1
|
Bouh A, Mehdad S, Ghoulam NE, Daoudi D, Oubaasri A, El Mskini FZ, Labyad A, Iraqi H, Benaich S, Hassikou R, Errihani H, Boutayeb S. The use of medicinal plants by cancer patients receiving chemotherapy: A cross-sectional study at a referral oncology hospital in Morocco. J Oncol Pharm Pract 2025:10781552251331920. [PMID: 40270131 DOI: 10.1177/10781552251331920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Background and aimThe high cost of cancer treatment and adverse side effects of drug therapy remain major health issues worldwide. Medicinal plants (MP) can be used to promote new, safe, and effective anticancer medications. This study aimed to estimate the prevalence of MP use among cancer patients, investigate its association with sociodemographic and clinical factors, and provide available information about the species used.Materials and methodsThis was a cross-sectional study among 508 patients undergoing chemotherapy. Sociodemographic data and information on MPs used in cancer treatment were collected using face-to-face interviews and a questionnaire. Clinical data were obtained from the hospital database. Ethnobotanical indices, including relative citation frequency, informed consensus factor, and fidelity level, were determined for data analysis.Results43.2% of patients used MPs. Of these, 66.3% did not disclose information about MPs to their physicians, 54% experienced improvements, and 6% reported undesirable side effects associated with using MPs. There was a significant association of MPs use with disease duration (P = 0.037) and cancer type (P < 0.001). 27 plant species belonging to 17 families were identified, with Lamiaceae, Apiaceae, and Fabaceae being the most common. The most used species were Origanum compactum benth., Marrubium vulgare L., Trigonella foenum-graecum L., Aloysia citriodora, and Rosmarinus officinalis L.ConclusionThis study showed a high prevalence of MPs use among patients undergoing chemotherapy. Although further studies are needed to investigate the efficacy and safety of commonly used species, our findings may be used to inform evidence-based guidelines, promote communication between cancer patients and healthcare providers, and develop new medicinal plants.
Collapse
Affiliation(s)
- Aichetou Bouh
- Translational Oncology Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Slimane Mehdad
- Physiology and Physiopathology Research Team, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Nouriya El Ghoulam
- Physiology and Physiopathology Research Team, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Daoud Daoudi
- Physiology and Physiopathology Research Team, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Ahmed Oubaasri
- Physiology and Physiopathology Research Team, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Fatima Zahra El Mskini
- Physiology and Physiopathology Research Team, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Asmae Labyad
- Physiology and Physiopathology Research Team, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Hinde Iraqi
- Physiology and Physiopathology Research Team, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Souad Benaich
- Physiology and Physiopathology Research Team, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Rachida Hassikou
- Plant and Microbial Biotechnologies, Biodiversity, and Environment Center, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Hassan Errihani
- Translational Oncology Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Saber Boutayeb
- Translational Oncology Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
- Centre Mohammed VI Recherche et Innovation (CM6RI) / UM6SS
| |
Collapse
|
2
|
K V, L S, N V K, R P, M P DR, Suneetha C, Palpandi Raja R, Muthusamy S. Promising approaches in the extraction, characterization, and biotechnological applications of ursolic acid: a review. Prep Biochem Biotechnol 2025:1-12. [PMID: 40088207 DOI: 10.1080/10826068.2025.2475094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Ursolic acid (UA), a pentacyclic triterpenoid, has gained attention for its pharmacological properties and industrial uses. This study explores natural sources of UA, including Plumeria rubra, apple peels, sage, rosemary, and holy basil, while emphasizing sustainable extraction methods. Advanced techniques like Soxhlet extraction, solvent extraction, supercritical fluid extraction (SFE), enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE) are optimized to enhance yield and purity. Ethanol and methanol solvent extraction provide effective recovery, while SFE with supercritical CO2 increases selectivity and reduces solvent residue. EAE boosts efficiency by breaking down cell membranes, allowing sustained UA release. With antibacterial, anticancer, antidiabetic, and anti-inflammatory effects, UA holds promise in therapeutics and has applications in nutraceuticals, cosmetics, and food preservation. However, its low water solubility and bioavailability require innovative delivery methods like dendrimers and nanoparticles. This review merges traditional and modern approaches to UA extraction, bioavailability enhancement, and sustainable use, offering new perspectives on its potential in medicine, food technology, and cosmetics.
Collapse
Affiliation(s)
- Vijayalakshmi K
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Sonali L
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Kanimozhi N V
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Pavithra R
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Drisya Raj M P
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Chinta Suneetha
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - R Palpandi Raja
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| | - Sukumar Muthusamy
- Centre for Food Technology, A.C. Tech, Anna University, Chennai, India
| |
Collapse
|
3
|
Han D, Lin C, Xia S, Zheng X, Zhu C, Shen Y, Chen Y, Peng C, Wang C, He J, Lai J, Yang C. The Role of Carnosic Acid in the UV-B Stress Resistance Signalling Pathway in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025; 48:1232-1241. [PMID: 39440524 DOI: 10.1111/pce.15226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/23/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Carnosic acid (CA) is recognized as an antioxidant that confers protection to plants against various forms of oxidative stress, including UV-B stress. However, limited research has been conducted to elucidate the molecular mechanisms underlying its defence against UV-B stress. In this study, we demonstrated that CA exhibits more efficacy compared to other antioxidants in UV-B resistance. Moreover, CA was found to enhance the accumulation of secondary metabolites in Arabidopsis leaves. Through the analysis of differentially expressed genes in response to UV-B stress with or without CA treatment, we uncovered that the exogenous application of CA effectively activates the flavonoid biosynthesis pathway in Arabidopsis to improve resistance of Arabidopsis to UV-B stress.
Collapse
Affiliation(s)
- Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Chufang Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Simin Xia
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Xiaoting Zheng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengluo Zhu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Yue Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Changlian Peng
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Caijuan Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Jinming He
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Patti M, Musarella CM, Spampinato G. Ethnobotanical knowledge in Calabria (southern Italy): A summary review. Heliyon 2025; 11:e42050. [PMID: 39911427 PMCID: PMC11795066 DOI: 10.1016/j.heliyon.2025.e42050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
This paper presents a comprehensive overview of ethnobotanical knowledge in Calabria, southern Italy. The diverse plant uses and knowledge in the region stem from the cultural contributions of various populations that have inhabited the area since ancient times. To achieve the stated objective, an in-depth review of 16 bibliographic sources published between 1950 and 2024 was conducted, and data on ethnobotanical uses was extracted. The data were then analyzed using various indices, including CI, CV, FC, PPV, RFC, RI, and UV, to determine the most relevant species, families, and plant parts. A total of 4873 records were collected. The analysis shows that the Asteraceae family is the most used, while Urtica dioica L. and Sambucus nigra L. are the most frequently used species according to the CV index. Medicinal and alimentary purposes are the most common types of use. This study could serve as a foundation for further detailed research, contributing to the valorisation of the ethnobotanical heritage of this region.
Collapse
Affiliation(s)
- Miriam Patti
- AGRARIA Department, Mediterranea University of Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Carmelo Maria Musarella
- AGRARIA Department, Mediterranea University of Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Giovanni Spampinato
- AGRARIA Department, Mediterranea University of Reggio Calabria, 89122, Reggio Calabria, Italy
| |
Collapse
|
5
|
Potdar P, Kharat A, Sanap A, Kheur S, Bhonde R. Pancreatic β cell models for screening insulin secretagogues and cytotoxicity. J Appl Toxicol 2025; 45:89-106. [PMID: 39662958 DOI: 10.1002/jat.4658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 12/13/2024]
Abstract
In the past 2-3 decades, numerous attempts have been made to create an insulin-secreting β cell line that maintains normal insulin secretion. However, primary β cell cultures have finite life and, therefore, cannot be used for long-term experiments. The most widely used insulin-secreting cell lines are Insulinoma-1, rat insulinoma cell line, hamster pancreatic β cell line, mouse insulinoma, and β tumor cell line. Insulinoma-derived cell lines show infinite growth in tissue culture but exhibit varying differences in their insulin responsiveness to glucose levels compared to normal β cells. Despite difficulties with β cell cultures, these cell lines have offered some useful insights in diabetes research concerning physiological functions and pathological investigations. In this review, we describe insulinoma cell lines used for drug screening, insulin secretion, cell viability, proliferation, and other relevant cellular functions. In addition, we have also incorporated recently developed human β cell lines. These cell lines have provided some helpful insights into physiological activities and pathology in diabetes research, despite challenges with β cell culturing. We propose that these cell lines could also be explored for screening Ayurvedic Rasayanas and homeopathy preparations for their cytotoxicity and insulin secretagogue activities to have evidence-based data on alternative and complementary medicines.
Collapse
Affiliation(s)
- Pranjali Potdar
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Kharat
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Avinash Sanap
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Supriya Kheur
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| | - Ramesh Bhonde
- Regenerative Medicine Laboratory, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, India
| |
Collapse
|
6
|
Kola A, Vigni G, Lamponi S, Valensin D. Protective Contribution of Rosmarinic Acid in Rosemary Extract Against Copper-Induced Oxidative Stress. Antioxidants (Basel) 2024; 13:1419. [PMID: 39594560 PMCID: PMC11590892 DOI: 10.3390/antiox13111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Rosemary extract (Rosmarinus officinalis) is a natural source of bioactive compounds with significant antioxidant properties. Among these, rosmarinic acid is celebrated for its potent antioxidant, anti-inflammatory, antimicrobial, and neuroprotective properties, making it a valuable component in both traditional medicine and modern therapeutic research. Neurodegenerative diseases like Alzheimer's and Parkinson's are closely linked to oxidative damage, and research indicates that rosmarinic acid may help protect neurons by mitigating this harmful process. Rosmarinic acid is able to bind cupric ions (Cu2+) and interfere with the production of reactive oxygen species (ROS) produced by copper through Fenton-like reactions. This study aims to further evaluate the contribution of rosmarinic acid within rosemary extract by comparing its activity to that of isolated rosmarinic acid. By using a detailed approach that includes chemical characterization, antioxidant capacity assessment, and neuroprotective activity testing, we have determined whether the combined components in rosemary extract enhance or differ from the effects of rosmarinic acid alone. This comparison is crucial for understanding whether the full extract offers added benefits beyond those of isolated rosmarinic acid in combating oxidative stress and Aβ-induced toxicity.
Collapse
Affiliation(s)
| | | | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (G.V.); (S.L.)
| |
Collapse
|
7
|
Pérez-Magariño S, Bueno-Herrera M, Asensio-S.-Manzanera MC. Characterization of Bioactive Phenolic Compounds Extracted from Hydro-Distillation By-Products of Spanish Lamiaceae Plants. Molecules 2024; 29:5285. [PMID: 39598674 PMCID: PMC11596117 DOI: 10.3390/molecules29225285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Plants of the Lamiaceae family are widely used for the extraction of essential oils, and this industry generates a large number of solid residues as by-products, which contain non-volatile valuable compounds. The aim of this work was to identify and quantify the phenolic compounds present in these solid residues from different important Spanish species of Lamiaceae to characterize and valorize them. Forty-seven phenolic compounds were identified by HPLC-DAD-MS and quantified by HPLC-DAD. Different concentrations and types of phenolic compounds were found between the solid residues. The Rosmarinus officinalis extracts showed the highest total phenolic content due to their high phenolic terpene concentrations. The Thymus mastichina extracts were characterized by kaempferol and flavanones, and some flavones were derived from luteolin and apigenin. Finally, the sample Lavandula and Salvia lavandulifolia extracts presented the lowest content of most phenolic compounds, with the exception of some phenolic acids, such as danshensu, salvianolic acid A, and glucosides of hydroxycinnamic acids. Therefore, this work provides information on the quantification of a large number of phenolic compounds using a simple, sensitive, reproducible, and accurate methodology. In addition, the results indicate that these solid residues still contain important amounts of different polyphenols, which are antioxidants and can be used in different industries.
Collapse
Affiliation(s)
- Silvia Pérez-Magariño
- Agrarian Technological Institute of Castilla and León, Consejería de Agricultura y Ganadería, Ctra Burgos Km 119, Finca Zamadueñas, 47071 Valladolid, Spain; (M.B.-H.); (M.C.A.-S.-M.)
| | | | | |
Collapse
|
8
|
Bejenaru LE, Biţă A, Mogoşanu GD, Segneanu AE, Radu A, Ciocîlteu MV, Bejenaru C. Polyphenols Investigation and Antioxidant and Anticholinesterase Activities of Rosmarinus officinalis L. Species from Southwest Romania Flora. Molecules 2024; 29:4438. [PMID: 39339433 PMCID: PMC11434282 DOI: 10.3390/molecules29184438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Rosemary is one of the most important medicinal plants for natural therapy due to its multiple pharmacological properties, such as antioxidant, anti-inflammatory, neuroprotective, antiproliferative, antitumor, hepato- and nephroprotective, hypolipidemic, hypocholesterolemic, antihypertensive, anti-ischemic, hypoglycemic, radioprotective, antimicrobial, antiviral, antiallergic, and wound healing properties. Our study reports for the first time, over a 12-month period, the identification and quantification of polyphenols and the investigation of the antioxidant and acetylcholinesterase (AChE) inhibitory activities of the Rosmarinus officinalis L. species harvested at flowering from the flora of southwestern Romania (Oltenia Region). Identification and quantification of polyphenolic acids was made by ultra-high-performance liquid chromatography/mass spectrometry (UHPLC/MS). Total phenolic content was determined using the spectrophotometric method. In situ antioxidant and anticholinesterase activities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and AChE inhibitory assay, respectively, on high-performance thin-layer chromatography (HPTLC) plates. DPPH radical scavenging activity was also assessed spectrophotometrically. The results revealed significant correlations between specific polyphenolic compounds and the measured biological activities, understanding the role of seasonal variations and providing insights into the optimal harvesting times and medicinal benefits of rosemary. Our research brings new information on the phytochemical profile of R. officinalis as a natural source of polyphenols with antioxidant and AChE inhibitory properties.
Collapse
Affiliation(s)
- Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara (ICAM-WUT), 4 Oituz Street, 300086 Timişoara, Romania
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Maria Viorica Ciocîlteu
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| |
Collapse
|
9
|
Chen X, Wei C, Zhao J, Zhou D, Wang Y, Zhang S, Zuo H, Dong J, Zhao Z, Hao M, He X, Bian Y. Carnosic acid: an effective phenolic diterpenoid for prevention and management of cancers via targeting multiple signaling pathways. Pharmacol Res 2024; 206:107288. [PMID: 38977208 DOI: 10.1016/j.phrs.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Cancer is a serious global public health issue, and a great deal of research has been made to treat cancer. Of these, discovery of promising compounds that effectively fight cancer always has been the main point of interest in pharmaceutical research. Carnosic acid (CA) is a phenolic diterpenoid compound widely present in Lamiaceae plants such as Rosemary (Rosmarinus officinalis L.). In recent years, there has been increasing evidence that CA has significant anti-cancer activity, such as leukaemia, colorectal cancer, breast cancer, lung cancer, liver cancer, pancreatic cancer, stomach cancer, lymphoma, prostate cancer, oral cancer, etc. The potential mechanisms involved by CA, including inhibiting cell proliferation, inhibiting metastasis, inducing cell apoptosis, stimulating autophagy, regulating the immune system, reducing inflammation, regulating the gut microbiota, and enhancing the effects of other anti-cancer drugs. This article reviews the biosynthesis, pharmacokinetics and metabolism, safety and toxicity, as well as the molecular mechanisms and signaling pathways of the anticancer activity of CA. This will contribute to the development of CA or CA-containing functional foods for the prevention and treatment of cancer, providing important advances in the advancement of cancer treatment strategies.
Collapse
Affiliation(s)
- Xufei Chen
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cuntao Wei
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Juanjuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Dandan Zhou
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yue Wang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shengxiang Zhang
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Haiyue Zuo
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianhui Dong
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zeyuan Zhao
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Man Hao
- Clinical Medical College of Acuupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Department of Ortho and MSK Science, University College London, London WC1E 6BT, UK.
| | - Xirui He
- School of Bioengineering, Zhuhai Campus, Zunyi Medical University, Zhuhai, Guangdong 519041, China; UCL School of Pharmacy, Pharmacognosy & Phytotherapy, University College London, London WC1E 6BT, UK.
| | - Yangyang Bian
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
10
|
Hendel N, Sarri D, Sarri M, Napoli E, Palumbo Piccionello A, Ruberto G. Phytochemical Analysis and Antioxidant and Antifungal Activities of Powders, Methanol Extracts, and Essential Oils from Rosmarinus officinalis L. and Thymus ciliatus Desf. Benth. Int J Mol Sci 2024; 25:7989. [PMID: 39063231 PMCID: PMC11276860 DOI: 10.3390/ijms25147989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Chemical residues in food pose health risks such as cancer and liver issues. This has driven the search for safer natural alternatives to synthetic fungicides and preservatives. The aim of this study was to characterize the chemical composition of the essential oils (EO), determine the polyphenolic contents, and evaluate the in vitro antioxidant and antifungal activities of methanol extracts (ME), essential oils (EO), and powders from Rosmarinus officinalis L. (rosemary) and Thymus ciliatus (Desf) Benth. (thyme) from the M'sila region, Algeria. The chemical composition of the EOs was determined by GC-MS. R. officinalis EO was composed of 31 components, mainly camphor (41.22%), camphene (18.14%), and α-pinene (17.49%); T. ciliatus EO was composed of 58 components, mainly, in percentage, α-pinene (22.18), myrcene (13.13), β-pinene (7.73), β-caryophyllene (10.21), and germacrene D (9.90). The total phenols and flavonoids were determined spectrophotometrically, and the rosemary ME was found to possess the highest polyphenolic content (127.1 ± 2.40 µg GAE/mg), while the thyme ME had the highest flavonoid content (48.01 ± 0.99 µg QE/mg). The antioxidant activity was assessed using three methods: rosemary ME was the most potent, followed by DPPH (IC50 = 13.43 ± 0.14 µg/mL), β-carotene/linoleic acid (IC50 = 39.01 ± 2.16 μg/mL), and reducing power (EC50 = 15.03 ± 1.43 µg/mL). Antifungal activity was assessed for 32 pathogenic and foodborne fungi. Four methods were applied to the solid medium. Incorporating the powdered plant into the culture medium (at 10%) reduced the fungal growth to greater than 50% in 21.88% and 6.25% of all fungal isolates, for R. officinalis and T. ciliatus, respectively. The ME, applied by the well diffusion method (0.1 g/mL), was less effective. Different concentrations of EO were tested. Incorporating the EO into the culture medium (1500 μL/L) inhibited 50% of the molds to levels of 50 and 75% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of four fungi. Fumigated EO (15 μL) inhibited 65% of the molds to levels of 65 and 81.25% for R. officinalis and T. ciliatus, respectively, with the complete inhibition of five fungi. There was little to no sporulation in conjunction with the inhibition. Our results revealed some of the potential of the studied plants to fight foodborne molds and presented their promising characteristics as a source of alternatives to chemical pesticides and synthetic preservatives. Further studies are needed to find adequate application techniques in the food safety area.
Collapse
Affiliation(s)
- Noui Hendel
- Department of Microbiology and Biochemistry, Faculty of Sciences, University Mohamed Boudiaf of M’sila, M’sila 28000, Algeria
- Laboratory of Biology: Applications in Health and Environment, University of M’sila, M’sila 28000, Algeria
| | - Djamel Sarri
- Department of Nature and Life Sciences, Faculty of Sciences, University Mohamed Boudiaf of M’sila, M’sila 28000, Algeria; (D.S.); (M.S.)
| | - Madani Sarri
- Department of Nature and Life Sciences, Faculty of Sciences, University Mohamed Boudiaf of M’sila, M’sila 28000, Algeria; (D.S.); (M.S.)
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.N.); (G.R.)
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy;
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.N.); (G.R.)
| |
Collapse
|
11
|
Singh D, Mittal N, Mittal P, Siddiqui MH. Transcriptome sequencing of medical herb Salvia Rosmarinus (Rosemary) revealed the phenylpropanoid biosynthesis pathway genes and their phylogenetic relationships. Mol Biol Rep 2024; 51:757. [PMID: 38874856 DOI: 10.1007/s11033-024-09685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The Salvia rosmarinus spenn. (rosemary) is considered an economically important ornamental and medicinal plant and is widely utilized in culinary and for treating several diseases. However, the procedure behind synthesizing secondary metabolites-based bioactive compounds at the molecular level in S. rosmarinus is not explored completely. METHODS AND RESULTS We performed transcriptomic sequencing of the pooled sample from leaf and stem tissues on the Illumina HiSeqTM X10 platform. The transcriptomics analysis led to the generation of 29,523,608 raw reads, followed by data pre-processing which generated 23,208,592 clean reads, and de novo assembly of S. rosmarinus obtained 166,849 unigenes. Among them, nearly 75.1% of unigenes i.e., 28,757 were interpreted against a non-redundant protein database. The gene ontology-based annotation classified them into 3 main categories and 55 sub-categories, and clusters of orthologous genes annotation categorized them into 23 functional categories. The Kyoto Encyclopedia of Genes and Genomes database-based pathway analysis confirmed the involvement of 13,402 unigenes in 183 biochemical pathways, among these unigenes, 1,186 are involved in the 17 secondary metabolite production pathways. Several key enzymes involved in producing aromatic amino acids and phenylpropanoids were identified from the transcriptome database. Among the identified 48 families of transcription factors from coding unigenes, bHLH, MYB, WRKYs, NAC, C2H2, C3H, and ERF are involved in flavonoids and other secondary metabolites biosynthesis. CONCLUSION The phylogenetic analysis revealed the evolutionary relationship between the phenylpropanoid pathway genes of rosemary with other members of Lamiaceae. Our work reveals a new molecular mechanism behind the biosynthesis of phenylpropanoids and their regulation in rosemary plants.
Collapse
Affiliation(s)
- Dhananjay Singh
- Department of Biosciences, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India
| | - Nishu Mittal
- Faculty of Biosciences, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, 225003, India
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Kursi Road, Lucknow, Uttar Pradesh, 226026, India.
| |
Collapse
|
12
|
Kompoura V, Karapantzou I, Mitropoulou G, Parisis NA, Gkalpinos VK, Anagnostou VA, Tsiailanis AD, Vasdekis EP, Koutsaliaris IK, Tsouka AN, Karapetsi L, Madesis P, Letsiou S, Florou D, Koukkou AI, Barbouti A, Tselepis AD, Kourkoutas Y, Tzakos AG. Exploiting the beneficial effects of Salvia officinalis L. extracts in human health and assessing their activity as potent functional regulators of food microbiota. Food Chem 2024; 441:138175. [PMID: 38194793 DOI: 10.1016/j.foodchem.2023.138175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/11/2024]
Abstract
Salvia officinalis L. has attracted scientific and industrial interest due to its pharmacological properties. However, its detailed phytochemical profile and its correlation with beneficial effects in the human microbiome and oxidative stress remained elusive. To unveil this, S. officinalis was collected from the region of Epirus and its molecular identity was verified with DNA barcoding. Phytochemical profile for both aqueous and ethanol-based extracts was determined by high-pressure liquid chromatography-tandem mass spectrometry and 103 phytochemicals were determined. The effect of S. officinalis extracts as functional regulators of food microbiota by stimulating the growth of Lacticaseibacillus rhamnosus strains and by suppressing evolution of pathogenic bacteria was verified. Furthermore, we recorded that both extracts exhibited a significant cellular protection against H2O2-induced DNA damage. Finally, both extracts exhibited strong inhibitory effect towards LDL oxidation. This study provides a comprehensive characterization of S. officinalis on its phytochemical components as also its potential impact in human microbiome and oxidative stress.
Collapse
Affiliation(s)
- Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioanna Karapantzou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos A Parisis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios K Gkalpinos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Vasiliki A Anagnostou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Antonis D Tsiailanis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | - Ioannis K Koutsaliaris
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Aikaterini N Tsouka
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Lefkothea Karapetsi
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Panagiotis Madesis
- Laboratory of Molecular Biology of Plants, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., N. Ionia, 38446 Magnesia, Greece; Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 6th Km Charilaou-Thermi Road, 57001 Thessaloniki, Greece
| | - Stavroula Letsiou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Florou
- Department of Forensic Medicine & Toxicology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna-Irini Koukkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandros D Tselepis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; University Research Center of Ioannina, Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
13
|
Dziadek M, Dziadek K, Checinska K, Zagrajczuk B, Cholewa-Kowalska K. Bioactive Glasses Modulate Anticancer Activity and Other Polyphenol-Related Properties of Polyphenol-Loaded PCL/Bioactive Glass Composites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:24261-24273. [PMID: 38709741 PMCID: PMC11103658 DOI: 10.1021/acsami.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
In this work, bioactive glass (BG) particles obtained by three different methods (melt-quenching, sol-gel, and sol-gel-EISA) were used as modifiers of polyphenol-loaded PCL-based composites. The composites were loaded with polyphenolic compounds (PPh) extracted from sage (Salvia officinalis L.). It was hypothesized that BG particles, due to their different textural properties (porosity, surface area) and surface chemistry (content of silanol groups), would act as an agent to control the release of polyphenols from PCL/BG composite films and other significant properties associated with and affected by the presence of PPh. The polyphenols improved the hydrophilicity, apatite-forming ability, and mechanical properties of the composites and provided antioxidant and anticancer activity. As the BG particles had different polyphenol-binding capacities, they modulated the kinetics of polyphenol release from the composites and the aforementioned properties to a great extent. Importantly, the PPh-loaded materials exhibited multifaceted and selective anticancer activity, including ROS-mediated cell cycle arrest and apoptosis of osteosarcoma (OS) cells (Saos-2) via Cdk2-, GADD45G-, and caspase-3/7-dependent pathways. The materials showed a cytotoxic and antiproliferative effect on cancerous osteoblasts but not on normal human osteoblasts. These results suggest that the composites have great potential as biomaterials for treating bone defects, particularly following surgical removal of OS tumors.
Collapse
Affiliation(s)
- Michal Dziadek
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Kinga Dziadek
- Faculty
of Food Technology, Department of Human Nutrition and Dietetics, University of Agriculture in Krakow, 122 Balicka St., 30-149 Krakow, Poland
| | - Kamila Checinska
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Barbara Zagrajczuk
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| | - Katarzyna Cholewa-Kowalska
- Faculty
of Materials Science and Ceramics, Department of Glass Technology
and Amorphous Coatings, AGH University of
Krakow, 30 Mickiewicza
Ave., 30-059 Krakow, Poland
| |
Collapse
|
14
|
Vieira SF, Reis RL, Ferreira H, Neves NM. Plant-derived bioactive compounds as key players in the modulation of immune-related conditions. PHYTOCHEMISTRY REVIEWS 2024. [DOI: 10.1007/s11101-024-09955-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe immune system is a complex and fundamental network for organism protection. A minimal unbalance in the host defense system homeostasis can originate severe repercussions in human health. Fundamentally, immune-related diseases can arise from its compromise (immunodeficiency diseases), overactivation against itself (autoimmune diseases) or harmless substances (allergies), and failure of eliminating the harmful agent (chronic inflammation). The notable advances and achievements in the immune system diseases pathophysiology have been allowing for a dramatic improvement of the available treatments. Nevertheless, they present some drawbacks, including the inappropriate benefit/risk ratio. Therefore, there is a strong and urgent need to develop effective therapeutic strategies. Nature is a valuable source of bioactive compounds that can be explored for the development of new drugs. Particularly, plants produce a broad spectrum of secondary metabolites that can be potential prototypes for innovative therapeutic agents. This review describes the immune system and the inflammatory response and examines the current knowledge of eight plants traditionally used as immunomodulatory medicines (Boswellia serrata, Echinacea purpurea, Laurus nobilis, Lavandula angustifolia, Olea europaea, Salvia officinalis, Salvia rosmarinus, and Taraxacum officinale). Moreover, the issues responsible for possible biologic readout inconsistencies (plant species, age, selected organ, developmental stage, growth conditions, geographical location, drying methods, storage conditions, solvent of extraction, and extraction method) will also be discussed. Furthermore, a detailed list of the chemical composition and the immunomodulatory mechanism of action of the bioactive compounds of the selected plant extracts are presented. This review also includes future perspectives and proposes potential new avenues for further investigation.
Collapse
|
15
|
Alinaghi M, Mokarram P, Ahmadi M, Bozorg-Ghalati F. Biosynthesis of palladium, platinum, and their bimetallic nanoparticles using rosemary and ginseng herbal plants: evaluation of anticancer activity. Sci Rep 2024; 14:5798. [PMID: 38461314 PMCID: PMC10925055 DOI: 10.1038/s41598-024-56275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In this research, palladium (II) and platinum (II), as well as their bimetallic nanoparticles were synthesized using medicinal plants in an eco-friendly manner. Rosemary and Ginseng extracts were chosen due to their promising anticancer potential. The synthesized nanoparticles underwent characterization through FT-IR spectroscopy, DLS, XRD, EDX, SEM, and TEM techniques. Once the expected structures were confirmed, the performance of these nanoparticles, which exhibited an optimal size, was evaluated as potential anticancer agents through in vitro method on colon cancer cell lines (Ls180, SW480). MTT assay studies showed that the synthesized nanoparticles induced cell death. Moreover, real-time PCR was employed to investigate autophagy markers and the effect of nanoparticles on the apoptosis process, demonstrating a significant effect of the synthesized compounds in this regard.
Collapse
Affiliation(s)
- Moloud Alinaghi
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mazaher Ahmadi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Farzaneh Bozorg-Ghalati
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
16
|
Stavropoulou LS, Efthimiou I, Giova L, Manoli C, Sinou PS, Zografidis A, Lamari FN, Vlastos D, Dailianis S, Antonopoulou M. Phytochemical Profile and Evaluation of the Antioxidant, Cyto-Genotoxic, and Antigenotoxic Potential of Salvia verticillata Hydromethanolic Extract. PLANTS (BASEL, SWITZERLAND) 2024; 13:731. [PMID: 38475577 DOI: 10.3390/plants13050731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
This study comprises the phytochemical characterization, the evaluation of the total phenolic content (TPC) and antioxidant activity (AA), and the investigation of the cyto-genotoxic and antigenotoxic potential of hydromethanolic extract derived from Salvia verticillata L. leaves. HPLC-DAD-ESI-MS and HPLC-DAD were used for the characterization of the extract and determination of the major ingredients. Afterwards, the TPC and AA were determined. The cytotoxic and genotoxic effect of the extract on cultured human lymphocytes at concentrations of 10, 25, and 50 μg mL-1 was investigated via the Cytokinesis Block MicroNucleus (CBMN) assay. Moreover, its antigenotoxic potential against the mutagenic agent mitomycin C (MMC) was assessed using the same assay. The hydromethanolic extract comprises numerous metabolites, with rosmarinic acid being the major compound. It had a high value of TPC and exerted significant AA as shown by the results of the Ferric Reducing Antioxidant Power (FRAP) and Radical Scavenging Activity by DPPH• assays. A dose-dependent cytotoxic potential was recorded, with the highest dose (50 μg mL-1) exhibiting statistically significant cytotoxicity. None of the tested concentrations induced significant micronuclei (MN) frequencies, indicating a lack of genotoxicity. All tested concentrations reduced the MMC-mediated genotoxic effects, with the two lowest showing statistically significant antigenotoxic potential.
Collapse
Affiliation(s)
- Lamprini S Stavropoulou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Ioanna Efthimiou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Lambrini Giova
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Chrysoula Manoli
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Paraskevi S Sinou
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Aris Zografidis
- Laboratory of Botany, Department of Biology, University of Patras, GR-26504 Patras, Greece
| | - Fotini N Lamari
- Laboratory of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| |
Collapse
|
17
|
Pizani RS, Viganó J, Contieri LS, Strieder MM, Kamikawashi RK, Vilegas W, de Souza Mesquita LM, Rostagno MA. New selective and sustainable ultrasound-assisted extraction procedure to recover carnosic and rosmarinic acids from Rosmarinus officinalis by sequential use of bio-based solvents. Food Chem 2024; 435:137540. [PMID: 37778266 DOI: 10.1016/j.foodchem.2023.137540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
Carnosic (CA) and rosmarinic (RA) acids are the primary phenolic acids in hydrophilic rosemary extracts. Their combination exhibits high antioxidant activity and can be explored in several applications. This study aimed to develop an extraction procedure using bio-based solvents to recover two rosemary extracts, one rich in CA and the other in RA. By using ultrasound-assisted extraction (UAE) and a pool of 34 solvents, we evaluated nominal power (W), extraction time (min), and solvent water percentage (% H2O) regarding yield and selectivity. The authors propose a sequential UAE procedure validated by applying ethanol 99.5 % (v/v), 240 W, and 5 min to recover a rich fraction of 24.0 mgCA.gbiomass-1; followed by a second step using AmAc:LA (1:2 M ratio), 20 % H2O (m/m), 320 W, and 5 min that resulted in 8.4 mgRA.gbiomass-1. Our results indicate that modulating the solvent composition and process temperature is critical to increasing extraction yields and selectivity.
Collapse
Affiliation(s)
- Rodrigo S Pizani
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo, Brazil; Centro de Ciências da Natureza, Universidade Federal de São Carlos, Rod. Lauri Simões de Barros, km 12 - SP 189, Buri, SP 18290-000, Brazil
| | - Letícia S Contieri
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo, Brazil
| | - Monique M Strieder
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo, Brazil
| | - Renan K Kamikawashi
- UNESP - São Paulo State University, Institute of Biosciences, São Vicente, Brazil
| | - Wagner Vilegas
- UNESP - São Paulo State University, Institute of Biosciences, São Vicente, Brazil
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo, Brazil
| | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, 13484-350 Limeira, São Paulo, Brazil.
| |
Collapse
|
18
|
Al-Jamal H, Idriss S, Roufayel R, Abi Khattar Z, Fajloun Z, Sabatier JM. Treating COVID-19 with Medicinal Plants: Is It Even Conceivable? A Comprehensive Review. Viruses 2024; 16:320. [PMID: 38543686 PMCID: PMC10974729 DOI: 10.3390/v16030320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 05/23/2024] Open
Abstract
In 2020, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) challenged the world with a global outbreak that led to millions of deaths worldwide. Coronavirus disease 2019 (COVID-19) is the symptomatic manifestation of this virus, which can range from flu-like symptoms to utter clinical complications and even death. Since there was no clear medicine that could tackle this infection or lower its complications with minimal adverse effects on the patients' health, the world health organization (WHO) developed awareness programs to lower the infection rate and limit the fast spread of this virus. Although vaccines have been developed as preventative tools, people still prefer going back to traditional herbal medicine, which provides remarkable health benefits that can either prevent the viral infection or limit the progression of severe symptoms through different mechanistic pathways with relatively insignificant side effects. This comprehensive review provides scientific evidence elucidating the effect of 10 different plants against SARS-CoV-2, paving the way for further studies to reconsider plant-based extracts, rich in bioactive compounds, into more advanced clinical assessments in order to identify their impact on patients suffering from COVID-19.
Collapse
Affiliation(s)
- Hadi Al-Jamal
- Faculty of Public Health 3, Lebanese University, Tripoli 1100, Lebanon;
| | - Sara Idriss
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Rabih Roufayel
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Tripoli P.O. Box 100, Lebanon;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Jean-Marc Sabatier
- INP, Inst Neurophysiopathol, Aix-Marseille Université, CNRS, 13385 Marseille, France
| |
Collapse
|
19
|
Fernandes S, Vieira M, Prudêncio C, Ferraz R. Betulinic Acid for Glioblastoma Treatment: Reality, Challenges and Perspectives. Int J Mol Sci 2024; 25:2108. [PMID: 38396785 PMCID: PMC10889789 DOI: 10.3390/ijms25042108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Betulinic acid is a naturally occurring compound that can be obtained through methanolic or ethanolic extraction from plant sources, as well as through chemical synthesis or microbial biotransformation. Betulinic acid has been investigated for its potential therapeutic properties, and exhibits anti-inflammatory, antiviral, antimalarial, and antioxidant activities. Notably, its ability to cross the blood-brain barrier addresses a significant challenge in treating neurological pathologies. This review aims to compile information about the impact of betulinic acid as an antitumor agent, particularly in the context of glioblastoma. Importantly, betulinic acid demonstrates selective antitumor activity against glioblastoma cells by inhibiting proliferation and inducing apoptosis, consistent with observations in other cancer types. Compelling evidence published highlights the acid's therapeutic action in suppressing the Akt/NFκB-p65 signaling cascade and enhancing the cytotoxic effects of the chemotherapeutic agent temozolomide. Interesting findings with betulinic acid also suggest a focus on researching the reduction of glioblastoma's invasiveness and aggressiveness profile. This involves modulation of extracellular matrix components, remodeling of the cytoskeleton, and secretion of proteolytic proteins. Drawing from a comprehensive review, we conclude that betulinic acid formulations as nanoparticles and/or ionic liquids are promising drug delivery approaches with the potential for translation into clinical applications for the treatment and management of glioblastoma.
Collapse
Affiliation(s)
- Sílvia Fernandes
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Center for Research on Health and Environment (CISA), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Mariana Vieira
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
| | - Cristina Prudêncio
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Ricardo Ferraz
- Center for Translational Health and Medical Biotechnology Research (TBIO), School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal; (S.F.); (C.P.)
- Ciências Químicas e das Biomoléculas, School of Health (ESS), Polytechnic University of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
20
|
Yao Y, Choe U, Li Y, Liu Z, Zeng M, Wang TTY, Sun J, Wu X, Pehrsson P, He X, Zhang Y, Gao B, Moore JC, Chen P, Slavin M, Yu LL. Chemical Composition of Rosemary ( Rosmarinus officinalis L.) Extract and Its Inhibitory Effects on SARS-CoV-2 Spike Protein-ACE2 Interaction and ACE2 Activity and Free Radical Scavenging Capacities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18735-18745. [PMID: 37988686 DOI: 10.1021/acs.jafc.3c02301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This study evaluated the chemical composition of rosemary water extract (RWE) and its influence on mechanisms by which the SARS-CoV-2 virus enters into cells as a potential route for reducing the risk of COVID-19 disease. Compounds in RWE were identified using UHPLC-MS/MS. The inhibitory effect of RWE was then evaluated on binding between the SARS-CoV-2 spike protein (S-protein) and ACE2 and separately on ACE2 activity/availability. Additionally, total phenolic content (TPC) and free radical scavenging capacities of RWE against HO•, ABTS•+, and DPPH• were assessed. Twenty-one compounds were tentatively identified in RWE, of which tuberonic acid hexoside was identified for the first time in rosemary. RWE dose of 33.3 mg of rosemary equivalents (RE)/mL suppressed the interaction between S-protein and ACE2 by 72.9%, while rosmarinic and caffeic acids at 3.3 μmol/mL suppressed the interaction by 36 and 55%, respectively. RWE at 5.0, 2.5, and 0.5 mg of RE/mL inhibited ACE2 activity by 99.5, 94.5, and 68.6%, respectively, while rosmarinic acid at 0.05 and 0.01 μmol/mL reduced ACE2 activity by 31 and 8%, respectively. RWE had a TPC value of 72.5 mg GAE/g. The results provide a mechanistic basis on which rosemary may reduce the risk of SARS-CoV-2 infection and the development of COVID-19.
Collapse
Affiliation(s)
- Yuanhang Yao
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Uyory Choe
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Yanfang Li
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihao Liu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Melody Zeng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Thomas T Y Wang
- Agricultural Research Service, United States Department of Agriculture, Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Jianghao Sun
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Xianli Wu
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Pamela Pehrsson
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Xiaohua He
- Agricultural Research Service, United States Department of Agriculture, Western Regional Research Center, Albany, California 94710, United States
| | - Yaqiong Zhang
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Boyan Gao
- Institute of Food and Nutraceutical Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jeffrey C Moore
- Moore FoodTech, LLC, Silver Spring, Maryland 20910, United States
| | - Pei Chen
- Agricultural Research Service, United States Department of Agriculture, Methods and Application of Food Composition Laboratory, Beltsville Human Nutrition Research Center, Beltsville, Maryland 20705, United States
| | - Margaret Slavin
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| | - Liangli Lucy Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
21
|
Iobbi V, Parisi V, Bernabè G, De Tommasi N, Bisio A, Brun P. Anti-Biofilm Activity of Carnosic Acid from Salvia rosmarinus against Methicillin-Resistant Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3679. [PMID: 37960038 PMCID: PMC10647425 DOI: 10.3390/plants12213679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The Salvia rosmarinus "Eretto Liguria" ecotype was studied as a source of valuable bioactive compounds. LC-MS analysis of the methanolic extract underlined the presence of diterpenoids, triterpenoids, polyphenolic acids, and flavonoids. The anti-virulence activity of carnosic acid along with the other most abundant compounds against methicillin-resistant Staphylococcus aureus (MRSA) was evaluated. Only carnosic acid induced a significant reduction in the expression of agrA and rnaIII genes, which encode the key components of quorum sensing (QS), an intracellular signaling mechanism controlling the virulence of MRSA. At a concentration of 0.05 mg/mL, carnosic acid inhibited biofilm formation by MRSA and the expression of genes involved in toxin production and made MRSA more susceptible to intracellular killing, with no toxic effects on eukaryotic cells. Carnosic acid did not affect biofilm formation by Pseudomonas aeruginosa, a human pathogen that often coexists with MRSA in complex infections. The selected ecotype showed a carnosic acid content of 94.3 ± 4.3 mg/g. In silico analysis highlighted that carnosic acid potentially interacts with the S. aureus AgrA response regulator. Our findings suggest that carnosic acid could be an anti-virulence agent against MRSA infections endowed with a species-specific activity useful in multi-microbial infections.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Giulia Bernabè
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (V.P.); (N.D.T.)
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy;
| | - Paola Brun
- Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35121 Padova, Italy; (G.B.); (P.B.)
| |
Collapse
|
22
|
Francolino R, Martino M, Caputo L, Amato G, Chianese G, Gargiulo E, Formisano C, Romano B, Ercolano G, Ianaro A, De Martino L, Feo VD. Phytochemical Constituents and Biological Activity of Wild and Cultivated Rosmarinus officinalis Hydroalcoholic Extracts. Antioxidants (Basel) 2023; 12:1633. [PMID: 37627628 PMCID: PMC10451299 DOI: 10.3390/antiox12081633] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rosmarinus officinalis L. is an aromatic evergreen plant from the Lamiaceae family. The purpose of this study was to compare the chemical profile and bioactivities of hydroalcoholic extracts derived from wild and cultivated R. officinalis. The chemical composition of the extracts was evaluated via LC-MS analysis, which revealed the presence of a wide range of phenolic compounds, including flavonoids, phenolic and terpenes. Both extracts showed a similar interesting antioxidant activity, probably related to their content of phenol and flavonoids. The analysis of anti-acetylcholinesterase (AChE), anti-butyrylcholinesterase (BChE), and anti-α-amylase activities showed analogous inhibition, except for AChE, in which the wild type was more active than the cultivated one. Finally, in vitro studies were performed using the J774A.1 murine macrophage cell line, to characterize the anti-inflammatory and the antioxidant effects of the extracts. As expected, pretreatment with the extracts significantly reduced the production proinflammatory cytokines and ROS through modulation of the nitric oxide pathway and the mitochondrial activity. Importantly, it is observed that the anti-inflammatory effect of the extracts was explicated through the inhibition of NF-kB and its downstream mediator COX-2. Collectively, these results demonstrated that these extracts could represent a starting point for developing novel therapeutic strategies for the treatment of inflammation-based diseases. Moreover, since no significant changes were observed in terms of composition and activity, both wild and cultivated R. officinalis extracts can be recommended for food and pharmaceutical purposes.
Collapse
Affiliation(s)
- Rosaria Francolino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Mara Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Giuseppe Amato
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Giuseppina Chianese
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Ernesto Gargiulo
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Benedetta Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Giuseppe Ercolano
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine and Surgery, University of Napoli Federico II, Via D. Montesano, 49, 80131 Napoli, Italy; (G.C.); (E.G.); (B.R.); (G.E.); (A.I.)
| | - Laura De Martino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (R.F.); (M.M.); (L.C.); (G.A.); (V.D.F.)
- Institute of Food Science, National Research Council (C.N.R.), Via Roma, n. 60, 83100 Avellino, Italy
| |
Collapse
|
23
|
Nasr A, Yosuf I, Turki Z, Abozeid A. LC-MS metabolomics profiling of Salvia aegyptiaca L. and S. lanigera Poir. with the antimicrobial properties of their extracts. BMC PLANT BIOLOGY 2023; 23:340. [PMID: 37365525 DOI: 10.1186/s12870-023-04341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Salvia L. (Lamiaceae) found in almost all countries in temperate and tropical regions. Both S. aegyptiaca L. and S. lanigera Poir. have a rather wide distribution in Egypt (Mediterranean region, Gebel Elba and nearly the whole Sinai). Salvia species showed antibacterial and antifungal activities against several groups of food microorganisms and pathogens, so they are considered as a natural foods preservatives. AIM Investigate the phytochemical profiles of S. aegyptiaca & S. lanigera collected from their natural habitats in Egypt and test the antimicrobial activities of both species against some bacteria and fungi pathogenic strains. METHODOLOGY In the present study, S. aegyptiaca and S. lanigera were collected from their natural habitat. Total phenolics and flavonoids contents were measured for aerial parts of both Salvia spp.. The separation and identification of the pure active materials of both Salvia sp. by using LC-MS system (UHPLC-TSQ Quantum Mass Spectrometer). The antimicrobial activities of the ethanol, water and benzene extracts of the two species were tested against different pathogenic strains and compared with the standard antimicrobial drug (Gentamycin). Antimicrobial activity was determined by using agar disk diffusion method. RESULTS The phenolics content in S. lanigera 132.61±6.23 mg/g and S. aegyptiaca 125.19±4.97 mg/g, while the flavonoids content was 35.68±1.84 and 40.63±2.11 mg/g, respectively. Through LC-MS analysis, two compounds were detected in both species; heptadecanoyl coenzyme A, that the highest percentage (13.5%) in S. aegyptiaca and (11.5 %) in S. lanigera. Oenin, in a peak area of 3.1% in S. aegyptiaca and 1.2 % in S. lanigera. Ethanol extract of the two species had the most inhibitory effect against all tested microorganisms that exceeded the effect of the standard, except for Mucor reinelloids which was more sensitive to the water extract. Moreover, S. lanigera ethanol extract showed larger inhibition zone than S. aegyptiaca in all tested microorganisms except for Pseudomonas aeruginosa. CONCLUSION This study shows the important phytochemicals that improve the antibacterial and antifungal activities of Salvia aegyptiaca and S. lanigera.
Collapse
Affiliation(s)
- Alyaa Nasr
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Egypt
| | - Israa Yosuf
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Egypt
| | - Zaki Turki
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Egypt
| | - Ann Abozeid
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shebin Elkoom, 32511, Egypt.
| |
Collapse
|
24
|
Sehim AE, Amin BH, Yosri M, Salama HM, Alkhalifah DH, Alwaili MA, Abd Elghaffar RY. GC-MS Analysis, Antibacterial, and Anticancer Activities of Hibiscus sabdariffa L. Methanolic Extract: In Vitro and In Silico Studies. Microorganisms 2023; 11:1601. [PMID: 37375103 DOI: 10.3390/microorganisms11061601] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of bacteria that are resistant to several antibiotics has represented a serious hazard to human health globally. Bioactive metabolites from medicinal plants have a wide spectrum of therapeutic possibilities against resistant bacteria. Therefore, this study was performed to investigate the antibacterial efficacy of various extracts of three medicinal plants as Salvia officinalis L., Ziziphus spina-christi L., and Hibiscus sabdariffa L. against pathogenic Gram-negative Enterobacter cloacae (ATCC13047), Pseudomonas aeruginosa (RCMB008001), Escherichia coli (RCMB004001), and Gram-positive Staphylococcus aureus (ATCC 25923), bacteria using the agar-well diffusion method. Results revealed that, out of the three examined plant extracts, the methanol extract of H. sabdariffa L. was the most effective against all tested bacteria. The highest growth inhibition (39.6 ± 0.20 mm) was recorded against E. coli. Additionally, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of the methanol extract of H. sabdariffa were detected in the case of all tested bacteria. Moreover, an antibiotic susceptibility test revealed that all tested bacteria showed multidrug resistance (MDR). While 50% of tested bacteria were sensitive and 50% were intermediately sensitive to piperacillin/tazobactam (TZP) based on the inhibition zone but still less than the extract. Synergistic assay demonstrated the promising role of using a combination of H. sabdariffa L. and (TZP) against tested bacteria. A surface investigation using a scanning electron microscope of the E. coli treated with TZP, extract, or a combination of the two revealed extremely considerable bacterial cell death. In addition, H. sabdariffa L. has a promising anticancer role versus Caco-2 cells with IC50 of 17.51 ± 0.07 µg/mL and minimal cytotoxicity upon testing versus Vero cells with CC50 of 165.24 ± 0.89 µg/mL. Flow cytometric analysis confirmed that H. sabdariffa extract significantly increased the apoptotic rate of Caco-2-treated cells compared to the untreated group. Furthermore, GC-MS analysis confirmed the existence of various bioactive components in the methanol hibiscus extract. Utilizing molecular docking with the MOE-Dock tool, binding interactions between n-Hexadecanoic acid, hexadecanoic acid-methyl ester, and oleic acid, 3-hydroxypropyl ester were evaluated against the target crystal structures of E. coli (MenB) (PDB ID:3T88) and the structure of cyclophilin of a colon cancer cell line (PDB ID: 2HQ6). The observed results provide insight into how molecular modeling methods might inhibit the tested substances, which may have applications in the treatment of E. coli and colon cancer. Thus, H. sabdariffa methanol extract is a promising candidate to be further investigated for developing alternative natural therapies for infection treatment.
Collapse
Affiliation(s)
- Amira E Sehim
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11787, Egypt
| | - Hanaa M Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said 42521, Egypt
| | - Dalal Hussien Alkhalifah
- Department of Biology, Collage of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maha Abdullah Alwaili
- Department of Biology, Collage of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rasha Y Abd Elghaffar
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| |
Collapse
|
25
|
Gharehbagh HJ, Ebrahimi M, Dabaghian F, Mojtabavi S, Hariri R, Saeedi M, Faramarzi MA, Khanavi M. Chemical composition, cholinesterase, and α-glucosidase inhibitory activity of the essential oils of some Iranian native Salvia species. BMC Complement Med Ther 2023; 23:184. [PMID: 37270541 DOI: 10.1186/s12906-023-04004-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/19/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The plants from Salvia genus contain widely distributed species which have been used in folk medicine as well as pharmaceutical and food industries. METHODS The chemical composition of 12 native Iranian Salvia species (14 plants) was identified using gas chromatography-mass spectrometry (GC-MS). Also, the inhibitory activity of all essential oils (EOs) was evaluated toward α-glucosidase and two types of cholinesterase (ChE) using spectrophotometric methods. The in vitro α-glucosidase inhibition assay was performed by the determination of p-nitrophenol (pNP) obtained from the enzymatic dissociation of p-nitrophenol-α-D-glucopyranoside (pNPG) as the substrate. In vitro ChE inhibitory assay was conducted based on the modified Ellman's procedure using the measurement of 5-thio-2-nitrobenzoic acid produced from the hydrolysis of thiocholine derivatives as the substrate, in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). RESULTS Totally, 139 compounds were detected and caryophyllene oxide and trans-β-caryophyllene were the most abundant compounds in all EOs. The yield of EOs extracted from the plants were also calculated in the range of 0.06 to 0.96% w/w. Herein, α-glucosidase inhibitory activity of 8 EOs was reported for the first time and among all, S. spinosa L. was found to be the most potent inhibitor (90.5 inhibition at 500 μg/mL). Also, the ChE inhibitory activity of 8 species was reported for the first time and our results showed that the BChE inhibitory effect of all EOs was more potent than that of AChE. The ChE inhibition assay indicated that S. mirzayanii Rech.f. & Esfand. collected from Shiraz was the most potent inhibitor (72.68% and 40.6% at the concentration of 500 μg/mL, toward AChE and BChE, respectively). CONCLUSIONS It seems that native Salvia species of Iran could be considered in the development of anti-diabetic and anti-Alzheimer's disease supplements.
Collapse
Affiliation(s)
- Houra Jazayeri Gharehbagh
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Ebrahimi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farid Dabaghian
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roshanak Hariri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Khanavi
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Martins-Gomes C, Silva AM. Natural Products as a Tool to Modulate the Activity and Expression of Multidrug Resistance Proteins of Intestinal Barrier. J Xenobiot 2023; 13:172-192. [PMID: 37092502 PMCID: PMC10123636 DOI: 10.3390/jox13020014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The role of intestinal barrier homeostasis in an individual’s general well-being has been widely addressed by the scientific community. Colorectal cancer is among the illnesses that most affect this biological barrier. While chemotherapy is the first choice to treat this type of cancer, multidrug resistance (MDR) is the major setback against the commonly used drugs, with the ATP-binding cassette transporters (ABC transporters) being the major players. The role of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), or breast cancer resistance protein (ABCG2) in the efflux of chemotherapeutic drugs is well described in cancer cells, highlighting these proteins as interesting druggable targets to reverse MDR, decrease drug dosage, and consequently undesired toxicity. Natural products, especially phytochemicals, have a wide diversity of chemical structures, and some particular classes, such as phenolic acids, flavonoids, or pentacyclic triterpenoids, have been reported as inhibitors of P-gp, MRP1, and ABCG2, being able to sensitize cancer cells to chemotherapy drugs. Nevertheless, ABC transporters play a vital role in the cell’s defense against xenobiotics, and some phytochemicals have also been shown to induce the transporters’ activity. A balance must be obtained between xenobiotic efflux in non-tumor cells and bioaccumulation of chemotherapy drugs in cancer cells, in which ABC transporters are essential and natural products play a pivotal role that must be further analyzed. This review summarizes the knowledge concerning the nomenclature and function of ABC-transporters, emphasizing their role in the intestinal barrier cells. In addition, it also focuses on the role of natural products commonly found in food products, e.g., phytochemicals, as modulators of ABC-transporter activity and expression, which are promising nutraceutical molecules to formulate new drug combinations to overcome multidrug resistance.
Collapse
|
27
|
Ürgeová E, Uváčková Ľ, Vaneková M, Maliar T. Antibacterial Potential of Microwave-Assisted Extraction Prepared Hydrolates from Different Salvia Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:1325. [PMID: 36987013 PMCID: PMC10052211 DOI: 10.3390/plants12061325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Salvia is a widely used herb that also contains essential oils and other valuable compounds. In this work, the hydrolates of five Salvia sp. were evaluated for their potential antimicrobial and antioxidant activity against four bacterial strains. The hydrolates were obtained from fresh leaves by microwave-assisted extraction. Chemical composition analysis by gas chromatography and mass spectrometry revealed that their major constituents were isopulegol (38.2-57.1%), 1,8-cineole (4.7-19.6%), and thujone (5.6-14.1%). The minimum inhibitory concentration (MIC) of the plant hydrolates was tested by the microdilution method at concentrations ranging from 1.0 to 512 μg/mL. The hydrolates prepared from Salvia officinalis and S. sclarea showed inhibitory activity on the tested Gram-positive and Gram-negative bacteria, taxon Salvia nemorosa showed inhibitory activity only partially. The hydrolate of S. divinorum had practically no antibacterial effect. Enterobacter asburiae was the only bacterium for which we found sensitivity to the hydrolate of S. aethiopis, with a MIC50 value of 216.59 µL/mL. The antioxidant activity of the hydrolates was low, ranging from 6.4 to 23.3%. Therefore, salvia hydrolates could be used as antimicrobial agents in medicine, cosmetics, and food preservation.
Collapse
|
28
|
Li Pomi F, Papa V, Borgia F, Vaccaro M, Allegra A, Cicero N, Gangemi S. Rosmarinus officinalis and Skin: Antioxidant Activity and Possible Therapeutical Role in Cutaneous Diseases. Antioxidants (Basel) 2023; 12:antiox12030680. [PMID: 36978928 PMCID: PMC10045493 DOI: 10.3390/antiox12030680] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The rosemary plant, Rosmarinus officinalis L., one of the main members of the Lamiaceae family, is currently one of the most promising herbal medicines due to its pharmaceutical properties. This research aimed to evaluate the antioxidant role of Rosmarinus officinalis and its bioactive compounds on the skin, with a focus on the newly emerging molecular mechanisms involved, providing extensive scientific evidence of its anti-inflammatory, antimicrobial, wound-healing and anticancer activity in dermatological practice. The search was conducted on articles concerning in vitro and in vivo studies in both animals and humans. The results obtained confirm the antioxidant role of R. officinalis. This assumption derives the possibility of using R. officinalis or its bioactive elements for the treatment of inflammatory and infectious skin pathologies. However, although the use of rosemary in the treatment of skin diseases represents a fascinating line of research, future perspectives still require large and controlled clinical trials in order to definitively elucidate the real impact of this plant and its components in clinical practice.
Collapse
Affiliation(s)
- Federica Li Pomi
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
- Correspondence:
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of Dermatology, University of Messina, 98125 Messina, Italy
| | - Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
29
|
Guimarães NSS, Ramos VS, Prado-Souza LFL, Lopes RM, Arini GS, Feitosa LGP, Silva RR, Nantes IL, Damasceno DC, Lopes NP, Rodrigues T. Rosemary (Rosmarinus officinalis L.) Glycolic Extract Protects Liver Mitochondria from Oxidative Damage and Prevents Acetaminophen-Induced Hepatotoxicity. Antioxidants (Basel) 2023; 12:antiox12030628. [PMID: 36978874 PMCID: PMC10045355 DOI: 10.3390/antiox12030628] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Rosmarinus officinalis L. (rosemary) is an aromatic culinary herb. Native to the Mediterranean region, it is currently cultivated worldwide. In addition to its use as a condiment in food preparation and in teas, rosemary has been widely employed in folk medicine and cosmetics. Several beneficial effects have been described for rosemary, including antimicrobial and antioxidant activities. Here, we investigated the mechanisms accounting for the antioxidant activity of the glycolic extract of R. officinalis (Ro) in isolated rat liver mitochondria (RLM) under oxidative stress conditions. We also investigated its protective effect against acetaminophen-induced hepatotoxicity in vivo. A crude extract was obtained by fractionated percolation, using propylene glycol as a solvent due to its polarity and cosmeceutical compatibility. The quantification of substances with recognized antioxidant action revealed the presence of phenols and flavonoids. Dereplication studies carried out through LC-MS/MS and GC-MS, supported by The Global Natural Product Social Molecular Networking (GNPS) platform, annotated several phenolic compounds, confirming the previous observation. In accordance, Ro decreased the production of reactive oxygen species (ROS) elicited by Fe2+ or t-BOOH and inhibited the lipid peroxidation of mitochondrial membranes in a concentration-dependent manner in RLM. Such an effect was also observed in liposomes as membrane models. Ro also prevented the oxidation of mitochondrial protein thiol groups and reduced glutathione (GSH). In model systems, Ro exhibited a potent scavenger activity toward 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radicals and superoxide anions. It also demonstrated an Fe2+ chelating activity. Moreover, Ro did not exhibit cytotoxicity or dissipate the mitochondrial membrane potential (∆Ψ) in rat liver fibroblasts (BRL3A cells). To evaluate whether such antioxidant protective activity observed in vitro could also be achieved in vivo, a well-established model of hepatotoxicity induced by acute exposure to acetaminophen (AAP) was used. This model depletes GSH and promotes oxidative-stress-mediated tissue damage. The treatment of rats with 0.05% Ro, administered intraperitoneally for four days, resulted in inhibition of AAP-induced lipid peroxidation of the liver and the prevention of hepatotoxicity, maintaining alanine and aspartate aminotransferase (ALT/AST) levels equal to those of the normal, non-treated rats. Together, these findings highlight the potent antioxidant activity of rosemary, which is able to protect mitochondria from oxidative damage in vitro, and effects such as the antioxidant and hepatoprotective effects observed in vivo.
Collapse
Affiliation(s)
- Natalia S. S. Guimarães
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
| | - Vyctória S. Ramos
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
| | - Laura F. L. Prado-Souza
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Rayssa M. Lopes
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Gabriel S. Arini
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Luís G. P. Feitosa
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Ricardo R. Silva
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Iseli L. Nantes
- Center for Natural and Human Sciences, Federal University of ABC, Santo André CEP 09210-580, SP, Brazil
| | - Debora C. Damasceno
- Laboratory of Experimental Research on Gynecology and Obstetrics, Sao Paulo State University (UNESP), Botucatu CEP 18618-687, SP, Brazil
| | - Norberto P. Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto CEP 14040-900, SP, Brazil
| | - Tiago Rodrigues
- Interdisciplinary Center of Biochemistry Investigation, University of Mogi das Cruzes (UMC), Mogi das Cruzes CEP 08780-911, SP, Brazil
- Correspondence: ; Tel.: +55-(11)-4996-8371
| |
Collapse
|
30
|
Safarpour B, Kenari RE, Farmani J. Evaluation of antioxidant properties of nanoencapsulated sage ( Salvia officinalis L.) extract in biopolymer coating based on whey protein isolate and Qodumeh Shahri ( Lepidium perfoliatum) seed gum to increase the oxidative stability of sunflower oil. Food Sci Nutr 2023; 11:1394-1402. [PMID: 36911848 PMCID: PMC10002883 DOI: 10.1002/fsn3.3177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Sage leaf extract (SLE) is considered an excellent source of bioactive compounds mainly because of its high content of phenolics, widely known as natural antioxidants. This study aimed to compare the performance of free/encapsulated SLE by different coatings in protecting sunflower oil against oxidative deterioration. The coating materials were whey protein isolate and qodumeh seed gum at different ratios (1:0, 1:1, and 0:1). Each nanocapsule was analyzed for particle size, zeta potential, encapsulation efficiency, phenolics release, and SEM images. The total phenolic compounds of SLE were 31.12 mg GA/g. The antioxidant activity of SLE was increased in both DPPH and FRAP assays by increasing extract concentration from 50 to 250 ppm. All nanoparticles exhibited nanometric size, negative zeta potential, encapsulation efficiency higher than 60%, and gradual release during storage. The oxidative stability of sunflower oil with or without the incorporation of 250 ppm of free/encapsulated SLE was evaluated during 24 days of storage at 60°C. Peroxide value (PV), thiobarbituric acid value (TBA), oxidative stability index (OSI), color index (CI), and conjugated dienes (CD) were determined. COPM nanoparticles showed the lowest PV, TBA, CI, and CD but both SGUM and WHEY were more effective in delaying oil oxidation than TBHQ and free extract. Higher OSI was observed in oil-containing nanoparticles with composite coating. Results obtained reinforce the use of whey protein isolate and qodumeh seed gum as a coating for encapsulating SLE to increase the shelf life of sunflower oil as a natural antioxidant.
Collapse
Affiliation(s)
- Behnaz Safarpour
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Reza E. Kenari
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| | - Jamshid Farmani
- Department of Food Science and TechnologySari Agricultural Sciences and Natural Resources UniversitySariIran
| |
Collapse
|
31
|
Malik MA, Albeladi SS, Al-Maaqar SM, Alshehri AA, Al-Thabaiti SA, Khan I, Kamli MR. Biosynthesis of Novel Ag-Cu Bimetallic Nanoparticles from Leaf Extract of Salvia officinalis and Their Antibacterial Activity. Life (Basel) 2023; 13:life13030653. [PMID: 36983809 PMCID: PMC10099723 DOI: 10.3390/life13030653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Bimetallic nanoparticles exhibit bifunctional or synergistic effects prevailing between two metals with the capabilities of enhanced electronic, catalytic, and optical properties. Green synthetic routes have gained tremendous interest because of the noninvolvement of toxic and harmful chemical reagents in preparation. Therefore, we develop bimetallic Ag-Cu nanoparticles (Ag-Cu NPs) through an eco-friendly and biocompatible preparation method. In this study, Ag-Cu NPs have been synthesized from leaf extracts of the commonly known sage, S. officinalis. The extract has a rich phytochemical composition, including bioreducing polyphenols, flavonoids, and capping/stabilizing agents. An array of well-known spectroscopic and microscopic techniques were used to characterize the as-prepared Ag-Cu bimetallic nanoparticles, including X-ray diffraction (XRD), ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The size of the Ag-Cu NPs was found to be 50 nm with a spherical shape and an almost uniform distribution. The antibacterial effect was further evaluated using agar well diffusion and disc diffusion assays. Ag-Cu NPs exhibit antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria strains. The minimum inhibitory concentration (MIC) of Ag-Cu NPs was between 5 g/mL and 15 g/mL. The Ag-Cu NPs inhibit biofilm formation at 25 g/mL and 50 g/mL. The results of biogenic Ag-Cu NPs provide novel antibacterial activity against Gram-positive and Gram-negative bacteria, as well as antibiofilm activity. Hence, Ag-Cu NPs might serve as a novel antibacterial agent with potential antibacterial and antibiofilm properties.
Collapse
Affiliation(s)
- Maqsood Ahmad Malik
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (M.A.M.); (M.R.K.)
| | - Shroog ShdiedRoyji Albeladi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Saleh Mohammed Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdulmohsen Ali Alshehri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shaeel Ahmed Al-Thabaiti
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- Applied Science Section, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (M.A.M.); (M.R.K.)
| |
Collapse
|
32
|
Tosun F, Göger F, İşcan G, Kürkçüoğlu M, Kuran FK, Miski M. Biological Activities of the Fruit Essential Oil, Fruit, and Root Extracts of Ferula drudeana Korovin, the Putative Anatolian Ecotype of the Silphion Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:830. [PMID: 36840178 PMCID: PMC9959981 DOI: 10.3390/plants12040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
In the present study, preliminary phytochemical investigations were performed on the fruit essential oil and antioxidant-rich methanolic extracts of the fruits and roots of Ferula drudeana, the putative Anatolian ecotype of the Silphion plant, to corroborate its medicinal plant potential and identify its unique characteristics amongst other Ferula species. The essential oil from the fruits of the endemic species Ferula drudeana collected from Aksaray was analyzed by GC and GC/MS. The main components of the oil were determined as shyobunone (44.2%) and 6-epishyobunone (12.6%). The essential oil of the fruits and various solvent extracts of the fruits and roots of F. drudeana were evaluated for their antibacterial and anticandidal activity using microbroth dilution methods. The essential oil of the fruits, methanol, and methylene chloride extracts of the fruits and roots showed weak to moderate inhibitory activity against all tested microorganisms with MIC values of 78-2000 µg/mL. However, the petroleum ether extract of the roots showed remarkable inhibitory activity against Candida krusei and Candida utilis with MIC values of 19.5 and 9.75 µg/mL, respectively. Furthermore, all the samples were tested for their antioxidant activities using DPPH• TLC spot testing, online HPLC-ABTS screening, and DPPH/ABTS radical scavenging activity assessment assays. Methanolic extracts of the fruits and roots showed strong antioxidant activity in both systems.
Collapse
Affiliation(s)
- Fatma Tosun
- Department of Pharmacognosy, School of Pharmacy, İstanbul Medipol University, İstanbul 34083, Turkey
| | - Fatih Göger
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Gökalp İşcan
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Mine Kürkçüoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir 26470, Turkey
| | - Fadıl Kaan Kuran
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey
| | - Mahmut Miski
- Department of Pharmacognosy, Faculty of Pharmacy, İstanbul University, İstanbul 34116, Turkey
| |
Collapse
|
33
|
Taheri A, Ganjeali A, Arefi-Oskouie A, Çirak C, Cheniany M. The variability of phenolic constituents and antioxidant properties among wild populations of Ziziphora clinopodioides Lam. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:221-237. [PMID: 36875730 PMCID: PMC9981857 DOI: 10.1007/s12298-023-01283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In this study, phenolic derivatives and antioxidant activities of fourteen Ziziphora clinopodioides populations, as well as LC-MS/MS analysis of three specific flavonoids were evaluated. Generally, high contents of phenolic derivatives were found in shoot extracts compared to roots. LC-MS/MS, a powerful analytical technique, was employed for the identification and quantify the individual flavonoids in Z. clinopodioides populations' extracts, in a quantity order of quercetin > rutin > apigenin. Scavenging activity by DPPH and FRAP was performed, and accordingly, in the shoot, the highest values for the DDPH were 4.61 ± 0.4 and 7.59 ± 0.26 µg ml- 1 in populations 1 and 13, respectively, and for the FRAP were 328.61 ± 5.54 and 292.84 ± 2.85 mg g DW- 1, in populations 6 and 1 respectively. Multivariate analysis results of the principal component analysis indicated the amount of polyphenols to be useful indicators in differentiating the geographical localities which explain 92.7% of the total variance. According to the results of hierarchical cluster analysis, the studied populations could be separated into two groups in that the contents of phenolic derivatives and antioxidant activities of different plant parts. Both shoot and root samples were well discriminated with the orthogonal partial least squares discriminant analysis (R2X: 0.861; Q2: 0.47) model. The validity of the model was confirmed by using receiver operating characteristic curve analysis and permutation tests. Such data make an important addition to our current knowledge of Ziziphora chemistry and are decisive in the identification of germplasms with a homogeneous phytochemical profile, high chemical content and bioactivity. The present results could also be helpful for the potential application of Z. clinopodioides in different kinds of industries as natural antioxidants. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01283-y.
Collapse
Affiliation(s)
- Azadeh Taheri
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| | - Ali Ganjeali
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| | - Afsaneh Arefi-Oskouie
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cüneyt Çirak
- Vocational High School of Bafra, Ondokuz Mayis University, Samsun, Turkey
| | - Monireh Cheniany
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, 91779-48974 Mashhad, Iran
| |
Collapse
|
34
|
Hassan M, Ismail H, Hammam O, Elsayed A, Othman O, Aly Hassan S. Natural inhibitors for acetylcholinesterase and autophagy modulators as effective antagonists for tau and β-amyloid in Alzheimer's rat model. Biomarkers 2023; 28:273-288. [PMID: 36594248 DOI: 10.1080/1354750x.2022.2164617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Phytochemicals have amazing biological effects in relation to age-related illnesses and are increasingly being studied in clinical trials. The goal of this study was to examine the effectiveness of the aqueous extracts of Rosmarinus officinalis L. (Rosemary) and Crocus sativus L. (Saffron) and their combinations as tau and β-amyloid antagonists in an Alzheimer's rat model. Methods: AlCl3 and D-galactose (150 & 300 mg/kg) were used to create the Alzheimer's neuroinflammation rat model. The animals were subsequently given the two extracts and their combinations (500 mg/kg) along 15 days. The cognitive impairment, oxidative stress, tau & amyloid neuroproteins, acetylcholine, acetylcholinesterase neurotransmitters, proinflammatory cytokines, LC3 as an autophagy marker, computational analysis, and morphological alterations were all assessed. Results: When compared to the conventional donepezil and normal groups, the treated groups showed a significant improvement in all calculated parameters. The cortex and hippocampus have a better morphological appearance. In silico analysis found that these extracts may have an affinity for and impede the activity of some proteins thought to be essential regulators of disease progression. Conclusion: Rosemary and Saffron extracts by the power of their constituents were able to alleviate the neurotoxicity of AlCl3 & D-galactose and regulate the natural autophagy process.
Collapse
Affiliation(s)
- Mervat Hassan
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Hisham Ismail
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Olfat Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Abdullrahman Elsayed
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, British University in Egypt, Al Shorouk City, Egypt
| | - Othman Othman
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Sohair Aly Hassan
- Therapeutic Chemistry Department, Pharmaceutical Industries Research Institute, National Research Center, Cairo, Egypt
| |
Collapse
|
35
|
Maisto M, Piccolo V, Novellino E, Schiano E, Iannuzzo F, Ciampaglia R, Summa V, Tenore GC. Optimization of Ursolic Acid Extraction in Oil from Annurca Apple to Obtain Oleolytes with Potential Cosmeceutical Application. Antioxidants (Basel) 2023; 12:224. [PMID: 36829781 PMCID: PMC9952326 DOI: 10.3390/antiox12020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Ursolic acid (UA) is a plant-derived molecule with relevant anti-aging activity, which makes this molecule a potential functional active ingredient in cosmetic formulations. The main objectives of this study were to optimize the UA extraction process from Annurca apple (AA) with sunflower oil as a lyophilic food-grade solvent using Response Surface Methodology (RSM) to determine the potential cosmetic application of the obtained extract. The results of RSM analysis showed a maximum UA yield of 784.40 ± 7.579 (μg/mL) obtained under the following optimized conditions: sunflower oil as extraction solvent, 68.85 °C as extraction temperature, and 63 h as extraction time. The HPLC-DAD-HESI-MS/MS analysis performed on the extract obtained under these conditions, named Optimized Annurca Apple Oleolyte (OAAO), led to the identification of twenty-three phenolic and terpenoid molecules and the quantification of eight of them. To explore the biological properties of OAAO, the in vitro antioxidant activity was evaluated by DPPH, ABTS, and FRAP assays, resulting in 16.63 ± 0.22, 5.90 ± 0.49, and 21.72 ± 0.68 μmol Trolox equivalent/g extract, respectively. Moreover, the permeation study has shown that OAAO may be considered a safe and functional ingredient in potential cosmetic formulations.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Vincenzo Piccolo
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Faculty of Medicine, University Cattolica del Sacro Cuore, Largo Francesco Vito, 00168 Rome, Italy
| | - Elisabetta Schiano
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
36
|
Deaconu M, Prelipcean AM, Brezoiu AM, Mitran RA, Isopencu G, Matei C, Berger D. Novel Collagen-Polyphenols-Loaded Silica Composites for Topical Application. Pharmaceutics 2023; 15:pharmaceutics15020312. [PMID: 36839635 PMCID: PMC9962153 DOI: 10.3390/pharmaceutics15020312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Lesions can affect skin functions and cause a simple issue, such as dehydration, or more challenging complications, such as bacterial infections. The purpose of this study was to design composites for topical application that can prevent and/or assist in bacterial infections and support cell regeneration using natural components. A polyphenolic extract obtained from Salvia officinalis was embedded in functionalized mesoporous silica nanoparticles for better stability, followed by their distribution into a collagen porous scaffold. The resulting polyphenols-loaded MSN exhibited enhanced antibacterial activity and good cytocompatibility. Improved thermal stability of the collagen porous scaffold was obtained due to the presence of the functionalized MSN. For the first time, collagen-polyphenols-loaded silica composites were reported in the literature as potential wound dressings. The newly developed composites showed excellent sterility.
Collapse
Affiliation(s)
- Mihaela Deaconu
- CAMPUS Research Institute, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Ana-Maria Prelipcean
- National Institute of R&D for Biological Sciences, 296 Splaiul Independetei, 060031 Bucharest, Romania
- Correspondence: (A.-M.P.); (D.B.)
| | - Ana-Maria Brezoiu
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Raul-Augustin Mitran
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Gabriela Isopencu
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Cristian Matei
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Daniela Berger
- Faculty of Chemical Engineering and Biotechnologies, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
- Correspondence: (A.-M.P.); (D.B.)
| |
Collapse
|
37
|
Takayama KS, Monteiro MC, Saito P, Pinto IC, Nakano CT, Martinez RM, Thomaz DV, Verri WA, Baracat MM, Arakawa NS, Russo HM, Zeraik ML, Casagrande R, Couto RODO, Georgetti SR. Rosmarinus officinalis extract-loaded emulgel prevents UVB irradiation damage to the skin. AN ACAD BRAS CIENC 2022; 94:e20201058. [PMID: 36477988 DOI: 10.1590/0001-3765202220201058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 12/07/2022] Open
Abstract
UVB-irradiation increases the risk of various skin disorders, therefore leading to inflammation and oxidative stress. In this sense, antioxidant-rich herbs such as Rosmarinus officinalis may be useful in minimizing the damage promoted by reactive oxygen species. In this work, we report the efficacy of a R. officinalis hydroethanolic extract (ROe)-loaded emulgel in preventing UVB-related skin damage. Total phenols were determined using Folin-Ciocalteu assay, and the main phytocomponents in the extract were identified by UHPLC-HRMS. Moreover, in vitro sun protection factor (SPF) value of ROe was also assessed, and we investigated the in vivo protective effect of an emulgel containing ROe against UVB-induced damage in an animal model. The ROe exhibited commercially viable SPF activity (7.56 ± 0.16) and remarkable polyphenolic content (24.15 ± 0.11 mg (Eq.GA)/g). HPLC-MS and UHPLC-HRMS results showcased that the main compounds in ROe were: rosmarinic acid, carnosic acid and carnosol. The evaluation of the in vitro antioxidant activity demonstrated a dose-dependent effect of ROe against several radicals and the capacity to reduce iron. Therefore, we demonstrated that topical application of the formulation containing ROe inhibited edema formation, myeloperoxidase activity, GSH depletion and maintained ferric reducing (FRAP) and ABTS scavenging abilities of the skin after UVB exposure.
Collapse
Affiliation(s)
- Kátia S Takayama
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Mariana C Monteiro
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Priscila Saito
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Ingrid C Pinto
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Claudia T Nakano
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Renata M Martinez
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Douglas V Thomaz
- Universidade Federal de Goiás, Faculdade de Farmácia, Rua 240, s/n, Setor Leste Universitário, 74605-170 Goiânia, GO, Brazil
| | - Waldiceu A Verri
- Universidade Estadual de Londrina - UEL, Departamento de Patologia, Rodovia Celso Garcia Cid, Km 380, PR 445, Caixa Postal 10011, 86051-980 Londrina, PR, Brazil
| | - Marcela M Baracat
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Nilton S Arakawa
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Helena M Russo
- Universidade Estadual Paulista - UNESP, Instituto de Química, Núcleos de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais -NuBBE, Departamento de Química Orgânica, Avenida Prof. Francisco Degni, 55, 14800-060 Araraquara, SP, Brazil
| | - Maria L Zeraik
- Universidade Estadual de Londrina - UEL, Laboratório de Fitoquímica e Biomoléculas - LabFitoBio, Departamento de Química, Rodovia Celso Garcia Cid, Km 380, 86051-990 Londrina, PR, Brazil
| | - Rubia Casagrande
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| | - Renê O DO Couto
- Universidade Federal de São João del-Rei, Laboratório de Desenvolvimento Farmacotécnico - LADEF, Campus Centro-Oeste Dona Lindu, Rua Sebastião Gonçalves Coelho, 35501-296 Divinópolis, MG, Brazil
| | - Sandra R Georgetti
- Universidade Estadual de Londrina - UEL, Departamento de Ciências Farmacêuticas, Avenida Robert Koch, 60, Hospital Universitário, 86038-350 Londrina, PR, Brazil
| |
Collapse
|
38
|
Xie L, Li Z, Li H, Sun J, Liu X, Tang J, Lin X, Xu L, Zhu Y, Liu Z, Wang T. Fast Quantitative Determination of Principal Phenolic Anti-oxidants in Rosemary Using Ultrasound-Assisted Extraction and Chemometrics-Enhanced HPLC–DAD Method. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Kasem SM, Mira NM, Mahfouz ME, Helal IB. In Vitro Study to Evaluate the Efficacy of Ultrasonicated Ethanolic Extract of Rosmarinus officinalis and its Chitosan-Based Nanoparticles Against Eimeria tenella Oocysts of Chickens. AAPS PharmSciTech 2022; 23:295. [PMID: 36329254 PMCID: PMC9633124 DOI: 10.1208/s12249-022-02445-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, chitosan nanoparticles (CsNPs) were used as nanocarrier for ultrasonicated ethanolic extract of Rosmarinus officinalis (UEERO) as a new nanoformulation against Eimeria tenella. Herein, CsNPs have been synthesized by ionic gelation method at pH 3 (CsNPs3) and pH 5 (CsNPs5), followed by characterization of morphology, size, polydispersity index (PDI), surface charge, and loading efficiency of UEERO. An in vitro sporulation inhibition assay (10, 5, 2.5, 1.25, 0.62, 0.31, 0.15, 0.07, 0.04, 0.02, and 0.01 mg/ml normal saline solution) against E. tenella was conducted. Results showed that free CsNPs and UEERO-CsNPs3/5 were cubic- and spherical-shaped with positive charge and average size of ~ 150.8 nm (314.4 nm) and 151.7 nm (321.1 nm), respectively. The total loading efficiency using UV–vis spectrophotometer, was 80.05 at pH 5 and 64.39% at pH 3. The in vitro sporulation inhibition assay revealed that UEERO, CsNPs3/5, and UEERO-CsNPs3/5 showed a potential inhibitory effect on sporulation (%), distortion in wall (%), and sporocyst abnormality (%) in a dose-dependent manner. Accordingly, the concentration (10 mg/ml) showed the best efficacy after 24 h in UEERO, free CsNPs, and UEERO-CsNPs. Moreover, UEERO-CsNPs3 and UEERO-CsNPs5 had stopped the sporulation (%) after 72 h. Taken all together, UEERO-CsNPs3 and UEERO-CsNPs5 are best effective against E. tenella in a dose-dependent manner in terms of sporulation (%), distortion in wall (%), and sporocysts abnormality.
Collapse
Affiliation(s)
- Shaimaa M Kasem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt.
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Magdy E Mahfouz
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafr ElSheikh, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, EL Gharbia, 31527, Egypt
| |
Collapse
|
40
|
Yilmaz A, Uckaya F, Bayindir N, Guler EM, Toprak A, Kocyigit A, Esrefoglu M, Topcu G. Comparing healing effect against ulcerative colitis and toxicological effects of Rosmarinus officinalis: A comprehensive in vivo study of an edible plant in rats. J Food Biochem 2022; 46:e14299. [PMID: 35778816 DOI: 10.1111/jfbc.14299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022]
Abstract
Ulcerative colitis (UC) is a chronic and inflammatory disorder of the gastrointestinal (GI) tract. UC usually worsens the daily life of the patient and may sometimes become mortal. There is no known remedy discovered against UC, yet. Rosmarinus officinalis consists of many flavonoids, phenolics, and terpenoids possessing various biological activities such as anti-inflammatory. For this reason, in the present study, anti-ulcerative colitis effect of ROME (Rosmarinus officinalis methanol extract) was investigated comprehensively by histopathological studies, a number of in vivo anti-inflammatory activities and several in vivo antioxidant activities, in addition to in vitro antioxidant activities and biochemical analyses. In addition, the toxic effects of ROME were examined. The results showed that ROME provided a significant healing effect against ulcerative colitis in rats. Both in vitro and in vivo assay results correlated with histopathological examinations. ROME exhibited minimal toxic alterations. When the results of rosemary are compared with the results of sulfasalazine, it can be suggested that instead of synthetic drugs with side effects, natural sources can be used for the treatment of various diseases. Although some activities of rosemary have been investigated in vitro in the previous studies, this is the first study revealing anti-ulcerative colitis effect of rosemary through histopathological studies, in vivo and in vitro assays as well as biochemical analyses overall. PRACTICAL APPLICATIONS: The results revealed and proved that ROME provided a significant healing effect against ulcerative colitis in rats. When the results of rosemary are compared with the results of sulfasalazine, a commercially available drug on the market, it can be suggested that instead of synthetic drugs with side effects, natural sources can be used for the treatment of various inflammatory diseases such as UC disease. In addition, ROME possesses limited toxic alterations, but not much more than the commercial drug. As a future perspective, lethal and therapeutic doses can be examined and determined. Thus, human studies can be started through this comprehensive in vivo study on rosemary which is commonly used as an edible plant and spice all over the world.
Collapse
Affiliation(s)
- Anil Yilmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Trakya University, Edirne, Turkey.,Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Fatih Uckaya
- Department of Biochemistry, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey.,Department of Fundamentals of Nursing, Faculty of Health Sciences, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Nihan Bayindir
- Department of Histology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Eray Metin Guler
- Department of Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ali Toprak
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Abdurrahim Kocyigit
- Department of Biochemistry, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mukaddes Esrefoglu
- Department of Histology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Gulacti Topcu
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
41
|
Untargeted Metabolomics by Using UHPLC–ESI–MS/MS of an Extract Obtained with Ethyl Lactate Green Solvent from Salvia rosmarinus. SEPARATIONS 2022. [DOI: 10.3390/separations9110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Salvia rosmarinus (Lamiaceae), previously known as Rosmarinus officinalis, is a plant cultivated worldwide, native to the Mediterranean region. Its leaves are traditionally used for cooking. This species possesses numerous biological activities, including antioxidant, antimicrobial, anticancer, anti-inflammatory, and hepatoprotective properties. These biological properties are due to the presence of phenolic compounds, including rosmarinic acid and phenolic diterpenoids, such as carnosic acid and carnosol. In this study, we investigated the chemical composition of a green extract obtained by maceration with ethyl lactate for the first time. Seventy-five compounds were tentatively identified by UHPLC–ESI–MS/MS, including six organic acids, six cinnamic acid derivatives, five fatty acids, eighteen flavonoids, and thirty-eight terpenoids. Thus, abietane-type diterpenoids from the ethyl lactate extract were the predominant diterpenoids in the Chilean S. rosmarinus species, in contrast to the Chinese species, in which labdane and isopimarane-type diterpenoids were found for the first time. Finally, our study confirms that the extraction of S. rosmarinus with green ethyl lactate as a solvent is efficient and sustainable for the identification of flavonoids, phenols, and terpenoids from leaves.
Collapse
|
42
|
Eco-Friendly Solution Based on Rosmarinus officinalis Hydro-Alcoholic Extract to Prevent Biodeterioration of Cultural Heritage Objects and Buildings. Int J Mol Sci 2022; 23:ijms231911463. [PMID: 36232763 PMCID: PMC9569761 DOI: 10.3390/ijms231911463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Biodeterioration of cultural heritage is caused by different organisms capable of inducing complex alteration processes. The present study aimed to evaluate the efficiency of Rosmarinus officinalis hydro-alcoholic extract to inhibit the growth of deteriogenic microbial strains. For this, the physico-chemical characterization of the vegetal extract by UHPLC–MS/MS, its antimicrobial and antibiofilm activity on a representative number of biodeteriogenic microbial strains, as well as the antioxidant activity determined by DPPH, CUPRAC, FRAP, TEAC methods, were performed. The extract had a total phenol content of 15.62 ± 0.97 mg GAE/mL of which approximately 8.53% were flavonoids. The polyphenolic profile included carnosic acid, carnosol, rosmarinic acid and hesperidin as major components. The extract exhibited good and wide spectrum antimicrobial activity, with low MIC (minimal inhibitory concentration) values against fungal strains such as Aspergillus clavatus (MIC = 1.2 mg/mL) and bacterial strains such as Arthrobacter globiformis (MIC = 0.78 mg/mL) or Bacillus cereus (MIC = 1.56 mg/mL). The rosemary extract inhibited the adherence capacity to the inert substrate of Penicillium chrysogenum strains isolated from wooden objects or textiles and B. thuringiensis strains. A potential mechanism of R. officinalis antimicrobial activity could be represented by the release of nitric oxide (NO), a universal signalling molecule for stress management. Moreover, the treatment of microbial cultures with subinhibitory concentrations has modulated the production of microbial enzymes and organic acids involved in biodeterioration, with the effect depending on the studied microbial strain, isolation source and the tested soluble factor. This paper reports for the first time the potential of R. officinalis hydro-alcoholic extract for the development of eco-friendly solutions dedicated to the conservation/safeguarding of tangible cultural heritage.
Collapse
|
43
|
Cytotoxic Effect of Rosmarinus officinalis Extract on Glioblastoma and Rhabdomyosarcoma Cell Lines. Molecules 2022; 27:molecules27196348. [PMID: 36234882 PMCID: PMC9573533 DOI: 10.3390/molecules27196348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Rosmarinus officinalis is a well-studied plant, known for its therapeutic properties. However, its biological activity against several diseases is not known in detail. The aim of this study is to present new data regarding the cytotoxic activity of a hydroethanolic extract of Rosmarinus officinalis on glioblastoma (A172) and rhabdomyosarcoma (TE671) cancer cell lines. The chemical composition of the extract is evaluated using liquid chromatography combined with time-of-flight mass spectrometry, alongside its total phenolic content and antioxidant activity. The extract showed a promising time- and dose-dependent cytotoxic activity against both cell lines. The lowest IC50 values for both cell lines were calculated at 72 h after treatment and correspond to 0.249 ± 1.09 mg/mL for TE671 cell line and 0.577 ± 0.98 mg/mL for A172 cell line. The extract presented high phenolic content, equal to 35.65 ± 0.03 mg GAE/g of dry material as well as a strong antioxidant activity. The IC50 values for the antioxidant assays were estimated at 12.8 ± 2.7 μg/mL (DPPH assay) and 6.98 ± 1.9 μg/mL (ABTS assay). The compound detected in abundance was carnosol, a phenolic diterpene, followed by the polyphenol rosmarinic acid, while the presence of phenolic compounds such as rhamnetin glucoside, hesperidin, cirsimaritin was notable. These preliminary results suggest that R. officinalis is a potential, alternative source of bioactive compounds to further examine for abilities against glioblastoma and rhabdomyosarcoma.
Collapse
|
44
|
In vitro cytotoxicity against breast cancer using biogenically synthesized gold and iron oxide nanoparticles derived from the hydroethanolic extract of Salvia officinalis L. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractNanotechnology has a real-world impact on every aspect of life. Many researchers have been drawn to the biosynthesis of gold and iron oxide nanoparticles (Au-NPs and SPIONS) because they have a wide range of life applications. In this work, a single-step environmentally friendly biosynthesis of Au-NPs and SPIONS is reported by reducing solutions of gold aureate and ferric chloride is reported for the first time using the hydroethanolic extract (HEE) of Salvia officinalis (S. officinalis), an edible plant found in Egypt. The phytochemicals present in HEE were responsible for the reduction as well as stabilization of these nanoparticles. Before using the HEE, it was phytochemically screened for its constituents. Qualitatively, the HEE was found to have comparable levels of phenolics, flavonoids, tannins, proteins, carbohydrates, terpenoids, steroids, and polysaccharides. Quantitatively, total phenolics (236.91 ± 2.15 mg GAE/g extract), flavonoids (91.38 ± 0.97 mg QE/g extract), tannins (101.60 ± 1.33 mg/g extract), proteins (284.62 ± 2.65 mg/g extract), carbohydrates (127.73 ± 1.68 mg/g extract), soluble sugars (52.3 ± 0.67 mg/g extract), and polysaccharides (75.43 ± 1.01 mg/g extract) were estimated. In addition, HPLC analysis revealed the identification of seven phenolic compounds [ferulic (67.26%), chlorogenic (3.12%), caffeic (3.11%), p-coumaric (1.13%), protocatechuic (0.65%), catechin (0.69%), rosmarinic (0.53%)] and three flavonoids [apigenin (5.29%), quercetin-7-O-glucoside (3.39%), and luteolin-7-O-rutinose (2.01%)]. The characterization of the biosynthesized NPs was confirmed by Fourier transform infrared (FT-IR) spectroscopy, UV–Vis absorption spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM). In vitro cytotoxic studies showed that Au-NPs, SPIONS, and HEE have an inhibitory effect on the growth of human breast cancer (MCF-7) cells at an IC50 of 6.53, 6.97, and 26.12 µg mL−1, respectively, by comparison with the standard drug (Doxorubicin) effect (0.18 µg mL−1).
Collapse
|
45
|
Beyond aroma: A review on advanced extraction processes from rosemary (Rosmarinus officinalis) and sage (Salvia officinalis) to produce phenolic acids and diterpenes. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Mahmod AI, Haif SK, Kamal A, Al-Ataby IA, Talib WH. Chemoprevention effect of the Mediterranean diet on colorectal cancer: Current studies and future prospects. Front Nutr 2022; 9:924192. [PMID: 35990343 PMCID: PMC9386380 DOI: 10.3389/fnut.2022.924192] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second most deadly cancer worldwide. Nevertheless, more than 70% of CRC cases are resulted from sporadic tumorigenesis and are not inherited. Since adenoma-carcinoma development is a slow process and may take up to 20 years, diet-based chemoprevention could be an effective approach in sporadic CRC. The Mediterranean diet is an example of a healthy diet pattern that consists of a combination of nutraceuticals that prevent several chronic diseases and cancer. Many epidemiological studies have shown the correlation between adherence to the Mediterranean diet and low incidence of CRC. The goal of this review is to shed the light on the anti-inflammatory and anti-colorectal cancer potentials of the natural bioactive compounds derived from the main foods in the Mediterranean diet.
Collapse
Affiliation(s)
- Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Shatha Khaled Haif
- Department of Pharmacy, Princess Sarvath Community College, Amman, Jordan
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Israa A Al-Ataby
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| | - Wamidh H Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman, Jordan
| |
Collapse
|
47
|
Li CY, Yang L, Liu Y, Xu ZG, Gao J, Huang YB, Xu JJ, Fan H, Kong Y, Wei YK, Hu WL, Wang LJ, Zhao Q, Hu YH, Zhang YJ, Martin C, Chen XY. The sage genome provides insight into the evolutionary dynamics of diterpene biosynthesis gene cluster in plants. Cell Rep 2022; 40:111236. [PMID: 35977487 DOI: 10.1016/j.celrep.2022.111236] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/29/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022] Open
Abstract
The widely cultivated medicinal and ornamental plant sage (Salvia officinalis L.) is an evergreen shrub of the Lamiaceae family, native to the Mediterranean. We assembled a high-quality sage genome of 480 Mb on seven chromosomes, and identified a biosynthetic gene cluster (BGC) encoding two pairs of diterpene synthases (diTPSs) that, together with the cytochromes P450 (CYPs) genes located inside and outside the cluster, form two expression cascades responsible for the shoot and root diterpenoids, respectively, thus extending BGC functionality from co-regulation to orchestrating metabolite production in different organs. Phylogenomic analysis indicates that the Salvia clades diverged in the early Miocene. In East Asia, most Salvia species are herbaceous and accumulate diterpenoids in storage roots. Notably, in Chinese sage S. miltiorrhiza, the diterpene BGC has contracted and the shoot cascade has been lost. Our data provide genomic insights of micro-evolution of growth type-associated patterning of specialized metabolite production in plants.
Collapse
Affiliation(s)
- Chen-Yi Li
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Lei Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yan Liu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Zhou-Geng Xu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Jian Gao
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Yan-Bo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Jing-Jing Xu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Hang Fan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yu-Kun Wei
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Wen-Li Hu
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yong-Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China
| | - Yi-Jing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences/Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Fenglin Road 300, Shanghai 200032, China; Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Fenglin Road 300, Shanghai 201602, China.
| |
Collapse
|
48
|
Assaggaf HM, Naceiri Mrabti H, Rajab BS, Attar AA, Alyamani RA, Hamed M, El Omari N, El Menyiy N, Hazzoumi Z, Benali T, Al-Mijalli SH, Zengin G, AlDhaheri Y, Eid AH, Bouyahya A. Chemical Analysis and Investigation of Biological Effects of Salvia officinalis Essential Oils at Three Phenological Stages. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165157. [PMID: 36014393 PMCID: PMC9415112 DOI: 10.3390/molecules27165157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022]
Abstract
Salvia officinalis is a medicinal plant used to treat some diseases, including microbial infections and diabetes. Different studies showed the biological and pharmacological properties of this species. The aim of this study was the determination of the chemical compounds of S. officinalis essential oils and the investigation of their antimicrobial, antioxidant, antidiabetic, and anti-inflammatory properties. The chemical compounds of S. officinalis were determined by GC-MS analysis. The antioxidant activity was assessed by DPPH, ABTS, H2O2, and FRAP assays. The in vitro antidiabetic effect was evaluated by the inhibition of α-amylase, α-glucosidase, and lipase activities, and the anti-inflammatory effect was evaluated using the 5-lipoxygenase assay. Moreover, antibacterial activity was assessed against six bacterial strains using agar well diffusion assay and microdilution method. The main compounds in essential oils of S. officinalis at three phenological stages were naphthalenone, camphor, 1.8-cineole, and α-thujone. The full flowering stage essential oil showed the best antioxidant activity with different IC50 values according to the used tests. This oil also exhibited important inhibitory effects at the full flowering stage against α-amylase (IC50 = 69.23 ± 0.1 μg/mL), α-glucosidase (IC50 = 22.24 ± 0.07 μg/mL), and lipase (IC50 = 37.3 ± 0.03 μg/mL). The 5-lipoxygenase inhibitory effect was the best at the full flowering stage (IC50 = 9.24 ± 0.03 μg/mL). The results of the antibacterial evaluation revealed that, at three seasonal periods, S. officinalis essential oil demonstrated strong antibacterial activity. Although the full flowering stage had the best antibacterial activity, there were no significant differences between the three stages. Additionally, the essential oils showed bactericidal effects on Listeria monocytogenes, Staphylococcus aureus, Bacillus subtilis, Proteus mirabilis, Escherichia coli, and Salmonella typhimurium, respectively. The findings of this work showed remarkably that S. officinalis synthesizes essential oils according to different developmental stages. Moreover, it has exhibited interesting biological and pharmacological properties justifying its medicinal effects and suggesting it as a very important source of natural drugs.
Collapse
Affiliation(s)
- Hamza M. Assaggaf
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Bio Pharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Bodour S. Rajab
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ammar A. Attar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Reema A. Alyamani
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Munerah Hamed
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taouanate 34025, Morocco
| | - Zakaria Hazzoumi
- Plant and Microbial Biotechnology Center-Moroccan Foundation for Advanced Science, Innovation and Research, Rabat 10100, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46000, Morocco
| | - Samiah Hamad Al-Mijalli
- Department of Biology, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
- Correspondence: (G.Z.); (A.H.E.)
| | - Yusra AlDhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: (G.Z.); (A.H.E.)
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
49
|
Stefanakis MK, Papaioannou C, Lianopoulou V, Philotheou-Panou E, Giannakoula AE, Lazari DM. Seasonal Variation of Aromatic Plants under Cultivation Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2083. [PMID: 36015387 PMCID: PMC9413532 DOI: 10.3390/plants11162083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
In this study, five plant species, members of the Lamiaceae family, namely Salvia officinalis L., Salvia rosmarinus Spenn, Mentha × piperita L., Mentha spicata L. and Origanum vulgare subsp. hirtum (Link) Ietswaart, were studied for the influence of harvesting time on the herb crop yield, the volatile compounds (EOs) content/yield and their chemical composition. EOs were isolated by means of hydro-distillation from different plant parts at different growth stages. Their components were analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The highest yields of EOs were obtained at the full flowering stage and important changes were observed in their composition. The fluctuations in the percentage composition of the major compounds in the EOs, throughout harvesting time, were observed at camphor/α-thujone for S. officinalis, camphor/1,8-cineole for S. rosmarinus, linalool/linalyl acetate and carvone/limonene for M. × piperita and M. spicata, respectively. The chemotype of O. vulgare subsp. hirtum was identified as carvacrol. The optimization of harvesting time could lead to increased crop production and better EOs quality control, with numerous industrial benefits upon the commercial production of such products.
Collapse
Affiliation(s)
- Michalis K. Stefanakis
- Laboratory of Plant Physiology, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Charikleia Papaioannou
- Laboratory of Genetics, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Vaia Lianopoulou
- Laboratory of Plant Physiology, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece
| | - Eleni Philotheou-Panou
- Laboratory of Plant Physiology, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece
| | - Anastasia E. Giannakoula
- Laboratory of Plant Physiology, Department of Agriculture, International Hellenic University, 54700 Sindos, Greece
| | - Diamanto M. Lazari
- Laboratory of Pharmacognosy, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
50
|
Ibrahim N, Abbas H, El-Sayed NS, Gad HA. Rosmarinus officinalis L. hexane extract: phytochemical analysis, nanoencapsulation, and in silico, in vitro, and in vivo anti-photoaging potential evaluation. Sci Rep 2022; 12:13102. [PMID: 35907916 PMCID: PMC9338973 DOI: 10.1038/s41598-022-16592-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
A shift towards natural anti-aging ingredients has spurred the research to valorize traditionally used plants. In this context, Rosmarinus officinalis L. was evaluated for its photoprotective, antioxidant, anti-inflammatory, and anti-wrinkling properties. GC/MS and LC-ESI-HRMS based phytochemical profiling of rosemary leaves hexane extract resulted in the identification of 47 and 31 compounds, respectively and revealed rich content in triterpenoids, monoterpenoids and phenolic diterpenes. In vitro assays confirmed the antioxidant, anti-aging, and wound healing potential of rosemary extract along with a good safety profile, encouraging further development. A systematic molecular modelling study was conducted to elucidate the mechanistic background of rosemary anti-aging properties through the inhibitory effects of its major constituents against key anti-aging targets viz. elastase, collagenase, and hyaluronidase. Development of rosemary extract lipid nanocapsules-based mucoadhesive gels was performed to improve skin contact, permeation, and bioavailability prior to in vivo testing. The developed formulae demonstrated small particle size (56.55–66.13 nm), homogenous distribution (PDI of 0.207–0.249), and negatively charged Zeta potential (− 13.4 to − 15.6). In UVB-irradiated rat model, topical rosemary hexane extract-loaded lipid nanocapsules-based gel provided photoprotection, restored the antioxidant biochemical state, improved epidermal and dermal histological features, and decreased the level of inflammatory and wrinkling markers. The use of rosemary hexane extract in anti-aging and photoprotective cosmeceuticals represents a safe, efficient, and cost-effective approach.
Collapse
Affiliation(s)
- Nehal Ibrahim
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Nesrine S El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Heba A Gad
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt. .,Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.
| |
Collapse
|