PMID: 23458922 DOI: 10.1016/j.jep.2013.02.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 12/17/2012] [Accepted: 02/21/2013] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Lotus plumule is widely used as traditional Chinese medicine. Among the active components in lotus plumule, polysaccharides exhibit promising potential for its potent anti-inflammatory effects. However, the anti-inflammatory mechanism of purified polysaccharides from lotus plumule remains unknown. To evaluate their anti-inflammatory potential and possible mechanisms of purified polysaccharides in lotus plumule, two active lotus plumule polysaccharides, fractions F1 and F2, were subjected to assay their anti-inflammatory potential and possible mechanisms using murine primary splenocytes in the absence or presence of lipopolysaccharide (LPS). MATERIALS AND METHODS Two purified active lotus plumule polysaccharides, F1 and F2, were cultured independently with murine primary splenocytes in the absence or presence of LPS under four different experiment models in vitro. Changes in pro-inflammatory IL-1β, IL-6 and TNF-α, as well as anti-inflammatory IL-10 cytokines secreted by the treated splenocytes were determined using an enzyme-linked immunosorbent assay (ELISA). The amount of toll-like receptor (TLR)-2 and TLR-4 mRNA expression levels in the cells were quantitated using a two-step real-time polymerase chain reaction (PCR) assay. RESULTS The results showed that F1 and F2 treatments alone, particularly F2, significantly (P<0.05) decreased pro-/anti-inflammatory (IL-1β/IL-10 and TNF-α/IL-10) cytokine secretion ratios dose-dependently. F1 and F2 treatments in the presence of LPS significantly decreased TLR-2 and/or TLR-4 mRNA expression levels in the splenocytes under inflammatory and repair experiment models. CONCLUSIONS The present study proved that F1 and F2 had strong anti-inflammatory effects through inhibiting TLR-2 and/or TLR-4 expressions in the splenocytes in normal, inflammatory and repair situations. Our results further suggest that F2, which is a glycoprotein with low molecular weight of 25.7 kDa, may serve as a promising lead for the development of selective TLR antagonistic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Chun-Huei Liao
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China (ROC)
| | | |
Collapse
|
25
|
Zhang Y, Zheng B, Tian Y, Huang S. Microwave-assisted extraction and anti-oxidation activity of polyphenols from lotus (Nelumbo nucifera Gaertn.) seeds. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0210-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
26
|
Liao CH, Lin JY. Purification, partial characterization and anti-inflammatory characteristics of lotus (Nelumbo nucifera Gaertn) plumule polysaccharides. Food Chem 2012; 135:1818-27. [DOI: 10.1016/j.foodchem.2012.06.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/11/2012] [Accepted: 06/14/2012] [Indexed: 01/22/2023]
|
27
|
Pang G, Xie J, Chen Q, Hu Z. How functional foods play critical roles in human health. FOOD SCIENCE AND HUMAN WELLNESS 2012. [DOI: 10.1016/j.fshw.2012.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Liu CJ, Lin JY. Anti-inflammatory and anti-apoptotic effects of strawberry and mulberry fruit polysaccharides on lipopolysaccharide-stimulated macrophages through modulating pro-/anti-inflammatory cytokines secretion and Bcl-2/Bak protein ratio. Food Chem Toxicol 2012; 50:3032-9. [PMID: 22721979 DOI: 10.1016/j.fct.2012.06.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 05/27/2012] [Accepted: 06/11/2012] [Indexed: 12/31/2022]
Abstract
This study is the first to isolate strawberry (SP) and mulberry fruit polysaccharides (MP) and assess their anti-inflammatory and anti-apoptotic activities using lipopolysaccharide (LPS)-stimulated mouse primary macrophages. Pro-/anti-inflammatory cytokine levels secreted by LPS-stimulated macrophages cultured with SP and MP for 48 h were determined using ELISA method to evaluate anti-inflammatory effects of SP and MP. The Bcl-2/Bak (anti-/pro-apoptotic) protein levels in the cells were determined using Western blotting method to evaluate anti-apoptotic effects of SP and MP. The results showed that the maximum absorption peak of SP and MP appeared at 240 nm with a small shoulder around 280∼310 nm, suggesting that SP and MP might be glycoproteins. SP- and MP-treatment significantly (P<0.05) decreased pro-inflammatory cytokines including interleukin (IL)-1β and IL-6, whereas the anti-inflammatory cytokine IL-10 was markedly increased, suggesting that SP and MP have anti-inflammation potential via modulating pro-/anti-inflammatory cytokine secretion profiles. Both SP and MP modulated Bak and Bcl-2 protein levels in the cells, suggesting that the SP and MP protected LPS-stimulated macrophages from apoptotic cell death. A negative correlation between cytokine secretion levels and Bcl-2 protein levels suggested that pro-inflammatory IL-1β and IL-6 cytokines decreased Bcl-2 levels in the LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Chieh-Jung Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC
| | | |
Collapse
|
29
|
Protective effect of isoquinoline alkaloid berberine on spontaneous inflammation in the spleen, liver and kidney of non-obese diabetic mice through downregulating gene expression ratios of pro-/anti-inflammatory and Th1/Th2 cytokines. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.09.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Chueh WH, Lin JY. Berberine, an isoquinoline alkaloid, inhibits streptozotocin-induced apoptosis in mouse pancreatic islets through down-regulating Bax/Bcl-2 gene expression ratio. Food Chem 2011; 132:252-60. [PMID: 26434288 DOI: 10.1016/j.foodchem.2011.10.065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/10/2011] [Accepted: 10/20/2011] [Indexed: 02/06/2023]
Abstract
Diabetes may cause apoptosis in pancreatic islets. Berberine is an isoquinoline alkaloid used for its pharmacological functions including anti-inflammation. However, the berberine effect on pancreatic islets is still not clear. This study is aimed at clarifying the protective mechanism in berberine against islet cell apoptosis. This study established in vitro experimental models using streptozotocin (STZ)-treated primary pancreatic islet cells from ICR mice to unravel the protective mechanism of berberine on islets. The Bax/Bcl-2 (pro-/anti-apoptotic) genes expression in the islets was determined using real-time quantitative polymerase chain reaction assay. The results showed that berberine administration at one time or before STZ-stimulation significantly (P<0.05) down-regulated the Bax/Bcl-2 genes expression ratio, compared to those in STZ-treatment alone group. Our results suggest that berberine's anti-apoptotic effect on pancreatic primary islets is through down-regulating the Bax/Bcl-2 genes expression ratio in both concurrent and preventive manners.
Collapse
Affiliation(s)
- Wei-Han Chueh
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuokuang Road, Taichung 40227, Taiwan, ROC.
| |
Collapse
|