1
|
Ouyang Y, Yue Y, Wu N, Wang J, Geng L, Zhang Q. Identification and anticoagulant mechanisms of novel factor XIa inhibitory peptides by virtual screening of a in silico generated deep-sea peptide database. Food Res Int 2024; 197:115308. [PMID: 39577955 DOI: 10.1016/j.foodres.2024.115308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
The objective of this study was to identify novel anticoagulant peptides from the deep-sea using multiple in silico methods, and to investigate their inhibitory activity and molecular mechanisms. A deep-sea peptide database was firstly constructed by performing virtual proteolysis on protein sequences from animals inhabiting deep-sea hydrothermal vents and cold seeps. Candidate anticoagulant peptides were identified through molecular docking and binding free energy screening against FXIa as the target. Two novel anticoagulant peptides, PRNIF (IC50 = 0.67 mM) and GNDRCL (IC50 = 1.52 mM), were identified, and their anticoagulant activities were verified in vitro. PRNIF was demonstrated to be a noncompetitive inhibitor of FXIa, and caused significant prolongation of thrombin time (TT) and activated partial thromboplastin time (APTT), whereas GNDRCL markedly prolonged the APTT only. Molecular dynamics simulations demonstrated considerable conformational shifts of both anticoagulant peptides when bound to the active sites of FXIa. The lowest energy binding poses of the FXIa-peptide complexes for PRNIF and GNDRCL exhibited comparable numbers of hydrogen bonds and binding free energies. However, occupancy analysis revealed completely distinct stability characteristics of the hydrogen bond interactions. The conserved residue Asp569 in the S1 pocket of FXIa formed strong and stable hydrogen bonds as well as a salt bridge with the arginine residues of PRNIF, which were not observed in the FXIa-GNDRCL complex. To our knowledge, PRNIF represented the first FXIa inhibitory peptide derived from the deep-sea, which may contribute to the development and utilization of deep-sea peptides resources. Two deep-sea peptides may potentially serve as an alternative food-derived ingredient that could be utilized for thrombosis prevention.
Collapse
Affiliation(s)
- Yuhong Ouyang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 88 Haijun Road, Qingdao 266000, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
2
|
Cheng S, Yuan L, Li-Gao R, Chen S, Li H, Du M. Nutrition and Cardiovascular Disease: The Potential Role of Marine Bioactive Proteins and Peptides in Thrombosis Prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6815-6832. [PMID: 38523314 DOI: 10.1021/acs.jafc.3c08850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Thrombus and cardiovascular diseases pose a significant health threat, and dietary interventions have shown promising potential in reducing the incidence of these diseases. Marine bioactive proteins and peptides have been extensively studied for their antithrombotic properties. They can inhibit platelet activation and aggregation by binding to key receptors on the platelet surface. Additionally, they can competitively anchor to critical enzyme sites, leading to the inhibition of coagulation factors. Marine microorganisms also offer alternative sources for the development of novel fibrinolytic proteins, which can help dissolve blood clots. The advancements in technologies, such as targeted hydrolysis, specific purification, and encapsulation, have provided a solid foundation for the industrialization of bioactive peptides. These techniques enable precise control over the production and delivery of bioactive peptides, enhancing their efficacy and safety. However, it is important to note that further research and clinical studies are needed to fully understand the mechanisms of action and therapeutic potential of marine bioactive proteins and peptides in mitigating thrombotic events. The challenges and future application perspectives of these bioactive peptides also need to be explored.
Collapse
Affiliation(s)
- Shuzhen Cheng
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Lushun Yuan
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 201620, People's Republic of China
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands
| | - Siru Chen
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Han Li
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| | - Ming Du
- SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, Liaoning 116034, People's Republic of China
| |
Collapse
|
3
|
Bassi Scarpim L, de Ramos EC, Graziele Pacheco L, Goloni C, de Souza Theodoro S, de Souza Ávida de Castro T, Carciofi AC. Hydrolysed poultry byproduct meal in extruded diets for cats. Arch Anim Nutr 2024; 78:45-59. [PMID: 38344826 DOI: 10.1080/1745039x.2024.2312700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/27/2024] [Indexed: 04/30/2024]
Abstract
Hydrolysed proteins have been shown to be potential ingredients in cat diets due to their high digestibility, presence of bioactive peptides, and relatively low antigenicity. The effects of the substitution of conventional low ash poultry byproduct meal (PBM) with hydrolysed poultry byproduct meal (HPM) as a protein source were evaluated in extruded cat diets. Five diets with similar nutrient contents were formulated: a control (CO) diet based on PBM and 4 diets with different inclusions of HPM (5%, 10%, 20%, and 30%, on an as-fed basis) replacing PBM as the protein source. The total tract apparent digestibility (CTTAD) of nutrients, faecal characteristics and microbial fermentation products, urine production and pH, nitrogen balance and urea renal excretion were evaluated using 30 healthy cats (15 males and 15 females; 4.18 ± 0.86 kg; 4.17 ± 1.38 years old), with 6 cats per diet in a complete randomised block design. When significant differences were found with the F test, the effects were evaluated by polynomial contrasts according to HPM inclusion (p < 0.05). The CTTADs of DM (89 ± 0.41%), CP (90 ± 0.36%), fat (93 ± 0.41%) and gross energy (90 ± 0.33%) were similar among treatments (p > 0.05). The faecal production, score, short-chain fatty acids and ammonia concentration were similar among treatments (p > 0.05). Isobutyric, isovaleric, valeric, and total branched-chain fatty acid contents increased quadratically (p < 0.05), with the highest level in the faeces of cats fed the diet with 20% HPM. Lactate concentration in faeces increased linearly with the inclusion of HPM (p < 0.05). Urine characteristics and urea renal excretion did not differ among treatments (p > 0.05). At 10% inclusion, HPM tended to increase the nitrogen retention of cats (p = 0.083), which may reflect the higher tryptophan, methionine, lysine, and available lysine contents of HPM in comparison to PBM. The inclusion of up to 30% HPM can be considered in cat formulations without affecting nutrient digestibility or faecal and urine characteristics. HPM tended to increase nitrogen retention and increased branched-chain fatty acids in faeces, aspects which deserves further studies.
Collapse
Affiliation(s)
- Lucas Bassi Scarpim
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University - UNESP, Jaboticabal, Brazil
| | - Eloise Cristina de Ramos
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University - UNESP, Jaboticabal, Brazil
| | - Leticia Graziele Pacheco
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University - UNESP, Jaboticabal, Brazil
| | - Camila Goloni
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University - UNESP, Jaboticabal, Brazil
| | - Stephanie de Souza Theodoro
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University - UNESP, Jaboticabal, Brazil
| | | | - Aulus Cavalieri Carciofi
- School of Agricultural and Veterinary Sciences (FCAV), São Paulo State University - UNESP, Jaboticabal, Brazil
| |
Collapse
|
4
|
Chandika P, Tennakoon P, Kim TH, Kim SC, Je JY, Kim JI, Lee B, Ryu B, Kang HW, Kim HW, Kim YM, Kim CS, Choi IW, Park WS, Yi M, Jung WK. Marine Biological Macromolecules and Chemically Modified Macromolecules; Potential Anticoagulants. Mar Drugs 2022; 20:md20100654. [PMID: 36286477 PMCID: PMC9604568 DOI: 10.3390/md20100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Coagulation is a potential defense mechanism that involves activating a series of zymogens to convert soluble fibrinogen to insoluble fibrin clots to prevent bleeding and hemorrhagic complications. To prevent the extra formation and diffusion of clots, the counterbalance inhibitory mechanism is activated at levels of the coagulation pathway. Contrariwise, this system can evade normal control due to either inherited or acquired defects or aging which leads to unusual clots formation. The abnormal formations and deposition of excess fibrin trigger serious arterial and cardiovascular diseases. Although heparin and heparin-based anticoagulants are a widely prescribed class of anticoagulants, the clinical use of heparin has limitations due to the unpredictable anticoagulation, risk of bleeding, and other complications. Hence, significant interest has been established over the years to investigate alternative therapeutic anticoagulants from natural sources, especially from marine sources with good safety and potency due to their unique chemical structure and biological activity. This review summarizes the coagulation cascade and potential macromolecular anticoagulants derived from marine flora and fauna.
Collapse
Affiliation(s)
- Pathum Chandika
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Pipuni Tennakoon
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Se-Chang Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Korea
| | - Jae-Il Kim
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Bonggi Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - BoMi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Hyun Wook Kang
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Chang Su Kim
- Department of Orthopedic Surgery, Kosin University Gospel Hospital, Busan 49267, Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Myunggi Yi
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
- Correspondence:
| |
Collapse
|
5
|
Nanosized niosomes as effective delivery device to improve the stability and bioaccessibility of goat milk whey protein peptide. Food Res Int 2022; 161:111729. [DOI: 10.1016/j.foodres.2022.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
|
6
|
Abd-Talib N, Yaji ELA, Wahab NSA, Razali N, Len KYT, Roslan J, Saari N, Pa’ee KF. Bioactive Peptides and Its Alternative Processes: A Review. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0160-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Du X, Jing H, Wang L, Huang X, Wang X, Wang H. Characterization of structure, physicochemical properties, and hypoglycemic activity of goat milk whey protein hydrolysate processed with different proteases. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Cheng S, Wu D, Liu H, Xu X, Zhu B, Du M. A novel anticoagulant peptide discovered from Crassostrea gigas by combining bioinformatics with the enzymolysis strategy: inhibitory kinetics and mechanisms. Food Funct 2021; 12:10136-10146. [PMID: 34528647 DOI: 10.1039/d1fo02148f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel anticoagulant peptide (IEELEEELEAER) derived from oyster (Crassostrea gigas) was discovered by combining the emerging bioinformatics with the classical enzymolysis approach. The anticoagulant peptide drastically reduced the extrinsic clotting activity (49% residual PT activity) and impaired the intrinsic clotting activity (77% residual PT activity). Consistent with the clotting data, the thrombin peak height reduced to 88.7 from 123.4 nM, and the thrombin generation time delayed to 5.32 from 4.42 min when an extrinsic trigger was applied. The inhibitory kinetics of FXIa, FIXa, FXa, FIIa, and APC in a purified component system rationally explained the reduction of the extrinsic clotting activity and impairment of thrombin generation. Besides the inhibition of FXa and FIIa activity, the activation processes of FX and FII by an intrinsic/extrinsic tenase complex and prothrombinase were also damaged. The anticoagulant activity in the plasma system was the result of comprehensive inhibition of various factors. The research provided a frame for anticoagulant evaluation and inhibitory mechanism of bioactive peptides from food products.
Collapse
Affiliation(s)
- Shuzhen Cheng
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Di Wu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| | - Hanxiong Liu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| | - Xianbing Xu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| | - Beiwei Zhu
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Ming Du
- Department of Food Science and Engineering, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
9
|
Phadke GG, Rathod NB, Ozogul F, Elavarasan K, Karthikeyan M, Shin KH, Kim SK. Exploiting of Secondary Raw Materials from Fish Processing Industry as a Source of Bioactive Peptide-Rich Protein Hydrolysates. Mar Drugs 2021; 19:md19090480. [PMID: 34564142 PMCID: PMC8468292 DOI: 10.3390/md19090480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Developing peptide-based drugs are very promising to address many of the lifestyle mediated diseases which are prevalent in a major portion of the global population. As an alternative to synthetic peptide-based drugs, derived peptides from natural sources have gained a greater attention in the last two decades. Aquatic organisms including plants, fish and shellfish are known as a rich reservoir of parent protein molecules which can offer novel sequences of amino acids in peptides, having unique bio-functional properties upon hydrolyzing with proteases from different sources. However, rather than exploiting fish and shellfish stocks which are already under pressure due to overexploitation, the processing discards, regarded as secondary raw material, could be a potential choice for peptide based therapeutic development strategies. In this connection, we have attempted to review the scientific reports in this area of research that deal with some of the well-established bioactive properties, such as antihypertensive, anti-oxidative, anti-coagulative, antibacterial and anticarcinogenic properties, with reference to the type of enzymes, substrate used, degree of particular bio-functionality, mechanism, and wherever possible, the active amino acid sequences in peptides. Many of the studies have been conducted on hydrolysate (crude mixture of peptides) enriched with low molecular bioactive peptides. In vitro and in vivo experiments on the potency of bioactive peptides to modulate the human physiological functions beneficially have demonstrated that these peptides can be used in the prevention and treatment of non-communicable lifestyle mediated diseases. The information synthesized under this review could serve as a point of reference to drive further research on and development of functionally active therapeutic natural peptides. Availability of such scientific information is expected to open up new zones of investigation for adding value to underutilized secondary raw materials, which in turn paves the way for sustainability in fish processing. However, there are significant challenges ahead in exploring the fish waste as a source of bioactive peptides, as it demands more studies on mechanisms and structure–function relationship understanding as well as clearance from regulatory and statutory bodies before reaching the end user in the form of supplement or therapeutics.
Collapse
Affiliation(s)
- Girija Gajanan Phadke
- Network for Fish Quality Management & Sustainable Fishing (NETFISH), The Marine Products Export Development Authority (MPEDA), Navi Mumbai 410206, Maharashtra, India;
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-Harvest Management, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Roha 402109, Maharashtra, India;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Krishnamoorthy Elavarasan
- Fish Processing Division, ICAR-Central Institute of Fisheries Technology, Willingdon Island, Kochi 682029, Kerala, India;
| | - Muthusamy Karthikeyan
- The Marine Products Export Development Authority (MPEDA), Kochi 682036, Kerala, India;
| | - Kyung-Hoon Shin
- Department of Marine Science & Convergence Engineering, Hanyang University, ERICA Campus, Ansan 11558, Gyeonggi-do, Korea;
| | - Se-Kwon Kim
- Department of Marine Science & Convergence Engineering, Hanyang University, ERICA Campus, Ansan 11558, Gyeonggi-do, Korea;
- Correspondence: ; Tel.: +82-31-400-5539 or +82-10-7223-6375
| |
Collapse
|
10
|
Kim NY, Jung HY, Kim JK. Identification and characterisation of a novel heptapeptide mackerel by-product hydrolysate, and its potential as a functional fertiliser component. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122881. [PMID: 34388601 DOI: 10.1016/j.jchromb.2021.122881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Functional fertilisers for hydroponics are in great demand. Herein, we isolated peptides from mackerel by-products, a valuable source of bioactive peptides. The pellet-phase fraction obtained after cold-acetone extraction exhibited plant growth-promoting activity in wheat hydroponics, and the presumed peptides were determined to be ≤ 1 kDa based on molecular weight cut-off and tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Size exclusion chromatography and matrix-assisted laser desorption ionisation time of flight mass spectrometry analysis were employed for peptide purification and identification. Finally, two peptides were identified, both with linear structures, consisting of amino acid sequences TCGGQGR and KEAGAFIDR. At 1 mg/mL, the heptapeptide performed better than the nonapeptide in terms of wheat growth and health, but neither peptide exhibited antimicrobial activity. Only the heptapeptide displayed significant antioxidant activity, and this activity bioaccumulated in wheat leaves after 7 days of hydroponic growth. The heptapeptide did not match any known metabolites in PepBank, BIOPEP, UniProt or METLIN databases, and is therefore a novel peptide with potential as a functional fertiliser component.
Collapse
Affiliation(s)
- Nan Young Kim
- Department of Biotechnology and Bioengineering, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 485137, Republic of Korea
| | - Hyun Yi Jung
- Department of Biotechnology and Bioengineering, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 485137, Republic of Korea
| | - Joong Kyun Kim
- Department of Biotechnology and Bioengineering, Pukyong National University, 45 Yongso-Ro, Nam-Gu, Busan 485137, Republic of Korea.
| |
Collapse
|
11
|
Sierra-Lopera LM, Zapata-Montoya JE. Optimization of enzymatic hydrolysis of red tilapia scales ( Oreochromis sp.) to obtain bioactive peptides. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00611. [PMID: 33912403 PMCID: PMC8063752 DOI: 10.1016/j.btre.2021.e00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/06/2021] [Accepted: 03/19/2021] [Indexed: 01/09/2023]
Abstract
The objective of this study was to optimize the conditions of enzymatic hydrolysis (type of enzyme, pH, temperature (T), substrate (S) and enzyme concentration (E)) to increase content of soluble peptides (P), antioxidant activities and degree of hydrolysis DH (%), in hydrolysates. Also, the effect of scaling up from a 0.5 L to a 7.5 L reactor, was evaluated. Hydrolysis was carried out for 3 h in a 500 mL reactor, with Alcalase® 2.4 L and Flavourzyme® 500 L enzymes. A second experimental design was then developed with S and E as factors, where DH, P and antioxidant activity, were response variables. The Alcalase® 2.4 L was the most productive enzyme, with optimal S and E of 45 g/L and 4.4 g/L, respectively. Its hydrolysates showed antioxidant activities with IC50 of 0.76 g/L, 12 g/L and 8 g/L for ABTS, FRAP and ICA, respectively. The scale up didn't showed negative effect on the hydrolysis.
Collapse
Affiliation(s)
- Leidy Maritza Sierra-Lopera
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| | - Jose Edgar Zapata-Montoya
- University of Antioquia, Nutrition and Food Technology Group, 70th Street No. 52 - 21, 050010, Medellin, Antioquia, Colombia
| |
Collapse
|
12
|
Gao R, Yu Q, Shen Y, Chu Q, Chen G, Fen S, Yang M, Yuan L, McClements DJ, Sun Q. Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.031] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Effect of feeding habits of fish on the characteristics of collagenolytic proteases isolated from the visceral waste. Journal of Food Science and Technology 2021; 58:1585-1592. [PMID: 33746285 DOI: 10.1007/s13197-020-04671-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
In this study, influence of feeding habits of fish on the activity of collagenolytic proteases (CP) has been investigated. CP from the visceral waste of freshwater fish (Pangas, Rohu and Common carp) of different feeding habits was isolated and partially purified by 2-steps, (NH4)2SO4 fractionation and dialysis. Enzymatic activity and purification fold was determined in each step. The molecular mass of the enzymes were close to that of serine collagenases. Enzyme was assayed for temperature and pH optima, effect of sodium chloride and inhibitors. Optimum temperature and pH was 40 °C and 7-8 respectively. Soybean trypsin inhibitor inhibited the enzyme activity, whereas, EDTA exerted no effect, led to confirmation of serine collagenases. CP of carnivore was more active over a wide range of temperature and pH compared to herbivore and omnivore. The study revealed that the feeding habit of fish play decides the optimal physiological conditions for maximum activity of CP.
Collapse
|
14
|
Amino Acid Profiles and Biopotentiality of Hydrolysates Obtained from Comb Penshell ( Atrina pectinata) Viscera Using Subcritical Water Hydrolysis. Mar Drugs 2021; 19:md19030137. [PMID: 33804423 PMCID: PMC7999596 DOI: 10.3390/md19030137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
The recovery of amino acids and other important bioactive compounds from the comb penshell (Atrina pectinata) using subcritical water hydrolysis was performed. A wide range of extraction temperatures from 140 to 290 °C was used to evaluate the release of proteins and amino acids. The amount of crude protein was the highest (36.14 ± 1.39 mg bovine serum albumin/g) at 200 °C, whereas a further increase in temperature showed the degradation of the crude protein content. The highest amount of amino acids (74.80 mg/g) was at 230 °C, indicating that the temperature range of 170–230 °C is suitable for the extraction of protein-rich compounds using subcritical water hydrolysis. Molecular weights of the peptides obtained from comb penshell viscera decreased with the increasing temperature. SDS-PAGE revealed that the molecular weight of peptides present in the hydrolysates above the 200 °C extraction temperature was ≤ 1000 Da. Radical scavenging activities were analyzed to evaluate the antioxidant activities of the hydrolysates. A. pectinata hydrolysates also showed a particularly good antihypertensive activity, proving that this raw material can be an effective source of amino acids and marine bioactive peptides.
Collapse
|
15
|
Ma S, Li X, Sun Y, Mi R, Li Y, Wen Z, Meng N, Yi L, Du X, Li S. Enzymatic Hydrolysis of Defatted Antheraea pernyi (Lepidoptera: Saturniidae) Pupa Protein by Combined Neutral Protease Yield Peptides With Antioxidant Activity. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:5. [PMID: 33693805 PMCID: PMC7947994 DOI: 10.1093/jisesa/ieab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Indexed: 06/12/2023]
Abstract
In this study, peptides were prepared from defatted Antheraea pernyi (Lepidoptera: Saturniidae) pupa protein via hydrolysis with combined neutral proteases. Single-factor tests and response surface methodology (RSM) were used to determine the optimal hydrolysis condition suitable for industrial application. Optimal hydrolysis of the defatted pupa protein was found to occur at an enzyme concentration of 4.85 g/liter, a substrate concentration of 41 g/liter, a hydrolysis temperature of 55°C, and a hydrolysis time of 10 h and 40 min. Under these conditions, the predicted and actual rates of hydrolysis were 45.82% and 45.75%, respectively. Peptides with a molecular weight of less than 2,000 Da accounted for 90.5% of the total peptides generated. Some of the peptides were antioxidant peptides as revealed by sequencing and functional analysis. The antioxidant activity of the mixed peptides was subsequently confirmed by an antioxidant activity assay. The results showed that peptides with high antioxidant activity could be obtained from the hydrolysis of A. pernyi pupa protein.
Collapse
Affiliation(s)
- Shuhui Ma
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Xuejun Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Yongxin Sun
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Rui Mi
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Yajie Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Zhixin Wen
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Nan Meng
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Li Yi
- Shanghai Jianqiao University, Shanghai, China
| | - Xingfan Du
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| | - Shuying Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, China
| |
Collapse
|
16
|
Barati M, Javanmardi F, Mousavi Jazayeri SMH, Jabbari M, Rahmani J, Barati F, Nickho H, Davoodi SH, Roshanravan N, Mousavi Khaneghah A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr Rev Food Sci Food Saf 2020; 19:1488-1520. [PMID: 33337080 DOI: 10.1111/1541-4337.12578] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 04/03/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Due to the digestible refractory and absorbable structures of bioactive peptides (BPs), they could induce notable biological impacts on the living organism. In this regard, the current study was devoted to providing an overview regarding the available methods for BPs generation by the aid of a systematic review conducted on the published articles up to April 2019. In this context, the PubMed and Scopus databases were screened to retrieve the related publications. According to the results, although the characterization of BPs mainly has been performed using enzymatic and microbial in-vitro methods, they cannot be considered as suitable techniques for further stimulation of digestion in the gastrointestinal tract. Therefore, new approaches for both in-vivo and in-silico methods for BPs identification should be developed to overcome the obstacles that belonged to the current methods. The purpose of this review was to compile the recent analytical methods applied for studying various aspects of food-derived biopeptides, and emphasizing generation at in vitro, in vivo, and in silico.
Collapse
Affiliation(s)
- Meisam Barati
- Student Research Committee, Department of Cellular and Molecular Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jabbari
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Rahmani
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Barati
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Hossein Davoodi
- Department of Clinical Nutrition and Dietetic, National Institute and Faculty of Nutrition and Food Technology; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
17
|
Development of delivery system based on marine chitosan: Encapsulationand release kinetic study of antioxidant peptides from chitosan microparticle. Int J Biol Macromol 2020; 167:1445-1451. [PMID: 33212105 DOI: 10.1016/j.ijbiomac.2020.11.098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
The present work aims to encapsulate goby fish protein hydrolysate (GPH), endowed with antioxidant activity, through ionic gelation process using blue crab chitosan (CH) and tripolyphosphate anions and to evaluate the structural, thermal and antioxidant properties of the elaborated microparticles (MPs). The GPH-loaded MPs present spherical shape as seen by scanning electron microscopy (SEM) images and positive zeta potential. The increase of loaded GPH concentration led to the increase of encapsulation efficiency (EE) and to the reduction of the particle size. In fact, MPs, loaded with 2 and 5 mg/ml GPH, had EE values of 44 and 58% and mean particles size of 4.81 and 3.78 μm, respectively. Furthermore, thermogravimetric analysis (TGA) profiles revealed the enhanced thermal stability of encapsulated biopeptides compared to the free ones. Release kinetic data showed a Fickian diffusion behavior which follows swelling and a diffusion-controlled mechanism for peptides liberation. Finally, as opposed to unloaded MPs, an improvement of the antioxidant activity of the loaded MPs with biopeptides was observed.
Collapse
|
18
|
Hamdi M, Nasri R, Amor IB, Li S, Gargouri J, Nasri M. Structural features, anti-coagulant and anti-adhesive potentials of blue crab (Portunus segnis) chitosan derivatives: Study of the effects of acetylation degree and molecular weight. Int J Biol Macromol 2020; 160:593-601. [DOI: 10.1016/j.ijbiomac.2020.05.246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
|
19
|
Cheng S, Tu M, Liu H, An Y, Du M, Zhu B. A novel heptapeptide derived from Crassostrea gigas shows anticoagulant activity by targeting for thrombin active domain. Food Chem 2020; 334:127507. [PMID: 32688180 DOI: 10.1016/j.foodchem.2020.127507] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/22/2020] [Accepted: 07/04/2020] [Indexed: 11/15/2022]
Abstract
A novel food-derived anticoagulant heptapeptides (P-3-CG) was isolated and characterized from oyster (Crassostrea gigas) pepsin hydrolysate. P-3-CG competed with fibrinogen against thrombin active domain by a spontaneous and exothermic reaction which was entropically driven. The residue Lys7 of P-3-CG anchored thrombin S1 pocket strongly, which inhibited fibrinogen binding to the thrombin, then blocked the conversion of fibrinogen to fibrin. The fibrinogen clotting time was prolonged to 27.55 s, and the reciprocally authenticated results of dynamic light scattering and scanning electron microscope further explained for fibrinogen clotting time extension. Inhibition of amidolytic activity of thrombin was affected significantly by reaction time and P-3-CG concentration. Furthermore, P-3-CG prolonged activated partial thromboplastin time significantly in vitro/vivo, and decreased the mortality which was confirmed by pulmonary pathological slide results. The obtained results demonstrated that P-3-CG may potentially serve as an alternative food-derived anticoagulant peptide that could be utilized for thrombosis prevention.
Collapse
Affiliation(s)
- Shuzhen Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yue An
- Clinical Laboratory, The Second Hospital Affiliated to Dalian Medical University, Dalian 116023, Liaoning, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Beiwei Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
20
|
Idowu AT, Igiehon OO, Idowu S, Olatunde OO, Benjakul S. Bioactivity Potentials and General Applications of Fish Protein Hydrolysates. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10071-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Ktari N, Ben Slama-Ben Salem R, Bkhairia I, Ben Slima S, Nasri R, Ben Salah R, Nasri M. Functional properties and biological activities of peptides from zebra blenny protein hydrolysates fractionated using ultrafiltration. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100539] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Xu S, Fan F, Liu H, Cheng S, Tu M, Du M. Novel Anticoagulant Peptide from Lactoferrin Binding Thrombin at the Active Site and Exosite-I. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3132-3139. [PMID: 32064873 DOI: 10.1021/acs.jafc.9b08094] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thrombin is currently one of the important targets for the treatment and prevention of thrombosis. At present, there are few reports on the application of lactoferrin peptides in anticoagulation. In this study, a peptide with the amino acid sequence of LRPVAAEIY (LF-LR) derived from lactoferrin was shown to possess antithrombotic activity. LF-LR (5 mM) significantly prolonged activated partial thromboplastin time, prothrombin time, and thrombin time for 13.4, 1.7, and 5.1 s, respectively. It prolonged the coagulation time of fibrinogen from 15.3 ± 0.4 to 20.2 ± 0.5 s by affecting the conformation of thrombin. Using circular dichroism analysis, LF-LR can increase the α-helix content of thrombin from 25.6 to 56.7% and made the β-sheet disappear. In addition, LF-LR also quenched fluorescence of thrombin at about 346 nm (λEx = 280 nm). By means of molecular docking, it was found that LF-LR could bind to both the active site and the exosite-I of thrombin, and the combined LYS60F, TRP60D, ASP189, LYS36, and ARG77A are typical amino acids in the two domains, respectively.
Collapse
Affiliation(s)
- Shiqi Xu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210046, China
| | - Hanxiong Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Maolin Tu
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian Liaoning, 116034, China
| |
Collapse
|
23
|
Liu H, Cheng S, Wang Z, Du M. Evaluation and Improvement of in vitro Detection Methods of Thrombin Inhibitor Activity. EFOOD 2020. [DOI: 10.2991/efood.k.201002.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
24
|
Bezerra TKA, de Lacerda JTJG, Salu BR, Oliva MLV, Juliano MA, Pacheco MTB, Madruga MS. Identification of Angiotensin I-Converting Enzyme-Inhibitory and Anticoagulant Peptides from Enzymatic Hydrolysates of Chicken Combs and Wattles. J Med Food 2019; 22:1294-1300. [DOI: 10.1089/jmf.2019.0066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Taliana Kênia Alencar Bezerra
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Center, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | | | - Bruno Ramos Salu
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | - Marta Suely Madruga
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Technology Center, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| |
Collapse
|
25
|
Identification and in silico analysis of antithrombotic peptides from the enzymatic hydrolysates of Tenebrio molitor larvae. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03381-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Cheng S, Tu M, Chen H, Xu Z, Wang Z, Liu H, Zhao G, Zhu B, Du M. Identification and inhibitory activity against α-thrombin of a novel anticoagulant peptide derived from oyster (Crassostrea gigas) protein. Food Funct 2019; 9:6391-6400. [PMID: 30457135 DOI: 10.1039/c8fo01635f] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A newly discovered anticoagulant peptide was isolated, purified and identified from the pepsin hydrolysate of oyster (Crassostrea gigas) which could potently prolong the activated partial thromboplastin time and the thrombin time. The anticoagulant peptide with a 1264.36 Da molecular mass was similar to the amino acid sequence of the C-terminal segment (DFEEIPEEYLQ) of hirudin (a potent thrombin inhibitor). The peptide specifically inhibited a vital blood coagulation factor: thrombin. The molecular docking energy scores of the anticoagulant peptide with the active site, exosite-I and exosite-II of thrombin were 132.355 kcal mol-1, 151.266 kcal mol-1 and 147.317 kcal mol-1, respectively. The anticoagulant peptide interacted with thrombin by competing with fibrinogen for an anion-binding exosite I. In the anticoagulant peptide-thrombin complex, there are seven hydrogen bonds and reciprocity exists between hydrogen atoms and oxygen atoms, and electrostatic and hydrophobic interactions are also involved. Such abundant interactions may be accountable for the high affinity and specificity of the anticoagulant peptide.
Collapse
Affiliation(s)
- Shuzhen Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abdelhedi O, Khemakhem H, Nasri R, Jridi M, Mora L, Ben Amor I, Jamoussi K, Toldrá F, Gargouri J, Nasri M. Assessment of Cholesterol, Glycemia Control and Short- and Long-Term Antihypertensive Effects of Smooth Hound Viscera Peptides in High-Salt and Fructose Diet-Fed Wistar Rats. Mar Drugs 2019; 17:E194. [PMID: 30934709 PMCID: PMC6520678 DOI: 10.3390/md17040194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
In this study, the antihypertensive activity of Purafect®-smooth hound viscera protein hydrolysate (VPH) and its peptide fraction with molecular weight (MW) below 1 kDa (VPH-I) was investigated. In addition, the lipase inhibitory activity, as well the anticoagulant potential, in vitro, were assessed. The antihypertensive effects of VPH and VPH-I were studied during 24 h (short-term effect) and 30 days (long-term effect) using high-salt (18% NaCl) and -fructose (10%) diet (HSFD)-induced hypertension. Data showed that, 4 h post-administration of VPH and VPH-I (200 mg/kg BW), the systolic blood pressure of rats was reduced by about 6 and 9 mmHg, respectively. These effects were similar to that obtained with Captopril (~9 mmHg at t = 4 h). On the other hand, exposing the rats to daily to HSFD, coupled to the administration of viscera peptides, was found to attenuate hypertension. In addition, the proteins' treatments were able to correct lipid and glycemic disorders, by reducing the total cholesterol and triglyceride contents and resorting to the plasma glucose level, compared to the HSFD group. Overall, the present findings demonstrated the preventive effect of VPH-peptides from hypertension complications, as a result of their biological properties.
Collapse
Affiliation(s)
- Ola Abdelhedi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| | - Hana Khemakhem
- Laboratory of Biochemistry, CHU HediChaker, University of Sfax, Sfax 3000, Tunisia.
| | - Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia.
| | - Mourad Jridi
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia.
| | - Leticia Mora
- Instituto de Agroquímica y Tecnologíade Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Ikram Ben Amor
- Centre Régional de Transfusion Sanguine de Sfax, Route El-Ain Km 0.5, Sfax 3003, Tunisia.
| | - Kamel Jamoussi
- Laboratory of Biochemistry, CHU HediChaker, University of Sfax, Sfax 3000, Tunisia.
| | - Fidel Toldrá
- Instituto de Agroquímica y Tecnologíade Alimentos (CSIC), Avenue Agustín Escardino 7, Paterna, 46980 Valencia, Spain.
| | - Jalel Gargouri
- Centre Régional de Transfusion Sanguine de Sfax, Route El-Ain Km 0.5, Sfax 3003, Tunisia.
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax (ENIS), University of Sfax, P.O. Box 1173, Sfax 3038, Tunisia.
| |
Collapse
|
28
|
Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019; 59:S81-S95. [PMID: 30740983 DOI: 10.1080/10408398.2018.1524363] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thromboembolism and its sequelae have been the leading causes of morbidity and mortality throughout the world. Food-derived antithrombotic peptides, as potential ingredients in health-promoting functional foods targeting thrombus, have attracted increasing attention because of their high biological activities, low toxicity, and ease of metabolism in the human body. This review presents the conventional workflow of preparation, isolation and identification of antithrombotic peptides from various kinds of food materials. More importantly, to analyze the antithrombotic effects and mechanism of antithrombotic peptides, methods for interaction of anticoagulant peptides and thrombin, the main participant in thrombosis, were analyzed from biochemistry, solution chemistry and crystal chemistry. The present study is intended to highlight the recent advances in research of food-derived antithrombotic peptide as a novel vehicle in the field of food science and nutrition. Future outlooks are highlighted with the aim to suggest a research line to be followed in further studies with the introduced research approach.
Collapse
Affiliation(s)
- Shuzheng Cheng
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China.,b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Maolin Tu
- c Department of Food Science and Engineering , Harbin Institute of Technology , Harbin , Heilongjiang , China
| | - Hanxiong Liu
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| | - Guanghua Zhao
- b Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | - Ming Du
- a School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Dalian , Liaoning , China
| |
Collapse
|
29
|
Fang L, Ren D, Wang Z, Liu C, Wang J, Min W. Protective role of hazelnut peptides on oxidative stress injury in human umbilical vein endothelial cells. J Food Biochem 2018; 43:e12722. [PMID: 31353565 DOI: 10.1111/jfbc.12722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
Abstract
The crude protein hydrolysates of wild hazel have good immunoregulation and antioxidation effects. However, the components responsible for their antioxidation effect remain unknown. In this study, six antioxidative peptides (EW, DWDPK, ADGF, SGAF, ETTL, and AGGF) were tested for their protective effects on oxidative stress injury in human umbilical vein endothelial cells (HUVECs). The results demonstrated that the six peptides are nontoxic and have a protective effect on oxidative stress injury induced by Ang II. Three peptides (EW, ADGF, and DWDPK) inhibited the morphological changes, downregulated the content of lactate dehydrogenase and malondialdehyde, upregulated the activity of antioxidant enzymes catalase, total superoxide dismutase and glutathione peroxidase, and scavenged reactive oxygen species (ROS) in HUVECs. Quantitative reverse transcriptive polymerase chain reaction and western blot assays indicated that these three peptides regulated NADPH oxidase activity and ROS production by reducing NOX4 and p22phox levels. Overall, they have a significant protective effect against oxidative stress injury and have potential application in developing new functional foods. PRACTICAL APPLICATIONS: Corylus heterophylla Fisch is a good quality wild hazel distributed in Northeast China. Wild hazelnut of the species C. heterophylla Fisch was selected as experimental object and has high nutritive values and have abundant proteins (20%-30%), fats (40%-50%), carbohydrates (13%-24%), dietary fibers (8.2%-9.6%), vitamins, and micronutrients. Our results indicate that hazelnut peptides (EW, ADGF, and DWDPK) can ensure normal growth of cells by protecting important antioxidant enzyme systems, by enhancing antioxidant defense, by directly affecting nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and by reducing intracellular reactive oxygen species (ROS) production in HUVECs, indicating that the three antioxidative peptides have a protective effect against Ang II-induced oxidative stress injury. Therefore, the antioxidative peptides from C. heterophylla Fisch may be a promising candidate for functional food ingredients and/or pharmaceuticals.
Collapse
Affiliation(s)
- Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Zuhao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China.,National Engineering Laboratory on Wheat and Corn Further Processing, Changchun, China
| |
Collapse
|
30
|
Nasri R, Abdelhedi O, Jemil I, Ben Amor I, Elfeki A, Gargouri J, Boualga A, Karra-Châabouni M, Nasri M. Preventive effect of goby fish protein hydrolysates on hyperlipidemia and cardiovascular disease in Wistar rats fed a high-fat/fructose diet. RSC Adv 2018; 8:9383-9393. [PMID: 35541829 PMCID: PMC9078641 DOI: 10.1039/c7ra13102j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/15/2018] [Indexed: 11/21/2022] Open
Abstract
This study was carried out to investigate the hypolipidemic, cardioprotective and anticoagulant properties of fish goby protein hydrolysates (GPHs) in rats fed a high fat and fructose diet (HFFD). Wistar rats were fed with HFFD for 2 months, coupled with the oral administration of GPHs and undigested goby protein (UGP). Compared with the standard diet, HFFD induced dyslipidemia and liver structure alterations, and increased pancreatic lipase activity. In addition, HFFD caused a significant increase in body weight. Interestingly, administration of UGP and GPHs to HFFD fed rats was efficacious in lowering serum total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol (LDL-c) as well as hepatic TC and TG, and increased the serum high density lipoprotein cholesterol (HDL-c) content. Moreover, all treatments significantly decreased the atherogenic index and coagulant factor levels (thrombin and prothrombin). UGP and GPH administration also significantly decreased pancreatic lipase activity, which mitigates lipid accumulation. Similarly, UGP and its hydrolysates showed cardioprotective potential revealed by decreasing the risk of atherogenic and coronary artery disease and improving the liver architecture. The ex vivo plasma clotting test showed that GPHs exert a great therapeutic anticoagulant potential. The overall results demonstrated that GPH supplementation can counteract high-fat/fructose diet-induced obesity.
Collapse
Affiliation(s)
- Rim Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) P. O. Box 1173 Sfax 3038 Tunisia +216 74 275 595 +216 74 274 088
| | - Ola Abdelhedi
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) P. O. Box 1173 Sfax 3038 Tunisia +216 74 275 595 +216 74 274 088
| | - Ines Jemil
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) P. O. Box 1173 Sfax 3038 Tunisia +216 74 275 595 +216 74 274 088
| | - Ikram Ben Amor
- Centre Régional de Transfusion Sanguine de Sfax, Route El-Ain Km 0.5 CP 3003 Sfax Tunisia
| | - Abdelfattah Elfeki
- Laboratory of Animal Ecophysiology, University of Sfax, Faculty of Sciences of Sfax (FSS) P. O. Box 95 Sfax 3052 Tunisia
| | - Jalel Gargouri
- Centre Régional de Transfusion Sanguine de Sfax, Route El-Ain Km 0.5 CP 3003 Sfax Tunisia
| | - Ahmed Boualga
- Laboratoire de Nutrition Clinique et Métabolique, Faculté des Sciences, de la nature et de la vie, Université d'Oran 1 Ahmed Ben Bella Oran Algeria
| | - Maha Karra-Châabouni
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) P. O. Box 1173 Sfax 3038 Tunisia +216 74 275 595 +216 74 274 088
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National School of Engineering of Sfax (ENIS) P. O. Box 1173 Sfax 3038 Tunisia +216 74 275 595 +216 74 274 088
| |
Collapse
|
31
|
Ghorbel-Bellaaj O, Maalej H, Nasri M, Jellouli K. Fermented Shrimp Waste Hydrolysates: Promising Source of Functional Molecules with Antioxidant Properties. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2017. [DOI: 10.1080/15428052.2017.1394950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Olfa Ghorbel-Bellaaj
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, Sfax, Tunisia
| | - Hana Maalej
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, Sfax, Tunisia
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, Sfax, Tunisia
| | - Kemel Jellouli
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineering of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
32
|
Elavarasan K, Shamasundar BA. Antioxidant and emulsion properties of freshwater carps ( Catla catla, Labeo rohita, Cirrhinus mrigala) protein hydrolysates prepared using flavorzyme. Food Sci Biotechnol 2017; 26:1169-1176. [PMID: 30263649 PMCID: PMC6049770 DOI: 10.1007/s10068-017-0154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 01/11/2023] Open
Abstract
Fish protein hydrolysates (FPHs) were prepared from freshwater carps (Catla catla, Labeo rohita, and Cirrhinus mrigala) using flavorzyme at different degrees of hydrolysis (DHs) ranging from 5 to 20%. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical-scavenging activity of the FPHs prepared from the three species were in the range of 50-82%; the ferric reducing power of the FPHs prepared from catla was the highest. The linoleic acid peroxidation inhibition activity of the prepared FPHs varied from 71 to 91%. The emulsion activity index of the FPHs prepared from catla and rohu decreased significantly with an increase in the DH (p < 0.05). The emulsion stability index of the FPHs prepared from the three species was the highest at 20% DH. FPHs prepared from freshwater carps possess good antioxidant and surface-active properties and are therefore suitable to be used as natural antioxidants in health-food formulation and as water-soluble antioxidants in the food-processing industry.
Collapse
Affiliation(s)
- Krishnamoorthy Elavarasan
- Department of Fish Processing Technology, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, College of Fisheries, Mangalore, 575 002 India
| | - Bangalore Aswathnarayan Shamasundar
- Department of Fish Processing Technology, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, College of Fisheries, Mangalore, 575 002 India
| |
Collapse
|
33
|
Thrombin inhibitory peptides derived from Mytilus edulis proteins: identification, molecular docking and in silico prediction of toxicity. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2946-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Nasri M. Protein Hydrolysates and Biopeptides: Production, Biological Activities, and Applications in Foods and Health Benefits. A Review. ADVANCES IN FOOD AND NUTRITION RESEARCH 2016; 81:109-159. [PMID: 28317603 DOI: 10.1016/bs.afnr.2016.10.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In recent years, a great deal of interest has been expressed regarding the production, characterization, and applications of protein hydrolysates and food-derived biopeptides due to their numerous beneficial health effects. In this regard, research is mainly focused on investigating the therapeutic potential of these natural compounds. Based on their amino acids composition, sequences, hydrophobicity, and length, peptides released from food proteins, beyond their nutritional properties, can exhibit various biological activities including antihypertensive, antioxidative, antithrombotic, hypoglycemic, hypocholesterolemic, and antibacterial activities among others. Protein hydrolysates are essentially produced by enzymatic hydrolysis of whole protein sources by appropriate proteolytic enzymes under controlled conditions, followed by posthydrolysis processing to isolate desired and potent bioactive peptides from a complex mixture of active and inactive peptides. Therefore, because of their human health potential and safety profiles, protein hydrolysates and biopeptides may be used as ingredients in functional foods and pharmaceuticals to improve human health and prevent diseases. In this review, we have focused on the major variables influencing the enzymatic process of protein hydrolysates production. The biological properties of protein hydrolysates will be described as well as their applications in foods and health benefits.
Collapse
Affiliation(s)
- M Nasri
- Laboratory of Enzyme Engineering and Microbiology, University of Sfax, National Engineering School of Sfax, B.P. 1173-3038, Sfax, Tunisia.
| |
Collapse
|
35
|
Identification and characterization of novel anticoagulant peptide with thrombolytic effect and nutrient oligopeptides with high branched chain amino acid from Whitmania pigra protein. Amino Acids 2016; 48:2657-2670. [DOI: 10.1007/s00726-016-2299-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/08/2016] [Indexed: 11/25/2022]
|
36
|
Zhang SB. In vitro antithrombotic activities of peanut protein hydrolysates. Food Chem 2016; 202:1-8. [DOI: 10.1016/j.foodchem.2016.01.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/14/2015] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
37
|
Han Z, Zhang W, Luo W, Li J. Novel Antioxidant Peptides Derived from Enzymatic Hydrolysates of Macadamia Protein. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbm.2016.42002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
|
39
|
Nasri R, Abdelhedi O, Jemil I, Daoued I, Hamden K, Kallel C, Elfeki A, Lamri-Senhadji M, Boualga A, Nasri M, Karra-Châabouni M. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats. Chem Biol Interact 2015; 242:71-80. [DOI: 10.1016/j.cbi.2015.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/03/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022]
|
40
|
Lassoued I, Mora L, Nasri R, Aydi M, Toldrá F, Aristoy MC, Barkia A, Nasri M. Characterization, antioxidative and ACE inhibitory properties of hydrolysates obtained from thornback ray ( Raja clavata ) muscle. J Proteomics 2015; 128:458-68. [DOI: 10.1016/j.jprot.2015.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/19/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
|
41
|
Bkhairia I, Ktari N, Younes I, Kammoun M, Nasri M, Ghorbel S. Golden Grey Mullet (Liza aurata) Alkaline Proteases: Biochemical Characterization, Application in the Shrimp Wastes Deproteinization, Laundry Commercial Detergents, and Preparation of Antioxidant Protein Hydrolysate. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2015. [DOI: 10.1080/10498850.2013.796582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Chen M, Ye X, Ming X, Chen Y, Wang Y, Su X, Su W, Kong Y. A Novel Direct Factor Xa Inhibitory Peptide with Anti-Platelet Aggregation Activity from Agkistrodon acutus Venom Hydrolysates. Sci Rep 2015; 5:10846. [PMID: 26035670 PMCID: PMC4451689 DOI: 10.1038/srep10846] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/05/2015] [Indexed: 11/15/2022] Open
Abstract
Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a Ki value of 9.02 μM and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3 mg/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3 mg/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development.
Collapse
Affiliation(s)
- Meimei Chen
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Xiaohui Ye
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yahui Chen
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Ying Wang
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Xingli Su
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Wen Su
- School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China
| | - Yi Kong
- 1] School of Life Science &Technology, China Pharmaceutical University, 24 Tong Jia Street, Nanjing 210009, PR China [2] State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
43
|
de Castro RJS, Sato HH. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Res Int 2015; 74:185-198. [PMID: 28411983 DOI: 10.1016/j.foodres.2015.05.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/01/2015] [Accepted: 05/08/2015] [Indexed: 12/01/2022]
Abstract
Recent technological advances have created great interest in the use of biologically active peptides. Bioactive peptides can be defined as specific portions of proteins with 2 to 20 amino acids that have desirable biological activities, including antioxidant, anti-hypertensive, antithrombotic, anti-adipogenic, antimicrobial and anti-inflammatory effects. Specific characteristics, including low toxicity and high specificity, make these molecules of particular interest to the food and pharmaceutical industries. This review focuses on the production of bioactive peptides, with special emphasis on fermentation and enzymatic hydrolysis. The combination of different technologies and the use of auxiliary processes are also addressed. A survey of isolation, purification and peptide characterization methods was conducted to identify the major techniques used to determine the structures of bioactive peptides. Finally, the antioxidant, antimicrobial, anti-hypertensive, anti-adipogenic activities and probiotic-bacterial growth-promoting aspects of various peptides are discussed.
Collapse
Affiliation(s)
- Ruann Janser Soares de Castro
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil.
| | - Hélia Harumi Sato
- Department of Food Science, School of Food Engineering, University of Campinas, 80 Rua Monteiro Lobato, Campinas, SP, Brazil
| |
Collapse
|
44
|
Saadi S, Saari N, Anwar F, Abdul Hamid A, Ghazali HM. Recent advances in food biopeptides: Production, biological functionalities and therapeutic applications. Biotechnol Adv 2015; 33:80-116. [DOI: 10.1016/j.biotechadv.2014.12.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 02/05/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
45
|
Ren Y, Wu H, Lai F, Yang M, Li X, Tang Y. Isolation and identification of a novel anticoagulant peptide from enzymatic hydrolysates of scorpion (Buthus martensii Karsch) protein. Food Res Int 2014; 64:931-938. [PMID: 30011736 DOI: 10.1016/j.foodres.2014.08.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/03/2014] [Accepted: 08/24/2014] [Indexed: 11/30/2022]
Abstract
An enzymatic hydrolysis approach was proposed for the preparation of bioactive hydrolysate of scorpion Buthus martensii Karsch (BmK) protein. Results showed that the anticoagulant activity of the hydrolysates of BmK protein was closely related to both the enzyme type and the degree of hydrolysis. Alcalase AF showed to be the best enzymes for the hydrolysis. And the hydrolysis degree (DH) was closely related with the anticoagulant activity of the hydrolyzate. At a DH value of 18% with Alcalase AF, the hydrolyzate exhibited the highest activity. The hydrolysate was then separated and purified by consecutive chromatographic procedures, giving a novel anticoagulant peptide consisting of ten amino acids (MW: 1119.8Da) with its sequence of Val-Glu-Pro-Val-Thr-Val-Asn-Pro- His-Glu identified by MALDI-TOF/TOF MS. The negatively charged amino acids and hydrophobic amino acids may contribute to the anticoagulant activity of the prepared peptides. And the Val residue in N-terminal was also critical for the anticoagulant activity of the BmK peptide. Furthermore, the anticoagulant activity kept stable after in vitro digestive simulation. This research provided a promising bioprocessing route for production of anticoagulant peptides using BmK protein as a potentially valuable bioresource.
Collapse
Affiliation(s)
- Yao Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China; College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
| | - Hui Wu
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
| | - Furao Lai
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China
| | - Meiyan Yang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Yuqian Tang
- College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
46
|
Nasri R, Jridi M, Lassoued I, Jemil I, Ben Slama-Ben Salem R, Nasri M, Karra-Châabouni M. The influence of the extent of enzymatic hydrolysis on antioxidative properties and ACE-inhibitory activities of protein hydrolysates from goby (Zosterisessor ophiocephalus) muscle. Appl Biochem Biotechnol 2014; 173:1121-34. [PMID: 24764223 DOI: 10.1007/s12010-014-0905-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 04/03/2014] [Indexed: 11/24/2022]
Abstract
Antioxidant properties and angiotensin-converting enzyme (ACE) inhibitory activities of protein hydrolysates from goby (Zosterisessor ophiocephalus) muscle, with different degrees of hydrolysis (DH) from 5 to 25%, prepared by treatment with crude proteases extract from smooth hound intestines, were investigated. Goby protein hydrolysates (GPHs) are rich in Gly and Thr, which accounted for 14.1-15% and 11.6-13.2% of the total amino acids, respectively. The antioxidant activities of GPHs were investigated by using several in vitro assay systems. All GPHs exhibited significant metal chelating activity and DPPH free radical-scavenging activity, and inhibited linoleic acid peroxidation. For the ACE-inhibitory activity, as the DH increased, the activity of GPHs increased. The obtained results revealed that antioxidant and ACE-inhibitory activities of GPHs were influenced by the degree of hydrolysis. A medium degree of enzymatic hydrolysis was appropriate to obtain GPHs with good antioxidant activity, while small peptides were essential to obtain high ACE inhibitory activity.
Collapse
Affiliation(s)
- Rim Nasri
- Laboratory of Microbiology and Enzyme Engineering, Sfax University, National School of Engineering, B.P 1173-3038, Sfax, Tunisia,
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang ML, Zhao XH. In Vitro
Calcium-Chelating and Platelet Anti-Aggregation Activities of Soy Protein Hydrolysate Modified by the Alcalase-Catalyzed Plastein Reaction. J Food Biochem 2014. [DOI: 10.1111/jfbc.12063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mei-Ling Zhang
- Key Laboratory of Dairy Science; Ministry of Education; Northeast Agricultural University; Harbin 150030 China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science; Ministry of Education; Northeast Agricultural University; Harbin 150030 China
- Department of Food Science; Northeast Agricultural University; Harbin 150030 China
| |
Collapse
|
48
|
ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: Effect on meat lipid oxidation. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.07.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Nasri R, Chataigné G, Bougatef A, Chaâbouni MK, Dhulster P, Nasri M, Nedjar-Arroume N. Novel angiotensin I-converting enzyme inhibitory peptides from enzymatic hydrolysates of goby (Zosterisessor ophiocephalus) muscle proteins. J Proteomics 2013; 91:444-52. [PMID: 23920242 DOI: 10.1016/j.jprot.2013.07.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/10/2013] [Accepted: 07/26/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED In recent years, food protein-derived bioactive peptides have received considerable attention because of their numerous health benefits. Amongst bioactive peptides, those with antihypertensive activity are receiving special attention due to their role in cardiovascular diseases. Goby protein hydrolysates (GPHs) prepared by treatment with five different crude bacterial proteases were found to exhibit varying degrees of angiotensin I-converting enzyme (ACE) inhibitory activity. The hydrolysate generated by the crude protease from Bacillus mojavensis A21, which displayed the highest ACE inhibitory activity, was further fractionated by size exclusion chromatography on a Sephadex G-25 and reversed-phase high performance liquid chromatography (RP-HPLC). The molecular masses and amino acid sequences of five peptides, in sub-fraction F5-2, which exhibited the highest ACE inhibitory activity, were determined using ESI-MS and ESI-MS/MS, respectively. The structures of these peptides were identified as Ala-Arg-Ser, Val-Val-Ala-Pro-Phe-Ala-His-Gly-Thr, Arg-Ser-Thr-Ala, Phe-Tyr-Pro-Pro, Arg-Cys-Ser-Ala-Gly-Val. Further, the sequences of fifteen peptides in the F5-4 sub-fraction, which exhibited high activity, were determined. Therefore, GPHs have a potential as hypotensive nutraceutical ingredients. BIOLOGICAL SIGNIFICANCE Peptides find many outlets of application in the biotechnological field, amongst which are pharmaceutical applications. Progression amongst new small molecules deposited like substance medicamentous blows itself. In this context, large pharmaceutical companies invest in peptide research to open therapeutic new prospects. Even if they are used as therapeutic agents for nearly one century in their natural form, the use of peptides remains parsimonious although we experienced a significant development since a few tens of years, in particular thanks to the clarification of the methods of production, chemical in solid or biological phase such as in phage display. Peptides present many advantages compared to traditional drugs that have small molecules, Generation of bioactive peptides by proteolysis of food proteins, using exogenous proteases, is a new and interesting approach for the production and identification of new and potent specific hypotensive agents. From another side, compared with natural peptides isolated from different sources, there is more diversity in structure and mode of action of the derived bioactive peptides. In fact, proteolysis of protein substrates, having different amino acid composition and sequences, by proteases having different specificities may generate numerous specific peptide inhibitors, with different lengths and amino acid sequences. These bioactive peptides have received considerable attention for their effectiveness in both the prevention and the treatment of hypertension.
Collapse
Affiliation(s)
- Rim Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d'Ingénieurs de Sfax, B.P. 1173-3038, Sfax, Tunisie.
| | | | | | | | | | | | | |
Collapse
|
50
|
Li J, Nie S, Wang L, Sun S, Ran F, Zhao C. One-pot synthesized poly(vinyl pyrrolidone- co-methyl methacrylate- co-acrylic acid) blended with poly(ether sulfone) to prepare blood-compatible membranes. J Appl Polym Sci 2013. [DOI: 10.1002/app.39463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jie Li
- State Key Laboratory of Gansu Advanced Non-Ferrous Metal Materials; Lanzhou University of Technology; Lanzhou; 730050; People's Republic of China
| | - Shengqiang Nie
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu; 610065; People's Republic of China
| | - Lingren Wang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu; 610065; People's Republic of China
| | - Shudong Sun
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu; 610065; People's Republic of China
| | | | - Changsheng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu; 610065; People's Republic of China
| |
Collapse
|