1
|
Huo K, Yang Y, Yang T, Zhang W, Shao J. Identification of Drug Targets and Agents Associated with Ferroptosis-related Osteoporosis through Integrated Network Pharmacology and Molecular Docking Technology. Curr Pharm Des 2024; 30:1103-1114. [PMID: 38509680 PMCID: PMC11348511 DOI: 10.2174/0113816128288225240318045050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/16/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Osteoporosis is a systemic bone disease characterized by progressive reduction of bone mineral density and degradation of trabecular bone microstructure. Iron metabolism plays an important role in bone; its imbalance leads to abnormal lipid oxidation in cells, hence ferroptosis. In osteoporosis, however, the exact mechanism of ferroptosis has not been fully elucidated. OBJECTIVE The main objective of this project was to identify potential drug target proteins and agents for the treatment of ferroptosis-related osteoporosis. METHODS In the current study, we investigated the differences in gene expression of bone marrow mesenchymal stem cells between osteoporosis patients and normal individuals using bioinformatics methods to obtain ferroptosis-related genes. We could predict their protein structure based on the artificial intelligence database of AlphaFold, and their target drugs and binding sites with the network pharmacology and molecular docking technology. RESULTS We identified five genes that were highly associated with osteoporosis, such as TP53, EGFR, TGFB1, SOX2 and MAPK14, which, we believe, can be taken as the potential markers and targets for the diagnosis and treatment of osteoporosis. Furthermore, we observed that these five genes were highly targeted by resveratrol to exert a therapeutic effect on ferroptosis-related osteoporosis. CONCLUSION We examined the relationship between ferroptosis and osteoporosis based on bioinformatics and network pharmacology, presenting a promising direction to the pursuit of the exact molecular mechanism of osteoporosis so that a new target can be discovered for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Kailun Huo
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region 750004, China
| | - Yiqian Yang
- Postgraduate Training Base in Shanghai Gongli Hospital, Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region 750004, China
| | - Tieyi Yang
- Department of Orthopedics, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Weiwei Zhang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Jin Shao
- Department of Orthopedics, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, China
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
2
|
Faleye OS, Boya BR, Lee JH, Choi I, Lee J. Halogenated Antimicrobial Agents to Combat Drug-Resistant Pathogens. Pharmacol Rev 2023; 76:90-141. [PMID: 37845080 DOI: 10.1124/pharmrev.123.000863] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial resistance presents us with a potential global crisis as it undermines the abilities of conventional antibiotics to combat pathogenic microbes. The history of antimicrobial agents is replete with examples of scaffolds containing halogens. In this review, we discuss the impacts of halogen atoms in various antibiotic types and antimicrobial scaffolds and their modes of action, structure-activity relationships, and the contributions of halogen atoms in antimicrobial activity and drug resistance. Other halogenated molecules, including carbohydrates, peptides, lipids, and polymeric complexes, are also reviewed, and the effects of halogenated scaffolds on pharmacokinetics, pharmacodynamics, and factors affecting antimicrobial and antivirulence activities are presented. Furthermore, the potential of halogenation to circumvent antimicrobial resistance and rejuvenate impotent antibiotics is addressed. This review provides an overview of the significance of halogenation, the abilities of halogens to interact in biomolecular settings and enhance pharmacological properties, and their potential therapeutic usages in preventing a postantibiotic era. SIGNIFICANCE STATEMENT: Antimicrobial resistance and the increasing impotence of antibiotics are critical threats to global health. The roles and importance of halogen atoms in antimicrobial drug scaffolds have been established, but comparatively little is known of their pharmacological impacts on drug resistance and antivirulence activities. This review is the first to extensively evaluate the roles of halogen atoms in various antibiotic classes and pharmacological scaffolds and to provide an overview of their ability to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Olajide Sunday Faleye
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Bharath Reddy Boya
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Inho Choi
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering (O.S.F., B.R.B., J.-H.L., J.L.) and Department of Medical Biotechnology (I.C.), Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
3
|
Huber R, Marcourt L, Héritier M, Luscher A, Guebey L, Schnee S, Michellod E, Guerrier S, Wolfender JL, Scapozza L, Köhler T, Gindro K, Queiroz EF. Generation of potent antibacterial compounds through enzymatic and chemical modifications of the trans-δ-viniferin scaffold. Sci Rep 2023; 13:15986. [PMID: 37749179 PMCID: PMC10520035 DOI: 10.1038/s41598-023-43000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
Stilbene dimers are well-known for their diverse biological activities. In particular, previous studies have demonstrated the high antibacterial potential of a series of trans-δ-viniferin-related compounds against gram-positive bacteria such as Staphylococcus aureus. The trans-δ-viniferin scaffold has multiple chemical functions and can therefore be modified in various ways to generate derivatives. Here we report the synthesis of 40 derivatives obtained by light isomerization, O-methylation, halogenation and dimerization of other stilbene monomers. The antibacterial activities of all generated trans-δ-viniferin derivatives were evaluated against S. aureus and information on their structure-activity relationships (SAR) was obtained using a linear regression model. Our results show how several parameters, such as the O-methylation pattern and the presence of halogen atoms at specific positions, can determine the antibacterial activity. Taken together, these results can serve as a starting point for further SAR investigations.
Collapse
Affiliation(s)
- Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Margaux Héritier
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Alexandre Luscher
- Department of Microbiology and Molecular Medicine, University of Geneva, Rue Michel-Servet 1, 1211, Genève 4, Switzerland
| | - Laurie Guebey
- Department of Microbiology and Molecular Medicine, University of Geneva, Rue Michel-Servet 1, 1211, Genève 4, Switzerland
| | - Sylvain Schnee
- Agroscope, Plant Protection Research Division, Mycology Group, Route de Duillier 50, P.O. Box 1012, 1260, Nyon, Switzerland
| | - Emilie Michellod
- Agroscope, Plant Protection Research Division, Mycology Group, Route de Duillier 50, P.O. Box 1012, 1260, Nyon, Switzerland
| | - Stéphane Guerrier
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
- Geneva School of Economics and Management, University of Geneva, 1205, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Thilo Köhler
- Department of Microbiology and Molecular Medicine, University of Geneva, Rue Michel-Servet 1, 1211, Genève 4, Switzerland
| | - Katia Gindro
- Agroscope, Plant Protection Research Division, Mycology Group, Route de Duillier 50, P.O. Box 1012, 1260, Nyon, Switzerland.
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland.
| |
Collapse
|
4
|
Agbadua OG, Kúsz N, Berkecz R, Gáti T, Tóth G, Hunyadi A. Oxidized Resveratrol Metabolites as Potent Antioxidants and Xanthine Oxidase Inhibitors. Antioxidants (Basel) 2022; 11:1832. [PMID: 36139906 PMCID: PMC9495788 DOI: 10.3390/antiox11091832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Resveratrol is a well-known natural polyphenol with a plethora of pharmacological activities. As a potent antioxidant, resveratrol is highly oxidizable and readily reacts with reactive oxygen species (ROS). Such a reaction not only leads to a decrease in ROS levels in a biological environment but may also generate a wide range of metabolites with altered bioactivities. Inspired by this notion, in the current study, our aim was to take a diversity-oriented chemical approach to study the chemical space of oxidized resveratrol metabolites. Chemical oxidation of resveratrol and a bioactivity-guided isolation strategy using xanthine oxidase (XO) and radical scavenging activities led to the isolation of a diverse group of compounds, including a chlorine-substituted compound (2), two iodine-substituted compounds (3 and 4), two viniferins (5 and 6), an ethoxy-substituted compound (7), and two ethoxy-substitute,0d dimers (8 and 9). Compounds 4, 7, 8, and 9 are reported here for the first time. All compounds without ethoxy substitution exerted stronger XO inhibition than their parent compound, resveratrol. By enzyme kinetic and in silico docking studies, compounds 2 and 4 were identified as potent competitive inhibitors of the enzyme, while compound 3 and the viniferins acted as mixed-type inhibitors. Further, compounds 2 and 9 had better DPPH scavenging activity and oxygen radical absorbing capacity than resveratrol. Our results suggest that the antioxidant activity of resveratrol is modulated by the effect of a cascade of chemically stable oxidized metabolites, several of which have significantly altered target specificity as compared to their parent compound.
Collapse
Affiliation(s)
| | - Norbert Kúsz
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Gáti
- Servier Research Institute of Medicinal Chemistry (SRIMC), H-1031 Budapest, Hungary
| | - Gábor Tóth
- NMR Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Cosme P, Rodríguez AB, Espino J, Garrido M. Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications. Antioxidants (Basel) 2020; 9:E1263. [PMID: 33322700 PMCID: PMC7764680 DOI: 10.3390/antiox9121263] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds' bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body.
Collapse
Affiliation(s)
| | | | - Javier Espino
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; (P.C.); (A.B.R.)
| | - María Garrido
- Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; (P.C.); (A.B.R.)
| |
Collapse
|
6
|
Menon BRK, Richmond D, Menon N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1823788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binuraj R. K. Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel Richmond
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Navya Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
7
|
Natsume N, Ozaki K, Nakajima D, Yokoshima S, Teruya T. Structure-Activity Relationship Study of Majusculamides A and B and Their Analogues on Osteogenic Activity. JOURNAL OF NATURAL PRODUCTS 2020; 83:2477-2482. [PMID: 32786886 DOI: 10.1021/acs.jnatprod.0c00441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We discovered that majusculamide A (1) and majusculamide B (2), isolated from a marine cyanobacterium collected in Okinawa, induced osteoblast differentiation in MC3T3-E1 cells. Although majusculamide A (1) has a different configuration only at the C-19 stereocenter, bearing a methyl group, compared to majusculamide B (2), the effect of 1 was stronger than that of 2. We synthesized some analogues of the majusculamides (3-15) and evaluated osteogenic activities of these analogues. The structure-activity relationship study of majusculamide analogues suggested that the number of methyls and configuration at C-19 and the nature of the substituent at C-20 of majusculamide A (1) may be important for the osteoblast differentiation-inducing effect of 1.
Collapse
Affiliation(s)
- Noriyuki Natsume
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Kaori Ozaki
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Daisuke Nakajima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Toshiaki Teruya
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
- Faculty of Education, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
8
|
Stilbenoids: A Natural Arsenal against Bacterial Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9060336. [PMID: 32570824 PMCID: PMC7345618 DOI: 10.3390/antibiotics9060336] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
The escalating emergence of resistant bacterial strains is one of the most important threats to human health. With the increasing incidence of multi-drugs infections, there is an urgent need to restock our antibiotic arsenal. Natural products are an invaluable source of inspiration in drug design and development. One of the most widely distributed groups of natural products in the plant kingdom is represented by stilbenoids. Stilbenoids are synthesised by plants as means of protection against pathogens, whereby the potential antimicrobial activity of this class of natural compounds has attracted great interest in the last years. The purpose of this review is to provide an overview of recent achievements in the study of stilbenoids as antimicrobial agents, with particular emphasis on the sources, chemical structures, and the mechanism of action of the most promising natural compounds. Attention has been paid to the main structure modifications on the stilbenoid core that have expanded the antimicrobial activity with respect to the parent natural compounds, opening the possibility of their further development. The collected results highlight the therapeutic versatility of natural and synthetic resveratrol derivatives and provide a prospective insight into their potential development as antimicrobial agents.
Collapse
|
9
|
Filardo S, Di Pietro M, Mastromarino P, Sessa R. Therapeutic potential of resveratrol against emerging respiratory viral infections. Pharmacol Ther 2020; 214:107613. [PMID: 32562826 DOI: 10.1016/j.pharmthera.2020.107613] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Resveratrol has been widely studied for its therapeutic potential due to its antioxidant, anti-inflammatory and anti-microbial properties. In particular, resveratrol has shown promising antiviral activity against numerous viruses responsible for severe respiratory infections. Amongst these, influenza virus, respiratory syncytial virus and the emerging SARS-cov-2 are known to cause pneumonia, acute respiratory distress syndrome or multi-organ failure, especially, in vulnerable individuals like immunocompromised patients or the elderly, leading to a considerable economic burden worldwide. In this context, resveratrol may have potential value for its anti-inflammatory activity, since most of the severe virus-associated complications are related to the overactivation of the host-immune response, leading to lung damage. Herein, we present an overview of the antiviral activity and potential mechanisms of resveratrol against the respiratory tract viruses considered as a public threat for their rapid transmission and high morbidity and mortality in the general population.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy.
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy
| | - Paola Mastromarino
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Microbiology Section, University of Rome "Sapienza", Rome, Italy
| |
Collapse
|
10
|
Díaz-Galindo EP, Nesic A, Cabrera-Barjas G, Mardones C, von Baer D, Bautista-Baños S, Dublan Garcia O. Physical-Chemical Evaluation of Active Food Packaging Material Based on Thermoplastic Starch Loaded with Grape cane Extract. Molecules 2020; 25:E1306. [PMID: 32182987 PMCID: PMC7144104 DOI: 10.3390/molecules25061306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this paper is to evaluate the physicochemical and microbiological properties of active thermoplastic starch-based materials. The extract obtained from grape cane waste was used as a source of stilbene bioactive components to enhance the functional properties of thermoplastic starch (TPS). The biomaterials were prepared by the compression molding technique and subjected to mechanical, thermal, antioxidant, and microbiological tests. The results showed that the addition of grape cane extract up to 15 wt% (TPS/WE15) did not significantly influence the thermal stability of obtained biomaterials, whereas mechanical resistance decreased. On the other side, among all tested pathogens, thermoplastic starch based materials showed antifungal activity toward Botrytis cinerea and antimicrobial activity toward Staphylococcus aureus, suggesting potential application in food packaging as an active biomaterial layer.
Collapse
Affiliation(s)
- Edaena Pamela Díaz-Galindo
- Facultad de Química, Universidad Autónoma del Estado de México, Km 115 Carr. Toluca-Ixtlahuaca. El Cerrillo Piedras Blancas, Toluca 50100, Mexico; (E.P.D.-G.); (O.D.G.)
| | - Aleksandra Nesic
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
- Vinca Institute for Nuclear Sciences, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4191996, Chile;
| | - Claudia Mardones
- Departamento de Análisis Instrumental, Universidad de Concepción, Barrio Universitario s/n, Concepción P.O-Box 160-C, Concepción 4070386, Chile; (C.M.); (D.v.B.)
| | - Dietrich von Baer
- Departamento de Análisis Instrumental, Universidad de Concepción, Barrio Universitario s/n, Concepción P.O-Box 160-C, Concepción 4070386, Chile; (C.M.); (D.v.B.)
| | - Silvia Bautista-Baños
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Instituto Politécnico Nacional. Carretera Yautepec-Jojutla, Km. 6, calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos 62731, Mexico;
| | - Octavio Dublan Garcia
- Facultad de Química, Universidad Autónoma del Estado de México, Km 115 Carr. Toluca-Ixtlahuaca. El Cerrillo Piedras Blancas, Toluca 50100, Mexico; (E.P.D.-G.); (O.D.G.)
| |
Collapse
|
11
|
St-Pierre A, Blondeau D, Bourdeau N, Bley J, Desgagné-Penix I. Chemical Composition of Black Spruce ( Picea mariana) Bark Extracts and Their Potential as Natural Disinfectant. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Annabelle St-Pierre
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Dorian Blondeau
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Nathalie Bourdeau
- Innofibre, Trois-Rivières, Canada
- Groupe de recherché en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | | | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
- Groupe de recherché en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
12
|
Progress to Improve Oral Bioavailability and Beneficial Effects of Resveratrol. Int J Mol Sci 2019; 20:ijms20061381. [PMID: 30893846 PMCID: PMC6471659 DOI: 10.3390/ijms20061381] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.
Collapse
|
13
|
Antibacterial activity of resveratrol structural analogues: A mechanistic evaluation of the structure-activity relationship. Toxicol Appl Pharmacol 2019; 367:23-32. [DOI: 10.1016/j.taap.2019.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
|
14
|
Caleja C, Ribeiro A, Barreiro MF, Ferreira ICFR. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Curr Pharm Des 2018; 23:2787-2806. [PMID: 28025943 DOI: 10.2174/1381612822666161227153906] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nowadays, the functional foods represent one the most promising, interesting and innovative areas in the food industry. Various components are being added to foods in order to render them functional. METHODS One example of these components are plant naturally occurring phenolic compounds, which are associated with a high antioxidant capacity and thus with benefits in relation to human health. RESULTS However, despite the huge number of scientific studies and patents on this topic and their natural presence in foods, namely in the ones from plant origin, there are still few marketable products enriched with these compounds. The commercialization of this type of functional products needs to go through various regulations, proving that they are safe and present the ascribed health benefits, conquering the target audience. In this review the growing interest of industry and consumers' appetence for functional foods and nutraceuticals is highlighted, focusing especially on phenolic compounds. CONCLUSION Although several published works show the multitude of bioactive properties of these compounds, ensuring their use as bioactive ingredients in food, they present inherent stability issues needing to be solved. However, considerable research is presently ongoing to overcome this problem, making viable the development of new products to be launched in the market.
Collapse
Affiliation(s)
- Cristina Caleja
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| | - Andreia Ribeiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| |
Collapse
|
15
|
Therapeutic Versatility of Resveratrol Derivatives. Nutrients 2017; 9:nu9111188. [PMID: 29109374 PMCID: PMC5707660 DOI: 10.3390/nu9111188] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/26/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Resveratrol, a natural phytoalexin, exhibits a remarkable range of biological activities, such as anticancer, cardioprotective, neuroprotective and antioxidant properties. However, the therapeutic application of resveratrol was encumbered for its low bioavailability. Therefore, many researchers focused on designing and synthesizing the derivatives of resveratrol to enhance the bioavailability and the pharmacological activity of resveratrol. During the past decades, a large number of natural and synthetic resveratrol derivatives were extensively studied, and the methoxylated, hydroxylated and halogenated derivatives of resveratrol received particular more attention for their beneficial bioactivity. So, in this review, we will summarize the chemical structure and the therapeutic versatility of resveratrol derivatives, and thus provide the related structure activity relationship reference for their practical applications.
Collapse
|
16
|
Latham J, Brandenburger E, Shepherd SA, Menon BRK, Micklefield J. Development of Halogenase Enzymes for Use in Synthesis. Chem Rev 2017; 118:232-269. [PMID: 28466644 DOI: 10.1021/acs.chemrev.7b00032] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nature has evolved halogenase enzymes to regioselectively halogenate a diverse range of biosynthetic precursors, with the halogens introduced often having a profound effect on the biological activity of the resulting natural products. Synthetic endeavors to create non-natural bioactive small molecules for pharmaceutical and agrochemical applications have also arrived at a similar conclusion: halogens can dramatically improve the properties of organic molecules for selective modulation of biological targets in vivo. Consequently, a high proportion of pharmaceuticals and agrochemicals on the market today possess halogens. Halogenated organic compounds are also common intermediates in synthesis and are particularly valuable in metal-catalyzed cross-coupling reactions. Despite the potential utility of organohalogens, traditional nonenzymatic halogenation chemistry utilizes deleterious reagents and often lacks regiocontrol. Reliable, facile, and cleaner methods for the regioselective halogenation of organic compounds are therefore essential in the development of economical and environmentally friendly industrial processes. A potential avenue toward such methods is the use of halogenase enzymes, responsible for the biosynthesis of halogenated natural products, as biocatalysts. This Review will discuss advances in developing halogenases for biocatalysis, potential untapped sources of such biocatalysts and how further optimization of these enzymes is required to achieve the goal of industrial scale biohalogenation.
Collapse
Affiliation(s)
- Jonathan Latham
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eileen Brandenburger
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sarah A Shepherd
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Binuraj R K Menon
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester , 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
17
|
Jin S, Yang B, Cheng Y, Tan J, Kuang H, Fu Y, Bai X, Xie H, Gao Y, Lv C, Efferth T. Improvement of resveratrol production from waste residue of grape seed by biotransformation of edible immobilized Aspergillus oryzae cells and negative pressure cavitation bioreactor using biphasic ionic liquid aqueous system pretreatment. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2016.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Yang LF, Wang K, Jiang MG, Liu HC, Wang X, Qin PY, Ouyang QL. Isolation and characterization of a new bioactive isoflavone from Derris eriocarpa. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 17:1002-1009. [PMID: 26275038 DOI: 10.1080/10286020.2015.1042370] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Derris eriocarpa How is an important medicinal plant, which is used as Zhuang ethnomedicine and Dai ethnomedicine to treat various diseases. One new compound, 3',4'-di-O-methylene-5-hydroxy-7-methoxy-6-isopentenyl isoflavone (1) and a known synthetic but new naturally occurring compound trans-3,4,5-trimethoxy-4'-isopentenyloxyl-stilbene (2), together with five known compounds, 5,7-dimethoxy-6-(3-methyl-2-butenyl)-4'-hydroxyl isoflavones (3), robustone (4), trans-3,4,5,4'-tetramethoxy-stilbene (5), robustic acid (6), and robustin (7) were isolated from the stem of D. eriocarpa. Spectroscopic analysis revealed the chemical structures of compounds 1-7.. Compounds 1 and 3 exhibited significant scavenging activities against 1,1-diphenyl-2-picrylhydrazyl radical and superoxide anions. Compounds 1-3 exhibited potent antiproliferative activity on Hela cells.
Collapse
Affiliation(s)
- Li-Fang Yang
- a Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities , Nanning 530008 , China
| | - Kai Wang
- a Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities , Nanning 530008 , China
| | - Ming-Guo Jiang
- b Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources , Guangxi University for Nationalities , Nanning 530008 , China
| | - Hong-Cun Liu
- a Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities , Nanning 530008 , China
| | - Xiao Wang
- a Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities , Nanning 530008 , China
| | - Pin-Yan Qin
- a Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities , Nanning 530008 , China
| | - Qiu-Lin Ouyang
- a Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities , Nanning 530008 , China
| |
Collapse
|
19
|
Wang S, Zhang S, Xiao A, Rasmussen M, Skidmore C, Zhan J. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives. Metab Eng 2015; 29:153-159. [DOI: 10.1016/j.ymben.2015.03.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 01/07/2023]
|
20
|
Bonincontro A, Risuleo G. Electrorotation: A Spectroscopic Imaging Approach to Study the Alterations of the Cytoplasmic Membrane. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ami.2015.51001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Li Y, Dai F, Jin XL, Ma MM, Wang YH, Ren XR, Zhou B. An effective strategy to develop active cinnamic acid-directed antioxidants based on elongating the conjugated chains. Food Chem 2014; 158:41-7. [PMID: 24731312 DOI: 10.1016/j.foodchem.2014.02.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 02/07/2014] [Accepted: 02/18/2014] [Indexed: 12/15/2022]
Abstract
To optimize antioxidant activity and lipophilicity of cinnamic acid derivatives (CAs) including ferulic acid, sinapic acid, 3,4-dimethoxycinnamic acid, and p-hydroxycinnamic acid, four analogs bearing an additional double bond between their aromatic ring and propenoic acid moiety were designed and synthesized based on the conjugated chain elongation strategy. The antioxidant performance of the CAs were investigated by 2,2'-diphenyl-1-picrylhydrazyl (DPPH)-scavenging, ferric reducing/antioxidant power, cyclic voltammetry, DNA strand breakage-inhibiting and anti-haemolysis activity assays. It was found that CAs with elongation of conjugated chains display increased DPPH-scavenging, DNA strand breakage-inhibiting and anti-haemolysis activities as compared to their parent molecules, due to their improved hydrogen atom-donating ability and lipophilicity. Overall, this work highlights an effective strategy to develop potential CA-directed antioxidants by elongating their conjugated chain.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Meng-Meng Ma
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi-Hua Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao-Rong Ren
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
22
|
The Cell Membrane is the Main Target of Resveratrol as Shown by Interdisciplinary Biomolecular/Cellular and Biophysical Approaches. J Membr Biol 2013; 247:1-8. [DOI: 10.1007/s00232-013-9604-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/30/2013] [Indexed: 12/13/2022]
|
23
|
Lu DL, Ding DJ, Yan WJ, Li RR, Dai F, Wang Q, Yu SS, Li Y, Jin XL, Zhou B. Influence of glucuronidation and reduction modifications of resveratrol on its biological activities. Chembiochem 2013; 14:1094-104. [PMID: 23703900 DOI: 10.1002/cbic.201300080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Indexed: 12/18/2022]
Abstract
Resveratrol (3,5,4'-trihydroxystilbene, RES), a star among dietary polyphenols, shows a wide range of biological activities, but it is rapidly and extensively metabolized into its glucuronide and sulfate conjugates as well as to the corresponding reduced products. This begs the question of whether the metabolites of RES contribute to its in vivo biological activity. To explore this possibility, we synthesized its glucuronidation (3-GR and 4'-GR) and reduction (DHR) metabolites, and evaluated the effect of these structure modifications on biological activities, including binding ability with human serum albumin (HSA), antioxidant activity in homogeneous solutions and heterogeneous media, anti-inflammatory activity, and cytotoxicity against various cancer cell lines. We found that 1) 4'-GR, DHR and RES show nearly equal binding to HSA, mainly through hydrogen bonding, whereas 3-GR adopts a quite different orientation mode upon binding, thereby resulting in reduced ability; 2) 3-GR shows comparable (even equal) ability to RES in FRAP- and AAPH-induced DNA strand breakage assays; DHR, 3-GR, and 4'-GR exhibit anti-hemolysis activity comparable to that of RES; additionally, 3-GR and DHR retain some degree activity of the parent molecule in DPPH.-scavenging and cupric ion-initiated oxidation of LDL assays, respectively; 3) compared to RES, 4'-GR displays equipotent ability in the inhibition of COX-2, and DHR presents comparable activity in inhibiting NO production and growth of SMMC-7721 cells. Relative to RES, its glucuronidation and reduction metabolites showed equal, comparable, or some degree of activity in the above assays, depending on the specific compound and test model, which probably supports their roles in contributing to the in vivo biological activities of the parent molecule.
Collapse
Affiliation(s)
- Dong-Liang Lu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 Tianshui Street S., Lanzhou 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|