1
|
Adthapanyawanich K, Aitsarangkun Na Ayutthaya K, Kreungnium S, Mark PJ, Nakata H, Chen W, Chinda K, Amatyakul P, Tongpob Y. Molecular Mechanisms and Therapeutic Potential of Mulberry Fruit Extract in High-Fat Diet-Induced Male Reproductive Dysfunction: A Comprehensive Review. Nutrients 2025; 17:273. [PMID: 39861403 PMCID: PMC11767445 DOI: 10.3390/nu17020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry (Morus alba L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction. Through comprehensive analysis of the peer-reviewed literature from multiple databases (PubMed, Web of Science, Scopus, and Google Scholar; 2005-2024), we evaluated mulberry extract's effects on testicular morphology, spermatogenesis, sperm parameters, and the underlying molecular mechanisms. Mechanistic studies reveal that standardized mulberry extract mediates protective effects through multiple pathways: enhanced antioxidant enzyme activities (SOD: +45%, Catalase: +38%, GPx: +35%), reduced inflammatory markers (TNF-α: -64%, IL-6: -58%), and modulated NF-κB signaling (-42.3%). These effects are facilitated by mulberry's rich phytochemical profile, particularly anthocyanins (2.92-5.35 mg/g dry weight) and polyphenols (4.23-6.38 mg/g). The extract demonstrates particular efficacy in preserving seminiferous tubule integrity and maintaining blood-testis barrier function, with treated groups maintaining up to 85% of normal tubular architecture compared to HFD controls. Key molecular mechanisms include AMPK/SIRT1 pathway activation (2.3-fold increase), enhanced mitochondrial function (67% increase in mtDNA copy number), and epigenetic regulation of metabolic pathways. Temporal analysis indicates optimal therapeutic effects after 28 days of treatment, with initial improvements observable within 14 days. While current evidence is promising, limitations include predominant reliance on rodent models and lack of standardized extraction protocols. Future research priorities include well-designed human clinical trials, standardization of preparation methods, and investigation of potential synergistic effects with other therapeutic agents. This comprehensive review indicates that mulberry extract is a promising therapeutic candidate for obesity-related male infertility, warranting further clinical investigation.
Collapse
Affiliation(s)
- Kannika Adthapanyawanich
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (K.A.); (K.A.N.A.); (S.K.)
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | | | - Siriporn Kreungnium
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (K.A.); (K.A.N.A.); (S.K.)
| | - Peter J. Mark
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu 923-8511, Ishikawa, Japan
| | - Wai Chen
- Curtin Medical School, and Curtin enAble Institute, Curtin University, Perth 6102, Australia
- Fiona Stanley Hospital, Perth 6150, Australia
| | - Kroekkiat Chinda
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Patcharada Amatyakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand;
| | - Yutthapong Tongpob
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (K.A.); (K.A.N.A.); (S.K.)
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| |
Collapse
|
2
|
Marchetti L, Truzzi E, Rossi MC, Benvenuti S, Cappellozza S, Saviane A, Bogataj L, Siligardi C, Bertelli D. Alginate-Based Carriers Loaded with Mulberry ( Morus alba L.) Leaf Extract: A Promising Strategy for Prolonging 1-Deoxynojirimicyn (DNJ) Systemic Activity for the Nutraceutical Management of Hyperglycemic Conditions. Molecules 2024; 29:797. [PMID: 38398549 PMCID: PMC10892242 DOI: 10.3390/molecules29040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The iminosugar 1-deoxynojirimicyn (DNJ) contained in mulberry leaves has displayed systemic beneficial effects against disorders of carbohydrate metabolism. Nevertheless, its effect is impaired by the short half-life. Alginate-based carriers were developed to encapsulate a DNJ-rich mulberry extract: Ca-alginate beads, obtained by external gelation, and spray-dried alginate microparticles (SDMs). Mean size and distribution, morphology, drug loading, encapsulation efficiency, experimental yield, and release characteristics were determined for the two formulations. Ca-alginate beads and SDMs exhibited an encapsulation efficiency of about 54% and 98%, respectively, and a DNJ loading in the range of 0.43-0.63 μg/mg. The in vitro release study demonstrated the carriers' capability in controlling the DNJ release in acid and basic conditions (<50% in 5 h), due to electrostatic interactions, which were demonstrated by 1H-NMR relaxometry studies. Thus, alginate-based particles proved to be promising strategies for producing food supplements containing mulberry leaf extracts for the management of hyperglycemic state.
Collapse
Affiliation(s)
- Lucia Marchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (L.M.); (S.B.)
| | - Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Maria Cecilia Rossi
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Via G. Campi 213/A, 41125 Modena, Italy;
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (L.M.); (S.B.)
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via Eulero, 6a, 35143 Padova, Italy; (S.C.); (A.S.); (L.B.)
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via Eulero, 6a, 35143 Padova, Italy; (S.C.); (A.S.); (L.B.)
| | - Luca Bogataj
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Via Eulero, 6a, 35143 Padova, Italy; (S.C.); (A.S.); (L.B.)
| | - Cristina Siligardi
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (L.M.); (S.B.)
| |
Collapse
|
3
|
Jin X, Zhang X, Li Y, Xu M, Yao Y, Wu Z, He Y, Gao J, Li B. Long-acting microneedle patch loaded with adipose collagen fragment for preventing the skin photoaging in mice. BIOMATERIALS ADVANCES 2022; 135:212744. [PMID: 35929203 DOI: 10.1016/j.bioadv.2022.212744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Skin photoaging is one of the most serious public health problems in the 21st century that may lead to thin, saggy, and structurally weakened skin. Adipokine therapy toward skin photoaging is always associated with poor permeability, biologic stability and the short in vivo release duration. Our laboratory previously extracted an extracellular matrix component of adipose tissue by purely physical methods, namely "adipose collagen fragment (ACF)", which holds promise for preventing skin photoaging. However, the injection treatment of ACF requires repeated preparation processes and injection procedures, which may be time-consuming and painful. Therefore, we describe the fabrication and assessment of a detachable ACF-microneedle (ACF-MN) patch that creates minimally invasive dermal microtrauma upon application. And we evaluated the morphology characterization, mechanical properties and puncture performance in vitro. The delivery efficiency of ACF from the patches was estimated in vitro and vivo. Then, the therapeutic efficacy was identified through applying ACF-MN patches into the dermis of UVA-induced photoaging mice and the related detection of skin photoaging was estimated. Our results demonstrated that ACF-MN exhibited well skin puncture performance and could release ACF component slowly. Meanwhile, this microneedle device loaded with ACF exhibited the treatment efficiency on skin photoaging in a mouse model. Therefore, implantation of the microtrauma-mediated, long-acting ACF-MN system can be utilized as a potential candidate for preventing skin photoaging in the clinic.
Collapse
Affiliation(s)
- Xiaoxuan Jin
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Xiangdong Zhang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Yibao Li
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Mimi Xu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Yao Yao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China
| | - Zongjian Wu
- College of Chemistry and Bio-Engineering, Yichun University, 576 Xuefu Road, Yichun, JiangXi 336000, China
| | - Yunfan He
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China.
| | - Jianhua Gao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China.
| | - Bin Li
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
4
|
Parida IS, Takasu S, Nakagawa K. A comprehensive review on the production, pharmacokinetics and health benefits of mulberry leaf iminosugars: Main focus on 1-deoxynojirimycin, d-fagomine, and 2-O-ɑ-d-galactopyranosyl-DNJ. Crit Rev Food Sci Nutr 2021:1-29. [PMID: 34658276 DOI: 10.1080/10408398.2021.1989660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mulberry leaves are rich in biologically active compounds, including phenolics, polysaccharides, and alkaloids. Mulberry leaf iminosugars (MLIs; a type of polyhydroxylated alkaloids), in particular, have been gaining increasing attention due to their health-promoting effects, including anti-diabetic, anti-obesity, anti-hyperglycemic, anti-hypercholesterolemic, anti-inflammatory, and gut microbiota-modulatory activities. Knowledge regarding the in vivo bioavailability and bioactivity of MLIs are crucial to understand their role and function and human health. Therefore, this review is aimed to comprehensively summarize the existing studies on the oral pharmacokinetics and the physiological significance of selected MLIs (i.e.,1-deoxynojirimycin, d-fagomine, and 2-O-ɑ-d-galactopyranosyl-DNJ). Evidence have suggested that MLIs possess relatively good uptake and safety profiles, which support their prospective use for oral intake; the therapeutic potential of these compounds against metabolic and chronic disorders and the underlying mechanisms behind these effects have also been studied in in vitro and in vivo models. Also discussed are the biosynthetic pathways of MLIs in plants, as well as the agronomic and processing factors that affect their concentration in mulberry leaves-derived products.
Collapse
Affiliation(s)
| | - Soo Takasu
- Laboratory of Pharmaceutical Analytical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Wang H, Shen Y, Zhao L, Ye Y. 1-Deoxynojirimycin and its Derivatives: A Mini Review of the Literature. Curr Med Chem 2021; 28:628-643. [PMID: 31942844 DOI: 10.2174/0929867327666200114112728] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/17/2019] [Accepted: 12/22/2019] [Indexed: 11/22/2022]
Abstract
1-Deoxynojirimycin (1-DNJ) is a naturally occurring sugar analogue with unique bioactivities. It is found in mulberry leaves and silkworms, as well as in the metabolites of certain microorganisms, including Streptomyces and Bacillus. 1-DNJ is a potent α-glucosidase inhibitor and it possesses anti-hyperglycemic, anti-obese, anti-viral and anti-tumor properties. Some derivatives of 1-DNJ, like miglitol, miglustat and migalastat, were applied clinically to treat diseases such as diabetes and lysosomal storage disorders. The present review focused on the extraction, determination, pharmacokinetics and bioactivity of 1-DNJ, as well as the clinical application of 1-DNJ derivatives.
Collapse
Affiliation(s)
- Haijun Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yin Shen
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Zhao
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youfan Ye
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
6
|
Qiao Y, Nakayama J, Ikeuchi T, Ito M, Kimura T, Kojima K, Takita T, Yasukawa K. Kinetic analysis of inhibition of α-glucosidase by leaf powder from Morus australis and its component iminosugars. Biosci Biotechnol Biochem 2020; 84:2149-2156. [DOI: 10.1080/09168451.2020.1783991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Mulberry leaves contain iminosugars, such as 1-deoxynojirimycin (1-DNJ), fagomine, and 2-O-α-D-galactopyranosyl deoxynojirimycin (GAL-DNJ) that inhibit α-glucosidase. In this study, we quantified iminosugars in Morus australis leaves and made the kinetic analysis in the hydrolysis of maltose by α-glucosidase. By LC-MS/MS, the concentrations of 1-DNJ, fagomine, and GAL-DNJ in the powdered leaves were 4.0, 0.46, and 2.5 mg/g, respectively, and those in the roasted ones were 1.0, 0.24, and 0.73 mg/g, respectively, suggesting that the roasting process degraded iminosugars. Steady-state kinetic analysis revealed that the powdered and roasted leaves exhibited competitive inhibition. At pH 6.0 at 37ºC, the IC50 values of the extracts from the boiled powdered or roasted leaves were 0.36 and 1.1 mg/mL, respectively. At the same condition, the IC50 values of 1-DNJ, fagomine, and GAL-DNJ were 0.70 μg/mL, 0.18 mg/mL, and 2.9 mg/mL, respectively. These results suggested that in M. australis, 1-DNJ is a major inhibitor of α-glucosidase.
Abbreviations
1-DNJ: 1-deoxynojirimycin; GAL-DNJ: 2-O-α-D-galactopyranosyl-DNJ
Collapse
Affiliation(s)
- Ying Qiao
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Juri Nakayama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takeaki Ikeuchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaaki Ito
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Nago, Japan
| | - Toshiyuki Kimura
- Food Research Institute (NFRI), National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Liu W, Kong Y, Ye A, Shen P, Dong L, Xu X, Hou Y, Wang Y, Jin Y, Han J. Preparation, formation mechanism and in vitro dynamic digestion behavior of quercetin-loaded liposomes in hydrogels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Parida IS, Takasu S, Ito J, Ikeda R, Yamagishi K, Kimura T, Eitsuka T, Nakagawa K. Supplementation ofBacillus amyloliquefaciensAS385 culture broth powder containing 1-deoxynojirimycin in a high-fat diet altered the gene expressions related to lipid metabolism and insulin signaling in mice epididymal white adipose tissue. Food Funct 2020; 11:3926-3940. [DOI: 10.1039/d0fo00271b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplementation ofBacillus amyloliquefaciensAS385 culture broth powder in high-fat diet restored adiposity, glucose tolerance and insulin sensitivity in mice.
Collapse
Affiliation(s)
- Isabella Supardi Parida
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| | - Soo Takasu
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| | - Ryoichi Ikeda
- Food Research Laboratory
- Asahimatsu Foods Co
- Ltd
- Iida
- Nagano
| | - Kenji Yamagishi
- Food Research Institute (NFRI)
- National Agriculture and Food Research Organization (NARO)
- Tsukuba
- Japan
| | - Toshiyuki Kimura
- Food Research Institute (NFRI)
- National Agriculture and Food Research Organization (NARO)
- Tsukuba
- Japan
| | - Takahiro Eitsuka
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory
- Graduate School of Agricultural Science
- Tohoku University
- Sendai
- Japan
| |
Collapse
|
9
|
The optimization of extraction process of white mulberry leaves and the characteristic bioactive properties its powder extract. HERBA POLONICA 2019. [DOI: 10.2478/hepo-2019-0003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Summary
Introduction: Powder extracts from white mulberry leaves (Morus alba L.) are desirable due to their simplicity of use. Powders intended for use in food and dietary supplements can be obtained by various methods, including water extraction and spray drying.
Objective: The aim of the work was to optimize the aqueous process of extraction of white mulberry leaves and characterization of bioactive properties of the obtained extract powder.
Methods: The DNJ and flavonoids (quercetin, kaempferol) contents and were analysed by high performance liquid chromatography (HPLC). Total phenolic contents were determined using the Folin-Ciocalteu phenol reagent and antioxidant activity by ABTS and DPPH assays.
Results: The mulberry leaf extraction process has been optimized. The obtained powdered mulberry leaf extract proved to be a good source of bioactive compounds. Characteristic phenolic compounds detected in mulberry leaves and their powder extract were quercetin and kaempferol. The sum of polyphenols was 10.9 mg GAE/g dry matter in the raw material, whereas in the powder extract 42.6 mg GAE/g dry matter. In addition, it was found that the obtained powdered extract is characterized by a five-fold higher, in comparison to the raw material, the content of antioxidant activity measured by ABTS and DPPH tests. The content of 1-deoxynojirimycin (DNJ) in the powder extract was nearly four times higher than in dry mulberry leaves.
Conclusion: The optimized process of water extraction of white mulberry leaves allows to keep valuable bioactive components and to obtain their high concentration.
Collapse
|
10
|
PARIDA IS, TAKASU S, ITO J, IKEDA R, YAMAGISHI K, KIMURA T, MIYAZAWA T, EITSUKA T, NAKAGAWA K. Physiological Effects and Organ Distribution of Bacillus amyloliquefaciens AS385 Culture Broth Powder Containing 1-Deoxynojirimycin in C57BL/6J Mice. J Nutr Sci Vitaminol (Tokyo) 2019; 65:157-163. [DOI: 10.3177/jnsv.65.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Isabella Supardi PARIDA
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Soo TAKASU
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Junya ITO
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | | | - Kenji YAMAGISHI
- Food Research Institute (NFRI), National Agriculture and Food Research Organization (NARO)
| | - Toshiyuki KIMURA
- Food Research Institute (NFRI), National Agriculture and Food Research Organization (NARO)
| | - Teruo MIYAZAWA
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
- New Industry Creation Hatchery Center (NICHe), Tohoku University
| | - Takahiro EITSUKA
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Kiyotaka NAKAGAWA
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| |
Collapse
|
11
|
Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal AKA, Khan ZA. EGCG Nanoparticles Attenuate Aluminum Chloride Induced Neurobehavioral Deficits, Beta Amyloid and Tau Pathology in a Rat Model of Alzheimer's Disease. Front Aging Neurosci 2018; 10:244. [PMID: 30150930 PMCID: PMC6099078 DOI: 10.3389/fnagi.2018.00244] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/24/2018] [Indexed: 02/05/2023] Open
Abstract
Rational: Alzheimer's disease (AD) is a neurodegenerative pathology characterized by the presence of neuritic plaques and neurofibrillary tangles. Aluminum has been reported to play an important role in the etiology and pathogenesis of this disease. Hence, the present study aimed to evaluate the neuroprotective role of epigallocatechin-gallate (EGCG) loaded nanoparticles (nanoEGCG) against aluminum chloride (AlCl3) induced neurobehavioral and pathological changes in AD induced rats. Method: 100 mg/kg body weight AlCl3 was administered orally for 60 days, which was followed by 10 mg/kg body weight free EGCG and nanoEGCG treatment for 30 days. Morris water maze, open field and novel object recognition tests were employed for neurobehavioral assessment of the rats. This was followed by histopathological assessment of the cortex and the hippocampus in the rat brain. For further validation biochemical, immunohistochemistry and western blot assays were carried out. Result: Aluminum exposure reduced the exploratory and locomotor activities in open field and significantly reduced the memory and learning curve of rats in Morris water maze and novel object recognition tests. These neurobehavioral impairments were significantly attenuated in nanoEGCG treated rats. Histopathological assessment of the cortex and hippocampus of AlCl3 induced rat brains showed the presence of both neuritic plaques and neurofibrillary tangles. In nanoEGCG treated rats this pathology was absent. Significant increase in biochemical, immunohistochemical and protein levels was noted in AlCl3 induced rats. While these levels were greatly reduced in nanoEGCG treated rats. Conclusion: In conclusion, this study strengthens the hypothesis that EGCG nanoparticles can reverse memory loss, neuritic plaque and neurofibrillary tangles formation.
Collapse
Affiliation(s)
- Neha Atulkumar Singh
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Vaishali Bhardwaj
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Chandrika Ravi
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Nithya Ramesh
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Abul Kalam Azad Mandal
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Zaved Ahmed Khan
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| |
Collapse
|
12
|
Wang N, Zhu F, Chen K. 1-Deoxynojirimycin: Sources, Extraction, Analysis and Biological Functions. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
1-Deoxynojirimycin (DNJ), a natural polyhydroxylated piperidine alkaloid, is attracting growing attention due to its important biological functions. This paper introduces the discovery and origins of DNJ, its extraction, purification, and physiological functions in the treatment of diabetes. The mechanisms of DNJ in the inhibition of fat accumulation and tumor cell metastasis are also discussed. In addition, the prospects and challenges of DNJ for practical production are proposed. This work aims to provide technical advice on obtaining DNJ and a fuller understanding of its biological activities.
Collapse
Affiliation(s)
- Niannian Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212003, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212003, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212003, China
| |
Collapse
|
13
|
Kulandaivelu K, Mandal AKA. Improved bioavailability and pharmacokinetics of tea polyphenols by encapsulation into gelatin nanoparticles. IET Nanobiotechnol 2017; 11:469-476. [PMID: 28530198 PMCID: PMC8676446 DOI: 10.1049/iet-nbt.2016.0147] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/01/2016] [Accepted: 11/09/2016] [Indexed: 11/19/2022] Open
Abstract
The authors prepared surface modified (with polyelectrolyte layers), tea polyphenols (TPP) encapsulated, gelatin nanoparticles (TPP-GNP) and characterised them. The size of the spherical nanoparticles was ∼50 nm. Number of polyelectrolyte layers and incubation time influenced the encapsulation efficiency (EE); highest EE was noted in nanoparticles with six polyelectrolyte layers (TPP-GNP-6L) incubated for 4 h. TPP released from TPP-GNP-6L in simulated biological fluids indicated protection and controlled release of TPP due to encapsulation. Mathematical modelling indicated anomalous type as a predominant mode of TPP release. TPP-GNP-6L exhibited enhanced pharmacokinetics in rabbit model compared with free TPP. The area under the concentration-time curve and mean residence time were significantly higher in TPP-GNP-6L compared with free TPP which provide an evidence of higher bioavailability of TPP due to encapsulation. The authors demonstrated that encapsulation of TPP into GNPs favoured slow and sustained release of TPP with improved pharmacokinetics and bioavailability thereby can prolong the action of TPP.
Collapse
Affiliation(s)
- Karikalan Kulandaivelu
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India
| | - Abul Kalam Azad Mandal
- School of Bio Sciences and Technology, VIT University, Vellore - 632014, Tamil Nadu, India.
| |
Collapse
|
14
|
Cai D, Liu M, Wei X, Li X, Wang Q, Nomura CT, Chen S. Use of Bacillus amyloliquefaciens HZ-12 for High-Level Production of the Blood Glucose Lowering Compound, 1-Deoxynojirimycin (DNJ), and Nutraceutical Enriched Soybeans via Fermentation. Appl Biochem Biotechnol 2017; 181:1108-1122. [PMID: 27826807 DOI: 10.1007/s12010-016-2272-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/30/2016] [Indexed: 01/15/2023]
Abstract
1-Deoxynojirimycin (DNJ) is an efficient α-glucosidase inhibitor (α-GI) with potential applications in the prevention and treatment of diabetes. In this study, 16 Bacillus strains were screened for α-GI rate, and the strain HZ-12 with the highest α-GI rate was identified as Bacillus amyloliquefaciens through the analysis of physiological biochemical characteristics and 16S rDNA sequence. By LC-MS/Q-TOF analysis, the α-GI component produced by B. amyloliquefaciens HZ-12 was identified as DNJ. Soybean was used as the substrate for the solid-state fermentation; 870 mg/kg DNJ was produced by B. amyloliquefaciens HZ-12 after optimizing the fermentation conditions and media, which was 3.83-fold higher than the initial yield. Also, evaluations of nutraceutical enrichment in the form of anticoagulant activity, antioxidant activity, total nitrogen (TN), and total reducing sugars (TRS) of the B. amyloliquefaciens HZ-12 fermented soybeans were substantially higher than unfermented soybeans. This study provided a promising strain for high-level production of DNJ and produced nutraceutical enriched soybeans by fermentation.
Collapse
Affiliation(s)
- Dongbo Cai
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjie Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinmiao Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Wang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, China
| | - Christopher T Nomura
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, China
- Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY ESF), Syracuse, NY, 13210, USA
| | - Shouwen Chen
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, Hubei, China.
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Yamagishi K, Onose S, Takasu S, Ito J, Ikeda R, Kimura T, Nakagawa K, Miyazawa T. Lactose Increases the Production of 1-deoxynojirimycin in Bacillus amyloliquefaciens. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2017. [DOI: 10.3136/fstr.23.349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kenji Yamagishi
- National Food Research Institute (NFRI), National Agricultural Research Organization (NARO)
| | - Shinji Onose
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - So Takasu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | | | - Toshiyuki Kimura
- National Food Research Institute (NFRI), National Agricultural Research Organization (NARO)
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University
| | - Teruo Miyazawa
- Food and Biotechnology Innovation Project, New Industry Creation Hathery Center (NICHe), Tohoku University
| |
Collapse
|
16
|
Workamp M, Alaie S, Dijksman JA. Coaxial air flow device for the production of millimeter-sized spherical hydrogel particles. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:125113. [PMID: 28040932 DOI: 10.1063/1.4972587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a method to produce millimeter-sized hydrogel particles, by dispersing aqueous droplets in an oil using a nozzle and subsequently solidifying them. We show that we can vary the size of the particles using an air flow along the nozzle. The resulting particle size can be well predicted by a simple model where a drag force generated by the air flow, adds to the weight pulling the droplet from the nozzle. Particles produced using this method have diameters ranging from 0.7 to 2.3 mm. Production rates up to 0.5 ml/min per nozzle have been achieved, which compares favorably to standard microfluidic techniques. Finally, we show that the method can be used to produce both physical and chemical gel particles and is thus highly universal.
Collapse
Affiliation(s)
- Marcel Workamp
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands
| | - Sepideh Alaie
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
17
|
A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. Eur J Nutr 2016; 56:1509-1521. [DOI: 10.1007/s00394-016-1197-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/29/2016] [Indexed: 01/01/2023]
|
18
|
Ju WT, Kim HB, Kim KY, Sung GB, Kim YS. Screening of 1-deoxynojirimycin (DNJ) producing bacteria using mulberry leaf. ACTA ACUST UNITED AC 2015. [DOI: 10.7852/ijie.2015.31.2.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Wang GQ, Zhu L, Ma ML, Chen XC, Gao Y, Yu TY, Yang GS, Pang WJ. Mulberry 1-Deoxynojirimycin Inhibits Adipogenesis by Repression of the ERK/PPARγ Signaling Pathway in Porcine Intramuscular Adipocytes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6212-6220. [PMID: 26075699 DOI: 10.1021/acs.jafc.5b01680] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Intramuscular fat (IMF), which is modulated by adipogenensis of intramuscular adipocytes, plays a key role in pork quality associated with marbling, juiceness, and flavor. However, the regulatory mechanism of 1-deoxynojirimycin (DNJ) on adipogenesis is still unknown. Here, we found that both DNJ (2.0, 3.0, 4.0, 5.0, and 6.0 μM) and rosiglitazone (RSG; 0.1, 0.2, 0.3, 0.4, and 0.5 mM) had no effect on cell viability. Moreover, 4 μM DNJ significantly inhibited adipogenesis, whereas 0.4 mM RSG increased lipogenesis of porcine intramuscular adipocytes. Interestingly, DNJ sharply inhibited phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2), but did not change phosphorylation of AKT (protein kinase B) in intramuscular adipocytes. We further found that the inhibitory adipogenesis of DNJ was attenuated by RSG via up-regulation of PPARγ. On the basis of the above findings, we suggest that DNJ inhibited adipogenesis through the ERK/PPARγ signaling pathway in porcine intramuscular adipocytes.
Collapse
|
20
|
Aoki S, Nakagawa K, Hanzawa Y, Matsumoto S, Akutsu M, Kimizuka N, Shimoyamada M, Nishikawa M, Miyazawa T. Preparation of Powdered Fish Oil as a Sustained-Release Formulation. J JPN SOC FOOD SCI 2014. [DOI: 10.3136/nskkk.61.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Heo HS, Choi JH, Oh JJ, Lee WJ, Kim SS, Lee DH, Lee HK, Song SW, Kim KH, Choi YK, Ryu KS, Kang BH. Evaluation of general toxicity and genotoxicity of the silkworm extract powder. Toxicol Res 2013; 29:263-78. [PMID: 24578797 PMCID: PMC3936179 DOI: 10.5487/tr.2013.29.4.263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022] Open
Abstract
The silkworm extract powder contain 1-deoxynojirimycin (DNJ), a potent α-glycosidase inhibitor, has therapeutic potency against diabetes mellitus. Therefore, natural products containing DNJ from mulberry leaves and silkworm are consumed as health functional food. The present study was performed to evaluate the safety of the silkworm extract powder, a health food which containing the DNJ. The repeated toxicity studies and gentic toxicity studies of the silkworm extract powder were performed to obtain the data for new functional food approval in MFDS. The safety was evaluated by a single-dose oral toxicity study and a 90 day repeated-dose oral toxicity study in Sprague-Dawley rats. The silkworm extract powder was also evaluated for its mutagenic potential in a battery of genetic toxicity test: in vitro bacterial reverse mutation assay, in vitro chromosomal aberration test, and in vivo mouse bone marrow micronucleus assay. The results of the genetic toxicology assays were negative in all of the assays. The approximate lethal dose in single oral dose toxicity study was considered to be higher than 5000 mg/kg in rats. In the 90 day study, the dose levels were wet at 0, 500, 1000, 2000 mg/kg/day, and 10 animals/sex/dose were treated with oral gavage. The parameters that were monitored were clinical signs, body weights, food and water consumptions, ophthalmic examination, urinalysis, hematology, serum biochemistry, necropsy findings, organ weights, and histopathological examination. No adverse effects were observed after the 90 day administration of the silkworm extract powder. The No-Observed-Adverse-Effect-Level (NOAEL) of silkworm extract powder in the 90 day study was 2000 mg/kg/day in both sexes, and no target organ was identified.
Collapse
Affiliation(s)
- Hyun-Suk Heo
- Nonclinical Research Center, Chemon Inc., Yongin, Korea ; College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jae-Hun Choi
- Nonclinical Research Center, Chemon Inc., Yongin, Korea
| | - Jung-Ja Oh
- Nonclinical Research Center, Chemon Inc., Yongin, Korea
| | - Woo-Joo Lee
- Nonclinical Research Center, Chemon Inc., Yongin, Korea
| | | | - Do-Hoon Lee
- Nonclinical Research Center, Chemon Inc., Yongin, Korea
| | - Hyun-Kul Lee
- Nonclinical Research Center, Chemon Inc., Yongin, Korea
| | - Si-Whan Song
- Nonclinical Research Center, Chemon Inc., Yongin, Korea
| | - Kap-Ho Kim
- Nonclinical Research Center, Chemon Inc., Yongin, Korea
| | - Yang-Kyu Choi
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Kang-Sun Ryu
- Department of Agricultural Biology, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Boo-Hyon Kang
- Nonclinical Research Center, Chemon Inc., Yongin, Korea
| |
Collapse
|
22
|
Kumar S, Jana AK, Dhamija I, Maiti M. Chitosan-assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its target delivery. J Drug Target 2013; 22:123-37. [DOI: 10.3109/1061186x.2013.844157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Kumar S, Jana AK, Dhamija I, Singla Y, Maiti M. Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. Eur J Pharm Biopharm 2013; 85:413-26. [PMID: 23851102 DOI: 10.1016/j.ejpb.2013.06.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 05/31/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022]
Abstract
Targeted delivery of serratiopeptidase enzyme immobilized on magnetic nanoparticles (MNPs) of Fe3O4 has been reported for the treatment using this enzyme. The enzyme was immobilized by covalent bonding through glutaraldehyde after amino functionalization of MNPs and parameters was studied. The enzyme bound MNPs (EMNPs) were characterized for size, crystallographic identity, phase purity, zeta potential and magnetic properties along with elemental and thermal analysis. The binding of enzyme had little effect on sizes (~10-17 nm) and on magnetic properties, but the zeta potential increased from -25 mV to +14.5 mV with surface amino groups up to 350 μmoles g(-1) MNPs, to stabilize its suspensions. In the molecular level, maximum of 17 molecules of enzyme could bind to each particle of MNPs that showed residual activity 67%, decreased KM and Vmax, good storage stability. Magnetic targeting of EMNPs increased the delivery (permeation) of drug through the membrane in in vitro study and enhanced the anti-inflammatory effect on carrageenan induced paw oedema in rats in in vivo study at much lower doses of enzyme than the doses required for treatment with free enzyme.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biotechnology, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | | | | | | | | |
Collapse
|
24
|
Onose S, Ikeda R, Nakagawa K, Kimura T, Yamagishi K, Higuchi O, Miyazawa T. Production of the α-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Food Chem 2012; 138:516-23. [PMID: 23265519 DOI: 10.1016/j.foodchem.2012.11.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/18/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
1-Deoxynojirimycin (DNJ), a potent α-glycosidase inhibitor, has therapeutic applications in treatments of HIV, Gaucher's disease, and diabetes. DNJ has been extracted from natural sources (mulberry leaves) for therapeutic purposes; however, DNJ ingredients are in limited supply and are costly to obtain on a large scale. Since certain strains of Bacillus and Streptomyces species reportedly produce DNJ, they may serve as potential sources for high-yield DNJ production. In this study, we obtained evidence for a DNJ production in Bacillus subtilis DSM704 by hydrophilic interaction chromatography-tandem mass spectrometry. In addition, from a screen of 750 microorganisms, we identified additional Bacillus strains (Bacillus amyloliquefaciens AS385 and Bacillus subtilis B4) that produce DNJ in large quantities. Investigation of the effect of various culture conditions, using Bacillus subtilis DSM704 and the DNJ high-production Bacillus strains, provided evidence for the importance of sorbitol supplementation on the yield of the DNJ precursor, 2-amino-2-deoxy-D-mannitol, thereby increasing DNJ production. The role of sorbitol in increased DNJ production was supported by an observed increase in mRNA expression of the biosynthetic gene, gabT1. When Bacillus amyloliquefaciens AS385 was cultured in medium supplemented with sorbitol, extracellular DNJ concentration reached a maximum of 460 mg/l of medium (equivalent to 9.20mg/g of freeze-dried medium), indicating that this strain can serve as a source for food- and drug-grade products. These findings not only lead to a further understanding of the DNJ biosynthetic pathway, but also suggest a method for microbial mass production of DNJ for therapeutic applications.
Collapse
Affiliation(s)
- Shinji Onose
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|