1
|
Hernández-Ayala LF, Guzmán-López EG, Pérez-González A, Reina M, Galano A. Molecular Insights on Coffee Components as Chemical Antioxidants. J MEX CHEM SOC 2024; 68:888-969. [DOI: 10.29356/jmcs.v68i4.2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.
Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.
Collapse
|
2
|
Wang Y, Li C, Li Z, Moalin M, den Hartog GJM, Zhang M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids-An Overview. Molecules 2024; 29:2627. [PMID: 38893503 PMCID: PMC11173571 DOI: 10.3390/molecules29112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| | - Gertjan J. M. den Hartog
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
3
|
Shang C, Zhang Y, Sun C, Wang L. Tactfully improve the antioxidant activity of 2′-hydroxychalcone with the strategy of substituent, solvent and intramolecular hydrogen bond effects. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Antimicrobial Potential of Conjugated Lignin/Morin/Chitosan Combinations as a Function of System Complexity. Antibiotics (Basel) 2022; 11:antibiotics11050650. [PMID: 35625293 PMCID: PMC9137768 DOI: 10.3390/antibiotics11050650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
As natural biopolymers, chitosan and lignin are characterized by their good biocompatibility, high biodegradability and satisfactory biosafety. The active polymers’ functional groups are responsible for the potential of these biomaterials for use as carrier matrices in the construction of polymer−drug conjugates with prospective applicability in the fields of medicine, food and agriculture—subjects that have attracted attention in recent years. Hence, the aim of this research was to place substantial emphasis on the antimicrobial potential of flavonoid−biopolymer complex systems by assessment of the probable synergetic, additive or antagonistic effects arising as a function of systemic complexity. The joint implementation of morin, chitosan and lignin in conjugated two- and three-component systems provoked species-dependent antimicrobial synergistic and/or potentiation effects against the activity of the tested bacterial strains Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and the clinical isolate Bacillus cereus. The double combinations of morin−chitosan and morin−lignin resulted in a 100% increase in their inhibitory activity against S. aureus as compared to the pure biocompounds. The inhibitory effects of the three-component system, in decreasing order, were: S. aureus (IZ = 15.7 mm) > P. aeruginosa (IZ = 15 mm) > B. cereus and E. coli (IZ = 14 mm). All tested morin-containing two- and three-component systems exhibited clear and significant potentiation effects, especially against S. aureus and B. cereus. The results obtained are a prerequisite for the potential use of the studied conjugated lignin−morin−chitosan combinations in the construction of novel drug-carrier formulations with improved bioactivities.
Collapse
|
5
|
Bellifa K, Mekelleche SM. Computational Investigation of the Antioxidant Activity of Dihydroxybenzoic Acids in Aqueous and Lipid Media. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2022. [DOI: 10.1142/s2737416522500089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive free radicals have both beneficial and destructive effects. Indeed, at physiological levels, free radicals help to preserve homeostasis by acting as signal transducers. However, excessive generation of free radicals can harm and damage membranes, proteins, and DNA, among other cell structures. Dihydroxybenzoic acids (DHBAs) have proven their antioxidant capacity against a large variety of free radicals, as well as their ability to inhibit or restrict reactive species overproduction. In this paper, a computational analysis of the antioxidant activity of a series of DHBAs in polar and nonpolar media was carried out at the DFT/M06-2X/6-[Formula: see text] level of theory. The implicit SMD solvation model was used in order to rationalize the experimental findings and to investigate the solvent effect on the mechanism and the radical scavenging ability. The obtained results put in evidence that HAT is the predominant mechanism in nonpolar media, whereas SPLET is more favored in polar environment. The BDE[Formula: see text], [Formula: see text], and [Formula: see text] descriptors are used to predict the most reactive hydroxyl groups and the antioxidant activity order of the studied DHBAs. Our results are in total agreement with experimental findings (inhibition of lipid peroxidation and scavenging of hydrogen peroxide). Moreover, this study shows that the substitution of the hydrogen atom by strong electron-donating groups, namely NMe2, in the ortho positions of the best experimental DHBAs leads to a significant enhancement of their antioxidant activity.
Collapse
Affiliation(s)
- Khadidja Bellifa
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, PB 119, Tlemcen 13000, Algeria
| | - Sidi Mohamed Mekelleche
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, PB 119, Tlemcen 13000, Algeria
| |
Collapse
|
6
|
Rodríguez-Arce E, Saldías M. Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. Biomed Pharmacother 2021; 143:112236. [PMID: 34649360 DOI: 10.1016/j.biopha.2021.112236] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
The increased oxidative stress in the acceleration of the aging process and development of the neuronal disorder are the common feature detected in neurodegenerative illness, such as Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. Searching for new treatment against these diseases, the inclusion of exogenous antioxidant agents has shown good results. Flavonoids are polyphenols compounds present in plants, fruits and vegetables that exhibit potent antioxidant and biological properties, which are related to their chemical structure that to confer an excellent radical scavenging ability. The design of metal-flavonoid complexes allows to obtain compounds with improved biological and physicochemical properties, generating important increase of the flavonoid antioxidant properties. This evidence we motive to propose that antioxidant properties of the metal flavonoids compounds can play an important role in the design of potential novel therapeutic strategies. This review presents the structure-activity relationship on the antioxidant properties of three series of metal-flavonoid complexes: M-(quercetin), M-(morin), and M-(rutin). In general, we observed that the coordination sites, the metal ion type used, and the molar ratio metal:flavonoid present in the complexes, are important factors for to increase the antioxidant activity. On these evidences we motive to propose that the development of metal-flavonoid compounds is a potentially viable approach for combating neurodegenerative diseases.
Collapse
Affiliation(s)
- Esteban Rodríguez-Arce
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile.
| | - Marianela Saldías
- Instituto de Investigación y Postgrado Facultad de Ciencias de la Salud. Universidad Central de Chile, Toesca 1783, Santiago, Chile.
| |
Collapse
|
7
|
Direito R, Rocha J, Sepodes B, Eduardo-Figueira M. From Diospyros kaki L. (Persimmon) Phytochemical Profile and Health Impact to New Product Perspectives and Waste Valorization. Nutrients 2021; 13:3283. [PMID: 34579162 PMCID: PMC8465508 DOI: 10.3390/nu13093283] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 01/13/2023] Open
Abstract
Persimmon (Diospyros kaki L.) fruit's phytochemical profile includes carotenoids, proanthocyanidins, and gallic acid among other phenolic compounds and vitamins. A huge antioxidant potential is present given this richness in antioxidant compounds. These bioactive compounds impact on health benefits. The intersection of nutrition and sustainability, the key idea behind the EAT-Lancet Commission, which could improve human health and decrease the global impact of food-related health conditions such as cancer, heart disease, diabetes, and obesity, bring the discussion regarding persimmon beyond the health effects from its consumption, but also on the valorization of a very perishable food that spoils quickly. A broad option of edible products with better storage stability or solutions that apply persimmon and its byproducts in the reinvention of old products or even creating new products, or with new and better packaging for the preservation of food products with postharvest technologies to preserve and extend the shelf-life of persimmon food products. Facing a global food crisis and the climate emergency, new and better day-to-day solutions are needed right now. Therefore, the use of persimmon waste has also been discussed as a good solution to produce biofuel, eco-friendly alternative reductants for fabric dyes, green plant growth regulator, biodegradable and edible films for vegetable packaging, antimicrobial activity against foodborne methicillin-resistant Staphylococcus aureus found in retail pork, anti-Helicobacter pylori agents from pedicel extracts, and persimmon pectin-based emulsifiers to prevent lipid peroxidation, among other solutions presented in the revised literature. It has become clear that the uses for persimmon go far beyond the kitchen table and the health impact consumption demonstrated over the years. The desired sustainable transition is already in progress, however, mechanistic studies and clinical trials are essential and scaling-up is fundamental to the future.
Collapse
Affiliation(s)
- Rosa Direito
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Bruno Sepodes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Maria Eduardo-Figueira
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal; (J.R.); (B.S.); (M.E.-F.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| |
Collapse
|
8
|
Theoretical Study of 2-(Trifluoromethyl)phenothiazine Derivatives with Two Hydroxyl Groups in the Side Chain-DFT and QTAIM Computations. Molecules 2021; 26:molecules26175242. [PMID: 34500676 PMCID: PMC8434459 DOI: 10.3390/molecules26175242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
Phenothiazines are known as synthetic antipsychotic drugs that exhibit a wide range of biological effects. Their properties result from the structure and variability of substituents in the heterocyclic system. It is known that different quantum chemical properties have a significant impact on drug behavior in the biological systems. Thus, due to the diversity in the chemical structure of phenothiazines as well as other drugs containing heterocyclic systems, quantum chemical calculations provide valuable methods in predicting their activity. In our study, DFT computations were applied to show some thermochemical parameters (bond dissociation enthalpy—BDE, ionization potential—IP, proton dissociation enthalpy—PDE, proton affinity—PA, and electrontransfer enthalpy—ETE) describing the process of releasing the hydrogen/proton from the hydroxyl group in the side chain of four 2-(trifluoromethyl)phenothiazine (TFMP) derivatives and fluphenazine (FLU). Additional theoretical analysis was carried out based on QTAIM theory. The results allowed theoretical determination of the ability of compounds to scavenge free radicals. In addition, the intramolecular hydrogen bond (H-bond) between the H-atom of the hydroxyl group and the N-atom located in the side chain of the investigated compounds has been identified and characterized.
Collapse
|
9
|
Precupas A, Sandu R, Neculae AVF, Neacsu A, Popa VT. Calorimetric, spectroscopic and computational investigation of morin binding effect on bovine serum albumin stability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Thakur K, Zhu YY, Feng JY, Zhang JG, Hu F, Prasad C, Wei ZJ. Morin as an imminent functional food ingredient: an update on its enhanced efficacy in the treatment and prevention of metabolic syndromes. Food Funct 2021; 11:8424-8443. [PMID: 33043925 DOI: 10.1039/d0fo01444c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flavonoids represent polyphenolic plant secondary metabolites with a general structure of a 15-carbon skeleton comprising two phenyl rings and a heterocyclic ring. Over 5000 natural flavonoids (flavanones, flavanonols, and flavans) from various plants have been characterized. Several studies provide novel and promising insights into morin hydrate for its different biological activities against a series of metabolic syndromes. The present review is a rendition of its sources, chemistry, functional potency, and protective effects on metabolic syndromes ranging from cancer to brain injury. Most importantly this systematic review article also highlights the mechanisms of interest to morin-mediated management of metabolic disorders. The key mechanisms (anti-oxidative and anti-inflammatory) responsible for its therapeutic potential are well featured after collating the in vitro and in vivo study reports. As a whole, based on the prevailing information rationalizing its medicinal use, morin can be identified as a therapeutic agent for the expansion of human health.
Collapse
Affiliation(s)
- Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA. and Department of Medicine, LSU School of Medicine, New Orleans, LA, USA
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China. and Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
11
|
Mansouri H, Mekelleche SM. Radical scavenging activity of hydroxycinnamic acids in polar and nonpolar solvents: A computational investigation. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this work is to perform a computational study of the radical scavenging activity of a series of common hydroxycinnamic acids (HCAs) in polar and nonpolar solvents in order to rationalize the experimental order obtained in ethanol and to analyze the solvent effect on mechanism and radical scavenging capacity. The thermodynamics of the main mechanisms, namely, hydrogen atom transfer (HAT), sequential proton loss followed by electron transfer (SPLET), and single electron transfer followed by proton transfer (SET-PT) were investigated at the M05-2X/6-31[Formula: see text]G([Formula: see text]) level of theory using the SMD solvation model. This study shows that the SET-PT mechanism is disfavored in all media, whereas HAT is the most thermodynamically favored mechanism in gas phase and SPLET is the preferred reaction pathway in pentyl ethanoate, ethanol and water. The thermodynamically preferred site of antioxidant action and the radical scavenging order are predicted using the BDE[Formula: see text] and (PA[Formula: see text]ETE)[Formula: see text] descriptors corresponding to the HAT and SPLET mechanisms, respectively. The obtained results point out that the mechanism and the radical scavenging potency are influenced by solvent polarity and our predictions are in agreement with the experimental measurements performed in ethanol giving the following descending order: caffeic [Formula: see text] [Formula: see text] [Formula: see text]-coumaric acid. Our results also show that the ortho substitution of caffeic acid by strong electron donating groups leads to a notable increase of their radical scavenging activity and new potent HCA derivatives are designed.
Collapse
Affiliation(s)
- Hadjer Mansouri
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| | - Sidi Mohamed Mekelleche
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| |
Collapse
|
12
|
Sharma S, Tripathi P, Sharma J, Dixit A. Flavonoids modulate tight junction barrier functions in hyperglycemic human intestinal Caco-2 cells. Nutrition 2020; 78:110792. [PMID: 32473529 DOI: 10.1016/j.nut.2020.110792] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/01/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Diabetes mellitus is a chronic disease requiring lifelong medical attention. With hundreds of millions suffering worldwide and a rapidly rising incidence, diabetes mellitus poses a great burden on health care systems. Recent studies investigating the underlying mechanisms involved in disease development in diabetes point to the role of the dysregulation of the intestinal barrier. Hyperglycemia-mediated tight junction deformity is known to contribute to leaky gut in various metabolic disorders. The present study aimed to investigate the role of oxidative stress on intestinal epithelial tight junction (TJ) barrier functions in hyperglycemia. Because many flavonoids are known to influence the cellular redox state, exploring these flavonoids may help to understand the role of TJ barrier in hyperglycemia-mediated oxidative stress, which in turn might unfold the association of oxidative stress and dysfunction of barrier-forming TJs. METHODS Caco-2 cells were stimulated with high glucose (HG), with or without flavonoids (quercetin, morin, naringenin), for 24 h. We determined cellular viability, levels of reactive oxygen species, and mitochondrial membrane potential in flavonoids treated HG-Caco-2 cells. The levels of the proinflammatory cytokines, glucose uptake, and expression of glucose transporters were determined on flavonoids treatment. We investigated the effect of flavonoids on TJs functions by measuring transepithelial electrical resistance (a TJ integrity marker), membrane permeability using tracer compounds, and the expressions levels of TJs related molecules on hyperglycemic Caco-2 cell monolayers. RESULTS We found that high glucose treatment resulted in reduced cell viability, increased reactive oxygen species production, measurable mitochondrial dysfunction, and decreased transepithelial electrical resistance, with increased membrane permeability. Treatment with the test flavonoids produced increased cell viability and reduced glucose uptake of HG-Caco-2 cells. A concomitant decrease in reactive oxygen species production, proinflammatory cytokines, and Glut-associated genes and proteins were identified with flavonoid treatment. Flavonoids prevented derangement of TJs protein interaction and stabilized membrane permeability. CONCLUSIONS These findings indicate that flavonoids confer protection against hyperglycemia-mediated oxidative stress and enhance intestinal barrier functions by modulating underlying intracellular molecular mechanisms.
Collapse
Affiliation(s)
- Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prabhanshu Tripathi
- Translational Health Science, and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Jeetesh Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
13
|
The Interaction of Flavonols with Membrane Components: Potential Effect on Antioxidant Activity. J Membr Biol 2020; 253:57-71. [DOI: 10.1007/s00232-019-00105-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022]
|
14
|
Exploring the transfer of hydrogen atom from kaempferol-based compounds to hydroxyl radical at ground state using PCM-DFT approach. Struct Chem 2019. [DOI: 10.1007/s11224-019-01331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Shameera Ahamed TK, Rajan VK, Sabira K, Muraleedharan K. DFT and QTAIM based investigation on the structure and antioxidant behavior of lichen substances Atranorin, Evernic acid and Diffractaic acid. Comput Biol Chem 2019; 80:66-78. [PMID: 30928870 DOI: 10.1016/j.compbiolchem.2019.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
In this study, the structural and antioxidant behavior of the three lichen-derived natural compounds such as atranorin (AT), evernic acid (EV) and diffractaic acid (DF) has been investigated in the gas and water phase using both B3LYP and M06-2X functional level of density functional theory (DFT) with two different basis sets 6-31+G (d, p) and 6-311++G (d, p). The intramolecular H-bonds (IHB) strength, aromaticity and noncovalent interactions (NCI) have been computed with the help of the quantum theory of atoms in molecules (QTAIM). This calculation gives major structural characteristics that indirectly influence the antioxidant behavior of the investigated compounds. The spin density (SD) delocalization of the unpaired electron is found to be the main stabilizing factor of neutral and cationic radical species. The main mechanisms, recommended in the literature, for the antioxidant action of polyphenols as radical scavengers such as hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET), were examined. The result shows that the HAT and SPLET mechanism are the most conceivable one for the antioxidant action of this class of compounds in gas and water phase respectively. Preference of SPLET over HAT in water phase is due to the significantly lower value of proton affinity (PA) compared to the bond dissociation enthalpy (BDE) value. This study reveals that O2-H3, O9-H26 and O4-H45 respectively are the most favored site of AT, EV and DF for homolytic as well as heterolytic OH bond breaking.
Collapse
Affiliation(s)
| | - Vijisha K Rajan
- Department of Chemistry, University of Calicut, Malappuram, 673635, India
| | - K Sabira
- Department of Chemistry, University of Calicut, Malappuram, 673635, India
| | - K Muraleedharan
- Department of Chemistry, University of Calicut, Malappuram, 673635, India.
| |
Collapse
|
16
|
Tyurin DV, Zaitseva SV, Kudrik EV. Catalytic Activity of μ-Carbido-Dimeric Iron(IV) Octapropylporphyrazinate in the 3,5,7,2',4'-Pentahydroxyflavone Oxidation Reaction with tert-Butyl Hydroperoxide. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418050321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
The Correlation between Chemical Structures and Antioxidant, Prooxidant, and Antitrypanosomatid Properties of Flavonoids. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3789856. [PMID: 28751930 PMCID: PMC5511661 DOI: 10.1155/2017/3789856] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/23/2017] [Accepted: 04/20/2017] [Indexed: 01/01/2023]
Abstract
Flavonoids have demonstrated in vivo and in vitro leishmanicidal, trypanocidal, antioxidant, and prooxidant properties. The chemotherapy of trypanosomiasis and leishmaniasis lacks efficacy, presents high toxicity, and is related to the development of drug resistance. Thus, a series of 40 flavonoids were investigated with the purpose of correlating these properties via structure and activity analyses based on integrated networks and QSAR models. The classical groups for the antioxidant activity of flavonoids were combined in order to explain the influence of antioxidant and prooxidant activities on the antiparasitic properties. These analyses become useful for the development of efficient treatments for leishmaniasis and trypanosomiasis. Finally, the dual activity of flavonoids presenting both anti- and prooxidant activities revealed that the existence of a balance between these two features could be important to the development of adequate therapeutic strategies.
Collapse
|
18
|
Vanitha P, Senthilkumar S, Dornadula S, Anandhakumar S, Rajaguru P, Ramkumar KM. Morin activates the Nrf2-ARE pathway and reduces oxidative stress-induced DNA damage in pancreatic beta cells. Eur J Pharmacol 2017; 801:9-18. [DOI: 10.1016/j.ejphar.2017.02.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/26/2022]
|
19
|
Mayahi J, Rajabi HR. Comparison study on separation of morin: ultrasound assisted molecularly imprinted polymeric nanoparticles-solid phase extractionversussolidification of floating organic-drop assisted dispersive liquid–liquid microextraction. NEW J CHEM 2017. [DOI: 10.1039/c7nj01764b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comparison study between SPE-MIP-NPs and SFOD-DLLME was presented for separation and preconcentration of morin from aqueous media.
Collapse
|
20
|
Quantum Chemical Investigation on the Antioxidant Activity of Neutral and Anionic Forms of Juglone: Metal Chelation and Its Effect on Radical Scavenging Activity. J CHEM-NY 2017. [DOI: 10.1155/2017/3281684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The chelation ability of divalent Mg, Ca, Fe, Co, Ni, Cu, Zn, and monovalent Cu ions by neutral and anionic forms of juglone has been investigated at DFT/B3LYP/6-31+G(d,p) level of theory in gas and aqueous phases. It is noteworthy that only the 1 : 1 stoichiometry was considered herein. The effects of these metals on the radical scavenging activity of neutral juglone were evaluated via the usual descriptors of hydrogen atom transfer. According to our results, metal chelation by the two forms of juglone was spontaneous and exothermic in both media. Based on the binding energies, Cu(II) ion showed the highest affinity for the ligands. QTAIM analyses identified the metal-ligand bonds as intermediate type interactions in all the chelates, except those of Ca and Mg. It was also found that the chelates were better radical scavengers than the ligands. In the gas phase, the scavenging activity of the compounds was found to be governed by direct hydrogen atom transfer, the Co(II) chelate being the most reactive. In the aqueous phase also, the sequential proton loss electron transfer was preferred by all the molecules, while the Cu(II) chelates were the most reactive.
Collapse
|
21
|
Arriagada F, Correa O, Günther G, Nonell S, Mura F, Olea-Azar C, Morales J. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial. PLoS One 2016; 11:e0164507. [PMID: 27812111 PMCID: PMC5094702 DOI: 10.1371/journal.pone.0164507] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
Morin (2´,3, 4´,5,7-pentahydroxyflavone) is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR) as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO•) scavenger and singlet oxygen (1O2) quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased.
Collapse
Affiliation(s)
- Francisco Arriagada
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Olosmira Correa
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Santi Nonell
- Institut Químic de Sarriá (IQS), University Ramón Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Francisco Mura
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Claudio Olea-Azar
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| |
Collapse
|
22
|
Phenolic Melatonin-Related Compounds: Their Role as Chemical Protectors against Oxidative Stress. Molecules 2016; 21:molecules21111442. [PMID: 27801875 PMCID: PMC6274579 DOI: 10.3390/molecules21111442] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
There is currently no doubt about the serious threat that oxidative stress (OS) poses to human health. Therefore, a crucial strategy to maintain a good health status is to identify molecules capable of offering protection against OS through chemical routes. Based on the known efficiency of the phenolic and melatonin (MLT) families of compounds as antioxidants, it is logical to assume that phenolic MLT-related compounds should be (at least) equally efficient. Unfortunately, they have been less investigated than phenols, MLT and its non-phenolic metabolites in this context. The evidence reviewed here strongly suggests that MLT phenolic derivatives can act as both primary and secondary antioxidants, exerting their protection through diverse chemical routes. They all seem to be better free radical scavengers than MLT and Trolox, while some of them also surpass ascorbic acid and resveratrol. However, there are still many aspects that deserve further investigations for this kind of compounds.
Collapse
|
23
|
Ivanović N, Jovanović L, Marković Z, Marković V, Joksović MD, Milenković D, Djurdjević PT, Ćirić A, Joksović L. Potent 1,2,4-Triazole-3-thione Radical Scavengers Derived from Phenolic Acids: Synthesis, Electrochemistry, and Theoretical Study. ChemistrySelect 2016. [DOI: 10.1002/slct.201600738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nevena Ivanović
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Ljiljana Jovanović
- Faculty of Sciences; University of Novi Sad; Trg D. Obradovića 3 21000 Novi Sad Serbia
| | - Zoran Marković
- Department of Chemical-Technological Sciences; State University of Novi Pazar; Vuka Karadžića bb 36300 Novi Pazar Serbia
| | - Violeta Marković
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Milan D. Joksović
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Dejan Milenković
- Bioengineering Research and Development Center; 34000 Kragujevac Serbia
| | - Predrag T. Djurdjević
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Andrija Ćirić
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| | - Ljubinka Joksović
- Faculty of Science, Department of Chemistry; University of Kragujevac; R. Domanovića 12 34000 Kragujevac Serbia
| |
Collapse
|
24
|
Klein E, Rimarčík J, Senajová E, Vagánek A, Lengyel J. Deprotonation of flavonoids severely alters the thermodynamics of the hydrogen atom transfer. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu Rev Food Sci Technol 2016; 7:335-52. [DOI: 10.1146/annurev-food-041715-033206] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Ruslán Alvarez-Diduk
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - J. Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, D. F., Mexico
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
26
|
MARKOVIC Z, DOROVIC J, DIMITRIC MARKOVIC JM, BIOCANIN R, AMIC D. Comparative density functional study of antioxidative activity of the hydroxybenzoic acids and their anions. Turk J Chem 2016. [DOI: 10.3906/kim-1503-89] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
27
|
Villuendas-Rey Y, Alvarez-Idaboy JR, Galano A. Assessing the Protective Activity of a Recently Discovered Phenolic Compound against Oxidative Stress Using Computational Chemistry. J Chem Inf Model 2015; 55:2552-61. [PMID: 26624520 DOI: 10.1021/acs.jcim.5b00513] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protection exerted by 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), a phenolic compound recently isolated from the Pacific oyster, against oxidative stress (OS) is investigated using the density functional theory. Our results indicate that DHMBA is an outstanding peroxyl radical scavenger, being about 15 times and 4 orders of magnitude better than Trolox for that purpose in lipid and aqueous media, respectively. It was also found to react faster with HOO(•) than other known antioxidants such as resveratrol and ascorbic acid. DHMBA is also predicted to be able to sequester Cu(II) ions, consequently inhibiting the OS induced by Cu(II)-ascorbate mixtures and downgrading the (•)OH production via the Haber-Weiss reaction. However, it is proposed that DHMBA is more efficient as a primary antioxidant (free radical scavenger), than as a secondary antioxidant (metal ion chelator). In addition, it was found that DHMBA can be efficiently regenerated in aqueous solution, at physiological pH. Such regeneration is expected to contribute to increase the antioxidant protection exerted by DHMBA. These results suggest that probably synthetic routes for this compound should be pursued, because albeit its abundance in nature is rather low, its antioxidant activity is exceptional.
Collapse
Affiliation(s)
- Yenny Villuendas-Rey
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P., 09340 México D. F., México
| | - Juan Raul Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México , México D. F. 04510, México
| | - Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa , San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C. P., 09340 México D. F., México
| |
Collapse
|
28
|
Petrović ZD, Đorović J, Simijonović D, Petrović VP, Marković Z. Experimental and theoretical study of antioxidative properties of some salicylaldehyde and vanillic Schiff bases. RSC Adv 2015. [DOI: 10.1039/c5ra02134k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A set of ten phenolic Schiff bases was evaluated for their antioxidative properties. Two of them, one salicylaldehyde and one vanillic, showed high activity. Parameters obtained by DFT supported the experimental findings.
Collapse
Affiliation(s)
- Zorica D. Petrović
- Faculty of Science
- University of Kragujevac
- Department of Chemistry
- 34000 Kragujevac
- Republic of Serbia
| | - Jelena Đorović
- Bioengineering Research and Development Center
- 34000 Kragujevac
- Republic of Serbia
| | - Dušica Simijonović
- Faculty of Science
- University of Kragujevac
- Department of Chemistry
- 34000 Kragujevac
- Republic of Serbia
| | - Vladimir P. Petrović
- Faculty of Science
- University of Kragujevac
- Department of Chemistry
- 34000 Kragujevac
- Republic of Serbia
| | - Zoran Marković
- Bioengineering Research and Development Center
- 34000 Kragujevac
- Republic of Serbia
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
| |
Collapse
|
29
|
Energy requirements of the reactions of kaempferol and selected radical species in different media: towards the prediction of the possible radical scavenging mechanisms. Struct Chem 2014. [DOI: 10.1007/s11224-014-0453-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Investigation of the radical scavenging potency of hydroxybenzoic acids and their carboxylate anions. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1163-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Dimitrić Marković JM, Milenković D, Amić D, Mojović M, Pašti I, Marković ZS. The preferred radical scavenging mechanisms of fisetin and baicalein towards oxygen-centred radicals in polar protic and polar aprotic solvents. RSC Adv 2014. [DOI: 10.1039/c4ra02577f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The flavonoids fisetin and baicalein have been investigated for their ability to scavenge certain anion radicals.
Collapse
Affiliation(s)
| | - Dejan Milenković
- Bioengineering Research and Development Center
- 34000 Kragujevac, Republic of Serbia
| | - Dragan Amić
- Faculty of Agriculture
- The Josip Juraj Strossmayer University
- HR-31107 Osijek, Croatia
| | - Miloš Mojović
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade, Republic of Serbia
| | - Igor Pašti
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade, Republic of Serbia
| | - Zoran S. Marković
- Bioengineering Research and Development Center
- 34000 Kragujevac, Republic of Serbia
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
- 36300 Novi Pazar, Republic of Serbia
| |
Collapse
|
32
|
Bond dissociation free energy as a general parameter for flavonoid radical scavenging activity. Food Chem 2013; 141:1562-70. [DOI: 10.1016/j.foodchem.2013.03.072] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/22/2022]
|
33
|
A DFT and PM6 study of free radical scavenging activity of ellagic acid. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-0949-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
PM6 study of free radical scavenging mechanisms of flavonoids: why does O–H bond dissociation enthalpy effectively represent free radical scavenging activity? J Mol Model 2013; 19:2593-603. [DOI: 10.1007/s00894-013-1800-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 02/07/2013] [Indexed: 12/11/2022]
|
35
|
Xue Y, Zhang L, Li Y, Yu D, Zheng Y, An L, Gong X, Liu Y. A DFT study on the structure and radical scavenging activity of newly synthesized hydroxychalcones. J PHYS ORG CHEM 2012. [DOI: 10.1002/poc.3074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yunsheng Xue
- Chemical and Biological Pharmaceutical Engineering Research Center; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
- School of Pharmacy; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
| | - Ling Zhang
- Chemical and Biological Pharmaceutical Engineering Research Center; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
- School of Pharmacy; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
| | - Yanli Li
- School of Pharmacy; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
| | - Ding Yu
- School of Pharmacy; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
| | - Youguang Zheng
- Chemical and Biological Pharmaceutical Engineering Research Center; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
- School of Pharmacy; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
| | - Lin An
- Chemical and Biological Pharmaceutical Engineering Research Center; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
- School of Pharmacy; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
| | - Xuedong Gong
- Department of Chemistry; Nanjing University of Science and Technology; Nanjing Jiangsu 210094 China
| | - Yi Liu
- Chemical and Biological Pharmaceutical Engineering Research Center; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
- School of Pharmacy; Xuzhou Medical College; No.209, Tongshan Road Xuzhou Jiangsu 221004 China
| |
Collapse
|