1
|
Ren M, Sun G, Ding X, Yu X, He L, Xiao S, Dong M, Yang J, Ding K, Sun C. A polysaccharide from Gynostemma pentaphyllum: structure characterization and anti-insulin resistance potential through Galectin-3 modulation. Int J Biol Macromol 2025; 310:143618. [PMID: 40306526 DOI: 10.1016/j.ijbiomac.2025.143618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/03/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Polysaccharides are among the key bioactive components of Gynostemma pentaphyllum (Thunb.) Makino. In this study, a novel polysaccharide fraction, GPPA1-1, was isolated from G. pentaphyllum and purified using DEAE-Sepharose Fast Flow, Sephadex G-75, and Sepharose CL-6B column chromatography. GPPA1-1 was determined to have a molecular weight of 3.7 × 104 Da and was composed of mannose (Man), glucuronic acid (GlcA), rhamnose (Rha), glucose (Glc), galactose (Gal), and arabinose (Ara) in a molar ratio of 3.88:3.97:21.77:7.02:45.65:17.71. Comprehensive structural characterization was conducted using Congo red staining, FT-IR spectroscopy, Methylation analysis, and NMR analysis. The backbone of GPPA1-1 was identified as comprising →4)-α-Galp-(1→, →4)-α-Galp-(3,1→, →2)-α-Rhap-(4,1→, and →2)-α-Rhap-(1→, with branch chains containing α-Araf-(1→, →5)-α-Araf-(1→, →3)-α-Galp-(1→, and -α-GlcA-(1→. Biological assays demonstrated that GPPA1-1 effectively alleviates insulin resistance by inhibiting Galectin-3. This activity was confirmed through various experiments, including Galectin-3-mediated hemagglutination, Western blotting, CETSA, and glucose uptake assays. These findings highlight the potential of GPPA1-1 as a promising therapeutic agent for managing insulin resistance.
Collapse
Affiliation(s)
- Mingwang Ren
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Guoqing Sun
- Department of Pharmacy, Third People's Hospital of Dalian, Dalian 116091, China
| | - Xiaoyu Ding
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Xiaolin Yu
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Li He
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Shiji Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Minjian Dong
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical University, Zunyi 563006, China
| | - Jianwen Yang
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| | - Kan Ding
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Chengxin Sun
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Laboratory of Basic Pharmacology, Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
2
|
Tsao NW, Cheng JY, Wang SY. Exploring the inhibitory activity and mechanism on lipid production in 3T3-L1 cells by hot water extract derived from Acacia confusa flowers. J Nat Med 2025; 79:215-225. [PMID: 39470961 DOI: 10.1007/s11418-024-01856-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/17/2024] [Indexed: 11/01/2024]
Abstract
Acacia confusa Merr. (Fabaceae) (A. confusa) is a native tree species of Taiwan, commonly found in the low-altitude mountains and hilly areas of the Hengchun Peninsula. This evergreen, perennial, and large-sized tree was the focus of a study that employed various chromatographic and spectroscopic methods to analyze the hot water extract of its flowers. The analysis revealed that the major components of the extract were myricitrin, quercitrin, europetin-3-O-rhamnoside, and chalconaringenin-2'-xyloside, with respective concentrations of approximately 0.22, 0.02, 0.26, and 0.10 mg/g of the flowers. Subsequent cell assays were conducted to assess the inhibitory effect of the extract on lipid synthesis in fat cells. Oil Red O staining results indicated that the extract significantly suppressed fatty acid accumulation in 3T3-L1 cells, with the most pronounced effect observed at a concentration of 180 μg/ml. Furthermore, the hot water extract of A. confusa flowers was found to increase the phosphorylation of AMP-activated protein kinase (AMPK), decrease the phosphorylation of cAMP response element-binding protein (CREB), and reduce the expression of glucocorticoid receptor (GR) protein. This, in turn, inhibited the expression of downstream transcription factors such as CCAT/ehancer binding proteins α (C/EBPα), CCAT/ehancer binding proteins β (C/EBPβ), CCAT/ehancer binding proteins δ (C/EBPδ), peroxisome proliferation-actived receptor γ (PPARγ), and sterol regulatory element binding proteins-1 (SREBP-1). Consequently, the expression of lipid synthesis-related proteins acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and fatty acid translocase (CD36) was reduced, ultimately inhibiting lipid generation. Therefore, the hot water extract of A. confusa flowers shows potential for development as a weight-loss tea.
Collapse
Affiliation(s)
- Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung, 402, Taiwan
| | - Ju-Ya Cheng
- Program in Special Crop and Metabolome, Academy of Circle Economy, National Chung Hsing University, Nantou, 540, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, 250 Kuo-Kuang Road, Taichung, 402, Taiwan.
- Program in Special Crop and Metabolome, Academy of Circle Economy, National Chung Hsing University, Nantou, 540, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 108, Taiwan.
| |
Collapse
|
3
|
Hu YT, Lin YW, Guo SY, Jiang Z, Xu SM, Su Z, Zhang JM, Rao Y, Chen SB, Huang ZS. Disrupting the protein-protein interaction network of Hsp72 inhibits adipogenic differentiation and lipid synthesis in adipocytes. Cell Signal 2024; 124:111431. [PMID: 39312987 DOI: 10.1016/j.cellsig.2024.111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
The biological function against obesity of heat shock protein Hsp72 in adipose tissue has remained unclear. Our findings demonstrated that the expression levels of Hsp72 increased during the triglyceride (TG) accumulation process both in adipose tissue and 3T3-L1 cells. A significant decrease in adipogenic gene expression and TG levels was observed upon Hsp72 knockdown in 3T3-L1 cells, suggesting that Hsp72 promoted adipogenic differentiation and lipid synthesis processes. Encouraged by these findings, we further confirmed the allosteric Hsp72 inhibitors YK5 and MKT-077 also exhibited inhibition of both these processes. Further evaluation revealed that Hsp72 played a key role in interacting with numerous novel metabolic and cytomorphologic-related client proteins, thereby mediating the adipogenesis and lipogenesis process. Hsp72 inhibitors had the potential to disrupt these interactions, leading to the downregulation of adipogenic and lipogenic gene expression, as well as the suppression of TG accumulation. These findings suggested that inhibiting Hsp72 to disrupt adipogenic differentiation and lipid synthesis in adipocytes may be a promising anti-obesity strategy.
Collapse
Affiliation(s)
- Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Wei Lin
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Min Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zheng Su
- The Division of Plastic and Reconstructive of Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510235, China
| | - Jin-Ming Zhang
- The Division of Plastic and Reconstructive of Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510235, China
| | - Yong Rao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570200, China.
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Sun RX, Liu YF, Sun YS, Zhou M, Wang Y, Shi BZ, Jiang H, Li ZH. GPC3-targeted CAR-T cells expressing GLUT1 or AGK exhibit enhanced antitumor activity against hepatocellular carcinoma. Acta Pharmacol Sin 2024; 45:1937-1950. [PMID: 38750075 PMCID: PMC11336244 DOI: 10.1038/s41401-024-01287-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/08/2024] [Indexed: 08/22/2024]
Abstract
Chimeric antigen receptor-expressing T (CAR-T) cells induce robust antitumor responses in patients with hematologic malignancies. However, CAR-T cells exhibit only limited efficacy against solid tumors such as hepatocellular carcinoma (HCC), partially due to their limited expansion and persistence. CD8+ T cells, as key components of the adaptive immune response, play a central role in antitumor immunity. Aerobic glycolysis is the main metabolic feature of activated CD8+ T cells. In the tumor microenvironment, however, the uptake of large amounts of glucose by tumor cells and other immunosuppressive cells can impair the activation of T cells. Only when tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment have a glycolytic advantage might the effector function of T cells be activated. Glucose transporter type 1 (GLUT1) and acylglycerol kinase (AGK) can boost glycolytic metabolism and activate the effector function of CD8+ T cells, respectively. In this study, we generated GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK for the treatment of HCC. GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK specifically and effectively lysed GPC3-positive tumor cells in vitro in an antigen-dependent manner. Furthermore, GLUT1 or AGK overexpression protected CAR-T cells from apoptosis during repeated exposures to tumor cells. Compared with second-generation CAR-T cells, GPC3-targeted CAR-T cells overexpressing GLUT1 or AGK exhibited greater CD8+ T-cell persistence in vivo and better antitumor effects in HCC allograft mouse models. Finally, we revealed that GLUT1 or AGK maintained anti-apoptosis ability in CD8+ T cells via activation of the PI3K/Akt pathway. This finding might identify a therapeutic strategy for advanced HCC.
Collapse
Affiliation(s)
- Rui-Xin Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yi-Fan Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yan-Sha Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Min Zhou
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yi Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
- CARsgen Therapeutics, Shanghai, 200032, China
| | - Bi-Zhi Shi
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
- CARsgen Therapeutics, Shanghai, 200032, China
| | - Hua Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
- CARsgen Therapeutics, Shanghai, 200032, China.
| | - Zong-Hai Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
- CARsgen Therapeutics, Shanghai, 200032, China.
| |
Collapse
|
5
|
Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, Mazas C, Tutusaus K, Mazzoni L. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr 2024; 11:1083759. [PMID: 38895662 PMCID: PMC11184148 DOI: 10.3389/fnut.2024.1083759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/03/2024] [Indexed: 06/21/2024] Open
Abstract
In the last decades, the world population and demand for any kind of product have grown exponentially. The rhythm of production to satisfy the request of the population has become unsustainable and the concept of the linear economy, introduced after the Industrial Revolution, has been replaced by a new economic approach, the circular economy. In this new economic model, the concept of "the end of life" is substituted by the concept of restoration, providing a new life to many industrial wastes. Leaves are a by-product of several agricultural cultivations. In recent years, the scientific interest regarding leaf biochemical composition grew, recording that plant leaves may be considered an alternative source of bioactive substances. Plant leaves' main bioactive compounds are similar to those in fruits, i.e., phenolic acids and esters, flavonols, anthocyanins, and procyanidins. Bioactive compounds can positively influence human health; in fact, it is no coincidence that the leaves were used by our ancestors as a natural remedy for various pathological conditions. Therefore, leaves can be exploited to manufacture many products in food (e.g., being incorporated in food formulations as natural antioxidants, or used to create edible coatings or films for food packaging), cosmetic and pharmaceutical industries (e.g., promising ingredients in anti-aging cosmetics such as oils, serums, dermatological creams, bath gels, and other products). This review focuses on the leaves' main bioactive compounds and their beneficial health effects, indicating their applications until today to enhance them as a harvesting by-product and highlight their possible reuse for new potential healthy products.
Collapse
Affiliation(s)
- Lucia Regolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maurizio Battino
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Product Processing, Jiangsu University, Zhenjiang, China
| | - Yasmany Armas Diaz
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Maria Elexpuru-Zabaleta
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
| | - Cristina Mazas
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Universidad Internacional Iberoamericana, Campeche, Mexico
| | - Kilian Tutusaus
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- Research Center for Foods, Nutritional Biochemistry and Health, Universidade Internacional do Cuanza, Cuito, Angola
| | - Luca Mazzoni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali – Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
6
|
Zhang DL, Hu YK, Wang L, He YB, Yang J, Zhao Y. Phloroglucinol derivatives with α-glucosidase inhibitory activities from Syzygium fluviatile. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:1168-1174. [PMID: 37200198 DOI: 10.1080/10286020.2023.2212614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/20/2023]
Abstract
Four new phloroglucinol derivatives (1 - 4) were isolated from the leaves of Syzygium fluviatile. Their structures were elucidated by means of extensive spectroscopic data. Among them, compounds 1 and 3 showed significant inhibitory activity against α-glucosidase with IC50 values of 10.60 and 5.07 µM, respectively. The structure-activity relationship was also discussed briefly.
Collapse
Affiliation(s)
- Ding-Li Zhang
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Yi-Kao Hu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuan-Biao He
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yong Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
7
|
Yi G, Sang X, Zhu Y, Zhou D, Yang S, Huo Y, Liu Y, Safdar B, Bu X. The SWGEDWGEIW from Soybean Peptides Reduces Insulin Resistance in 3T3-L1 Adipocytes by Activating p-Akt/GLUT4 Signaling Pathway. Molecules 2023; 28:molecules28073001. [PMID: 37049764 PMCID: PMC10096037 DOI: 10.3390/molecules28073001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus, a group of metabolic disorders characterized by persistent hyperglycemia, affects millions of people worldwide and is on the rise. Dietary proteins, from a wide range of food sources, are rich in bioactive peptides with anti-diabetic properties. Notably, the protective mechanism of the single peptide SWGEDWGEIW (TSP) from soybean peptides (SBPs) on insulin resistance of adipocytes in an inflammatory state was investigated by detecting the lipolysis and glucose absorption and utilization of adipocytes. The results showed that different concentrations of TSP (5, 10, 20 µg/mL) intervention can reduce 3T3-L1 adipocytes’ insulin resistance induced by inflammatory factors in a dose-dependent manner and increase glucose utilization by 34.2 ± 4.6%, 74.5 ± 5.2%, and 86.7 ± 6.1%, respectively. Thus, TSP can significantly alleviate the lipolysis of adipocytes caused by inflammatory factors. Further mechanism analysis found that inflammatory factors significantly reduced the phosphorylation (p-Akt) of Akt, two critical proteins of glucose metabolism in adipocytes, and the expression of GLUT4 protein downstream, resulting in impaired glucose utilization, while TSP intervention significantly increased the expression of these two proteins. After pretreatment of adipocytes with PI3K inhibitor (LY294002), TSP failed to reduce the inhibition of p-Akt and GLUT4 expression in adipocytes. Meanwhile, the corresponding significant decrease in glucose absorption and the increase in the fat decomposition of adipocytes indicated that TSP reduced 3T3-L1 adipocytes’ insulin resistance by specifically activating the p-Akt/GLUT4 signal pathway. Therefore, TSP has the potential to prevent obesity-induced adipose inflammation and insulin resistance.
Collapse
|
8
|
Wu Z, Yu W, Ni W, Teng C, Ye W, Yu C, Zeng Y. Improvement of obesity by Liupao tea is through the IRS-1/PI3K/AKT/GLUT4 signaling pathway according to network pharmacology and experimental verification. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154633. [PMID: 36628832 DOI: 10.1016/j.phymed.2022.154633] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/02/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Obesity is a state of accumulating excessive body fat, charactering by a high blood lipid and associating with various metabolic diseases. As a kind of dark tea, many studies revealed that long-term drinking Liupao tea (LT) can reduce weight (Liu et al., 2014). However, the anti-obesity mechanism and active ingredients of LT are not known. METHODS Liquid chromatography-mass spectrometry (LC-MS) combined with network pharmacology was used to screen the active components and related targets of Liupao tea water extract (LTWE). The key anti-obesity targets and pathways of LTWE were predicted by protein-protein interaction (PPI) networks, and enrichment analyses using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. Then, the active components selected by high-performance liquid chromatography (HPLC) fingerprinting were used together with LTWE in an adipogenic model and insulin resistance (IR) model in vitro. RESULTS Most of the compounds identified from LTWE were flavonofids, esters, and amides. Key targets such as RAC-alpha serine/threonine-protein kinase, insulin, and tumor necrosis factor (TNF) were involved in the phosphatidylinositol-3-kinase-protein kinase B (PI3K-AKT) signaling pathway, pathways in cancer, and other pathways. Four active components were screened by network pharmacology combined with HPLC fingerprinting. The in vitro experiment of LTWE and its four active components showed that in insulin-resistant 3T3-L1 cells, LTWE, (-)-epigallocatechin gallate (EGCG) and gallic acid (GA) inhibited adipocyte differentiation. Three factors could inhibit the differentiation of 3T3-L1 cells by decreasing gene expression of peroxisome proliferators-activated receptor γ (PPARγ), fatty acid synthase (FAS), CCAAT/enhancer binding proteins-α (C/EBPα) and interleukin-6 (IL-6). Caffeine and ellagic acid (EA) showed opposite results, but their effects on promoting adipose differentiation diminished with increasing concentrations of drug. In dexamethasone-induced insulin-resistant 3T3-L1 cells, the fluorescence intensity of 2-Deoxy-2-[(7-nitro-2,1,3-Benzoxadiazol-4-yl)amino]-d-glucose revealed that LTWE, GA, EGCG, caffeine, and EA significantly promoted glucose consumption. LTWE, GA, and EA improved insulin resistance in adipocytes by upregulating gene expression of insulin receptor substrate-1 (IRS-1), PI3K, AKT, and glucose transporter 4 (GLUT4). CONCLUSION LC-MS combined with network pharmacology preliminarianized that LTWE acts mainly on the PI3K-AKT signaling pathway. Cell experiments revealed that the anti-obesity effect of LTWE is the result of multi-component action, which inhibits the proliferation and differentiation of preadipocytes by regulating gene expression of adipogenic transcription factors and proinflammatory factors, and improves IR by activating the IRS-1/PI3K/AKT/GLUT4 pathway.
Collapse
Affiliation(s)
- Zhimin Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenxin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiju Ni
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiqin Teng
- Wuzhou Liupao Tea Research Institute, Wuzhou Institute of Agricultural Science, Guangxi Zhuang Autonomous Region 543002, China
| | - Weile Ye
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cuiping Yu
- Wuzhou Liupao Tea Research Institute, Wuzhou Institute of Agricultural Science, Guangxi Zhuang Autonomous Region 543002, China
| | - Yu Zeng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine,Guangzhou 510006, China
| |
Collapse
|
9
|
Takahashi J, Takahashi N, Tadaishi M, Shimizu M, Kobayashi-Hattori K. Valerenic Acid Promotes Adipocyte Differentiation, Adiponectin Production, and Glucose Uptake via Its PPARγ Ligand Activity. ACS OMEGA 2022; 7:48113-48120. [PMID: 36591200 PMCID: PMC9798764 DOI: 10.1021/acsomega.2c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Although valerenic acid (VA) is an important marker compound for quantitative assessment of Valeriana officinalis products, little is known about its potential effects on adipocytes. We investigated the effects of VA on adipocyte differentiation, adiponectin production, and glucose uptake using 3T3-L1 adipocytes. The results showed that VA promoted adipocyte differentiation and increased the gene expression of adipogenesis and glucose uptake-related proteins, including peroxisome proliferator-activated receptor gamma (PPARγ), cytosine-cytosine-adenosine-adenosine-thymidine enhancer binding protein alpha (C/EBPα), adiponectin, and glucose transporter 4 (GLUT4). Additionally, cell cultures treated with VA had elevated adiponectin secretion and glucose uptake. The PPARγ luciferase assay indicated VA as a partial agonist of PPARγ, while the analysis using its antagonist, GW9662, and a docking simulation between PPARγ and VA revealed the binding site of VA as likely adjacent to the Ω loop pocket of PPARγ. Taken together, these results demonstrate that VA acts as a PPARγ partial agonist to promote adipocyte differentiation, adiponectin production, and glucose uptake.
Collapse
Affiliation(s)
- Jun Takahashi
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Nobuyuki Takahashi
- Department
of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Miki Tadaishi
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Makoto Shimizu
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuo Kobayashi-Hattori
- Department
of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
10
|
Li F, Yang C, Zhang L, Li W. Synthesis of myricetin derivatives and evaluation of their hypoglycemic activities. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Deng X, Chen B, Luo Q, Zao X, Liu H, Li Y. Hulless barley polyphenol extract inhibits adipogenesis in 3T3-L1 cells and obesity related-enzymes. Front Nutr 2022; 9:933068. [PMID: 35990339 PMCID: PMC9389463 DOI: 10.3389/fnut.2022.933068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is characterized by excessive lipid accumulation, hypertrophy, and hyperplasia of adipose cells. Hulless barley (Hordeum vulgare L. var. nudum Hook. f.) is the principal crop grown in the Qinghai-Tibet plateau. Polyphenols, the major bioactive compound in hulless barley, possess antioxidant, anti-inflammatory, and antibacterial properties. However, the anti-obesity effect of hulless barley polyphenol (HBP) extract has not been explored. Therefore, the current study assessed the impact of HBP extract on preventing obesity. For this purpose, we evaluated the inhibitory effect of HBP extract against obesity-related enzymes. Moreover, we investigated the effect of HBP extract on adipocyte differentiation and adipogenesis through 3T3-L1 adipocytes. Our results demonstrated that HBP extract could inhibit α-amylase, α-glucosidase (α-GLU), and lipase in a dose-dependent manner. In addition, HBP extract inhibited the differentiation of 3T3-L1 preadipocytes by arresting the cell cycle at the G0/G1 phase. Furthermore, the extract suppressed the expression of adipogenic transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), regulating fatty acid synthase (FAS), fatty acid-binding protein 4 (FABP4), and adipose triglyceride lipase (ATGL). It was also observed that HBP extract alleviated intracellular lipid accumulation by attenuating oxidative stress. These findings specify that HBP extract could inhibit obesity-related enzymes, adipocyte differentiation, and adipogenesis. Therefore, it is potentially beneficial in preventing obesity.
Collapse
Affiliation(s)
- Xianfeng Deng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Bi Chen
- School of Life and Health Science, Kaili University, Kaili, China
| | - Qin Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xingru Zao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Haizhe Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongqiang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
12
|
Uddin ABMN, Hossain F, Reza ASMA, Nasrin MS, Alam AHMK. Traditional uses, pharmacological activities, and phytochemical constituents of the genus Syzygium: A review. Food Sci Nutr 2022; 10:1789-1819. [PMID: 35702283 PMCID: PMC9179155 DOI: 10.1002/fsn3.2797] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022] Open
Abstract
The genus Syzygium comprises 1200-1800 species that belong to the family of Myrtaceae. Moreover, plants that are belonged to this genus are being used in the traditional system of medicine in Asian countries, especially in China, India, and Bangladesh. The aim of this review is to describe the scientific works and to provide organized information on the available traditional uses, phytochemical constituents, and pharmacological activities of mostly available species of the genus Syzygium in Bangladesh. The information related to genus Syzygium was analytically composed from the scientific databases, including PubMed, Google Scholar, Science Direct, Web of Science, Wiley Online Library, Springer, Research Gate link, published books, and conference proceedings. Bioactive compounds such as flavanone derivatives, ellagic acid derivatives and other polyphenolics, and terpenoids are reported from several species of the genus Syzygium. However, many members of the species of the genus Syzygium need further comprehensive studies regarding phytochemical constituents and mechanism-based pharmacological activities.
Collapse
Affiliation(s)
- A. B. M. Neshar Uddin
- Department of Pharmaceutical SciencesNorth South UniversityDhakaBangladesh
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | - Farhad Hossain
- Department of PharmacyUniversity of RajshahiRajshahiBangladesh
| | - A. S. M. Ali Reza
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | - Mst. Samima Nasrin
- Department of PharmacyFaculty of Science and EngineeringInternational Islamic University ChittagongChittagongBangladesh
| | | |
Collapse
|
13
|
Yassir M, Bakrim WB, Mahmoud MF, Drissi B, Kouisni L, Sobeh M. Watery Rose Apple: A Comprehensive Review of Its Traditional Uses, Nutritional Value, Phytochemistry, and Therapeutic Merits against Inflammation-Related Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7502185. [PMID: 35677104 PMCID: PMC9168099 DOI: 10.1155/2022/7502185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/16/2022]
Abstract
The myrtle family, Myrtaceae, constitutes over 5500 species, and Syzygium is considered the largest genus of the flowering plants within the family. The watery rose apple, Syzygium aqueum, is a traditional medicinal plant with various bioactive compounds distributed in all plant parts. These include phenolic compounds, flavonoids, tannins, terpenoids, and essential oils. S. aqueum extracts and their isolated compounds showed multiple beneficial biological effects such as antibacterial, antifungal, antidiabetic, analgesic, antimalarial, antioxidant, anti-inflammatory, and anticancer activities. This review is aimed at discussing all the available information about the nutritional value, traditional uses, and therapeutic properties of the leaves, fruit, and stem bark of the plant, in addition to the distribution of phytoconstituents in its different parts as well as recommend future research directions on this species to promote its clinical uses.
Collapse
Affiliation(s)
- Mouna Yassir
- Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Widad Ben Bakrim
- Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Mona F. Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - BadrEddine Drissi
- Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | - Mansour Sobeh
- Agrobiosciences, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
14
|
Negri G, Calló D, Mano-Sousa BJ, Duarte-Almeida J, Tabach R. Phytochemistry profile of rosella and jambolan extracts and the therapeutic effects on obesity. Food Funct 2022; 13:2606-2617. [DOI: 10.1039/d1fo02763h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hibiscus sabdariffa extract (HSE) and Syzygium cumini extract (SCE) have been used in traditional medicine due to their hypoglycemic, antidiabetic, anti-obesity and antioxidant activities. The aim of this study was...
Collapse
|
15
|
Riyaphan J, Pham DC, Leong MK, Weng CF. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules 2021; 11:1877. [PMID: 34944521 PMCID: PMC8699780 DOI: 10.3390/biom11121877] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Type-II diabetes mellitus (T2DM) results from a combination of genetic and lifestyle factors, and the prevalence of T2DM is increasing worldwide. Clinically, both α-glucosidase and α-amylase enzymes inhibitors can suppress peaks of postprandial glucose with surplus adverse effects, leading to efforts devoted to urgently seeking new anti-diabetes drugs from natural sources for delayed starch digestion. This review attempts to explore 10 families e.g., Bignoniaceae, Ericaceae, Dryopteridaceae, Campanulaceae, Geraniaceae, Euphorbiaceae, Rubiaceae, Acanthaceae, Rutaceae, and Moraceae as medicinal plants, and folk and herb medicines for lowering blood glucose level, or alternative anti-diabetic natural products. Many natural products have been studied in silico, in vitro, and in vivo assays to restrain hyperglycemia. In addition, natural products, and particularly polyphenols, possess diverse structures for exploring them as inhibitors of α-glucosidase and α-amylase. Interestingly, an in silico discovery approach using natural compounds via virtual screening could directly target α-glucosidase and α-amylase enzymes through Monte Carto molecular modeling. Autodock, MOE-Dock, Biovia Discovery Studio, PyMOL, and Accelrys have been used to discover new candidates as inhibitors or activators. While docking score, binding energy (Kcal/mol), the number of hydrogen bonds, or interactions with critical amino acid residues have been taken into concerning the reliability of software for validation of enzymatic analysis, in vitro cell assay and in vivo animal tests are required to obtain leads, hits, and candidates in drug discovery and development.
Collapse
Affiliation(s)
| | - Dinh-Chuong Pham
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
16
|
Scazzocchio B, Filardi T, Varì R, Brunelli R, Galoppi P, Morano S, Masella R, Santangelo C. Protocatechuic acid influences immune-metabolic changes in the adipose tissue of pregnant women with gestational diabetes mellitus. Food Funct 2021; 12:7490-7500. [PMID: 34213517 DOI: 10.1039/d1fo00267h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gestational diabetes mellitus (GDM) is associated with immune metabolic changes that increase women's risk of developing metabolic disorders later in life. Nutritional intervention is a crucial component in reducing the burden of these pathological features. We examined whether protocatechuic acid (PCA), a major metabolite of anthocyanins abundant in plant food, is able to exert insulin-mimetic activity and modulate inflammation in the visceral adipose tissue (VAT) obtained at delivery, from pregnant women with GDM or normal glucose tolerance (NGT). PCA stimulated glucose uptake in the VAT from both GDM and NGT women. This capability was associated with increased phosphorylation of p38 mitogen-activated protein kinase (p38MAPK), as further demonstrated by the inhibitory effect of SB203580, a p38MAPK inhibitor, on PCA-induced glucose uptake. The GDM-VAT expressed lower adiponectin levels and PCA stimulated adiponectin release in the NGT-VAT and, albeit to a lower extent, in the GDM-VAT. Higher levels of IL6 and TNFα were secreted by the GDM-VAT compared with the NGT one, and PCA had no effects on them. PCA reduced the overexpression of vasoactive intestinal peptide receptor 2 (VPAC2) in the GDM-VAT. Further studies are needed to establish whether and how anthocyanins and food rich in these compounds may contribute to prevent or delay metabolic disorders in women with GDM.
Collapse
Affiliation(s)
- Beatrice Scazzocchio
- Center for Gender-Specific Medicine, Gender Specific Prevention and Health Unit, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Itam A, Wati MS, Agustin V, Sabri N, Jumanah RA, Efdi M. Comparative Study of Phytochemical, Antioxidant, and Cytotoxic Activities and Phenolic Content of Syzygium aqueum (Burm. f. Alston f.) Extracts Growing in West Sumatera Indonesia. ScientificWorldJournal 2021; 2021:5537597. [PMID: 34234626 PMCID: PMC8216810 DOI: 10.1155/2021/5537597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/15/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022] Open
Abstract
Syzygium aqueum, consisting of various fruit colors, is one of the plants that have been used as traditional medicine. This study aims to evaluate and compare phytochemical, antioxidant, and cytotoxic activities and total phenolic content of leaves and stem bark extracts of S. aqueum with pink and red fruits, in order to identify the best extract that can be used as a natural antioxidant. Phytochemical constituents were evaluated qualitatively using chemicals, while cytotoxic activities were identified using the brine shrimp lethality test. Total phenolic content was determined via the Folin-Ciocalteu method. Leaves and stem bark of S. aqueum contained flavonoids, phenolics, and triterpenoids, but the stem bark also contained saponins and alkaloids. Methanol and ethyl acetate extracts of leaves and stem bark were categorized as very powerful antioxidants to DPPH (IC50 9.71-38.69 μg/mL) and hydrogen peroxide (IC50 16.44-44.02 μg/mL), while hexane extracts were inactive. Methanol, ethyl acetate, and hexane extracts of leaves and stem bark were categorized as moderately cytotoxic to A. salina larvae (LC50 104.04-440.65 μg/mL). Comparing leaves and stem barks, antioxidant and cytotoxic activities of stem bark extracts were higher than those of leaves extracts. Total phenolic content of leaves extracts was higher than that of stem bark extracts where the order of total phenolic content progressed from methanol extracts > ethyl acetate extracts > hexane extracts. Therefore, the stem bark of S. aqueum was identified as the better source of natural antioxidant compared with the leaves.
Collapse
Affiliation(s)
- Afrizal Itam
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Andalas University, Padang, Indonesia
| | - Mutia Siska Wati
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Andalas University, Padang, Indonesia
| | - Vina Agustin
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Andalas University, Padang, Indonesia
| | - Nursal Sabri
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Andalas University, Padang, Indonesia
| | - Rafika Aris Jumanah
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Andalas University, Padang, Indonesia
| | - Mai Efdi
- Department of Chemistry, Faculty of Mathematic and Natural Sciences, Andalas University, Padang, Indonesia
| |
Collapse
|
18
|
Zhang L, Zhou Q, Chen M, Yang X, Lu C, Sun W, Hui Q, Wang X. Hypoglycemic Efficacy of Rh-aFGF Variants in Treatment of Diabetes in ZDF Rats. Front Cell Dev Biol 2021; 9:609383. [PMID: 33681196 PMCID: PMC7930327 DOI: 10.3389/fcell.2021.609383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Acidic fibroblast growth factor (aFGF) is a promising regulator of glucose with no adverse effects of hypoglycemia. Previous researches revealed that aFGF mediated adipose tissue remodeling and insulin sensitivity. These findings supported rh-aFGF135 would be used as a new candidate for the treatment of insulin resistance and type 2 diabetes. In this study, we aimed to investigate the hypoglycemic efficacy of recombinant human acidic fibroblast growth factor 135 (rh-aFGF135) with low mitogenic in type 2 diabetic ZDF rats. ZDF rats were treated with rh-aFGF135 at a daily dosage of 0.25 and 0.50 mg/kg by tail intravenous injection for 5 weeks. The blood glucose levels, oral glucose tolerance test, insulin tolerance test, HOMA-IR for insulin resistance, serum biochemical parameters, and the histopathological changes of adipose tissue, liver and other organs were detected at designed time point. The glucose uptake activity and anti-insulin resistance effect of rh-aFGF135 were also detected in HepG2 cells. Results revealed that rh-aFGF135 exhibited a better hypoglycemic effect compared with vehicle group and without the adverse effect of hypoglycemia in ZDF rats. Compared with vehicle group, rh-aFGF135 significantly improved the situation of hyperglycemia and insulin resistance. Rh-aFGF135 decreased ALT, AST, GSP, and FFA levels noticeably compared with vehicle control group (P < 0.01 or P < 0.001). After 5 weeks of treatment, high-dosage rh-aFGF135 could remodel adipose tissue, and has no influence on other organs. H&E staining showed that rh-aFGF135 reduced the size of adipocytes. In addition, rh-aFGF135 may improve insulin resistance partly by increasing the protein expression of p-IRS-1 (human Ser 307). As a hypoglycemic drug for long-term treatment, rh-aFGF135 would be a potentially safe candidate for the therapy of type 2 diabetes.
Collapse
Affiliation(s)
- Li Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qingde Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Min Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xuanxin Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chao Lu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenzhe Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qi Hui
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaojie Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Guru A, Issac PK, Velayutham M, Saraswathi NT, Arshad A, Arockiaraj J. Molecular mechanism of down-regulating adipogenic transcription factors in 3T3-L1 adipocyte cells by bioactive anti-adipogenic compounds. Mol Biol Rep 2021; 48:743-761. [PMID: 33275195 DOI: 10.1007/s11033-020-06036-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Obesity is growing at an alarming rate, which is characterized by increased adipose tissue. It increases the probability of many health complications, such as diabetes, arthritis, cardiac disease, and cancer. In modern society, with a growing population of obese patients, several individuals have increased insulin resistance. Herbal medicines are known as the oldest method of health care treatment for obesity-related secondary health issues. Several traditional medicinal plants and their effective phytoconstituents have shown anti-diabetic and anti-adipogenic activity. Adipose tissue is a major site for lipid accumulation as well as the whole-body insulin sensitivity region. 3T3-L1 cell line model can achieve adipogenesis. Adipocyte characteristics features such as expression of adipocyte markers and aggregation of lipids are chemically induced in the 3T3-L1 fibroblast cell line. Differentiation of 3T3-L1 is an efficient and convenient way to obtain adipocyte like cells in experimental studies. Peroxisome proliferation activated receptor γ (PPARγ) and Cytosine-Cytosine-Adenosine-Adenosine-Thymidine/Enhancer-binding protein α (CCAAT/Enhancer-binding protein α or C/EBPα) are considered to be regulating adipogenesis at the early stage, while adiponectin and fatty acid synthase (FAS) is responsible for the mature adipocyte formation. Excess accumulation of these adipose tissues and lipids leads to obesity. Thus, investigating adipose tissue development and the underlying molecular mechanism is important in the therapeutical approach. This review describes the cellular mechanism of 3T3-L1 fibroblast cells on potential anti-adipogenic herbal bioactive compounds.
Collapse
Affiliation(s)
- Ajay Guru
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Praveen Kumar Issac
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manikandan Velayutham
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - N T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, 613401, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
20
|
Xu W, Xu SH, Wang L, Zang Z, Zhao Y, Liu JP, Yang J, Zhao Y. Five new phloroglucinol derivatives from Syzygium brachyantherum and their α-glucosidase and PTP1B inhibitory activities. Nat Prod Res 2020; 36:1679-1685. [PMID: 32815422 DOI: 10.1080/14786419.2020.1809397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Xu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P. R. China
| | - Shao-Hua Xu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P. R. China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Zhen Zang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P. R. China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P. R. China
| | - Jing-Ping Liu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P. R. China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yong Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, P. R. China
| |
Collapse
|
21
|
Anthocyanin-Enriched Riceberry Rice Extract Inhibits Cell Proliferation and Adipogenesis in 3T3-L1 Preadipocytes by Downregulating Adipogenic Transcription Factors and Their Targeting Genes. Nutrients 2020; 12:nu12082480. [PMID: 32824545 PMCID: PMC7469062 DOI: 10.3390/nu12082480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
Riceberry rice (Oryza sativa L.) is a new pigmented variety of rice from Thailand. Despite its high anthocyanin content, its effect on adipogenesis and adipocyte function remains unexplored. We investigated whether Riceberry rice extract (RBE) impacted cell proliferation by examining viability and cell cycle, using preadipocyte 3T3-L1 cells. To test RBE's effect on adipocyte formation, cells were cultured in adipogenic medium supplemented with extract and adipocyte number and triglyceride levels were quantified. Furthermore, Akt1 phosphorylation along with RT-qPCR and intracellular calcium imaging were performed to obtain an insight into its mechanism of action. The effect of RBE on adipocyte function was investigated using glucose uptake and lipolysis assays. Treatment of cells with RBE decreased preadipocyte number without cytotoxicity despite inducing cell cycle arrest (p < 0.05). During adipogenic differentiation, RBE supplementation reduced adipocyte number and triglyceride accumulation by downregulating transcription factors (e.g., PPARγ, C/EBPα, and C/EBPβ) and their target genes (p < 0.05). The Akt1 phosphorylation was decreased by RBE but insignificance, however, the extract failed to increase intracellular calcium signals. Finally, the treatment of adipocytes with RBE reduced glucose uptake by downregulating Glut4 mRNA expression and enhanced isoproterenol-induced lipolysis (p < 0.05). These findings suggest that RBE could potentially be used in the treatment of obesity by inhibiting adipocyte formation and proliferation.
Collapse
|
22
|
Perera A, Ton SH, Moorthy M, Palanisamy UD. The insulin-sensitising properties of the ellagitannin geraniin and its metabolites from Nephelium lappaceum rind in 3T3-L1 cells. Int J Food Sci Nutr 2020; 71:940-953. [PMID: 32319838 DOI: 10.1080/09637486.2020.1754348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, the insulin-like and insulin sensitising effects of the ellagitannins geraniin, corilagin, ellagic acid, gallic acid and Nephelium lappaceum rind extract in 3T3-L1 adipocytes was investigated. It was observed that non-toxic concentrations of geraniin and its metabolites (0.2-20 μM) and N. lappaceum extract (0.2-20 μg/mL) exhibited insulin-like properties in the absence of insulin and insulin-sensitising properties in the presence of insulin particularly with regards to glucose uptake in 3T3-L1 adipocytes. The compounds were further able to promote adipocyte differentiation and may be involved in the inhibition of lipolysis in 3T3-L1 adipocytes in the presence of insulin. However further study into the molecular mechanisms of action of these compounds need to be carried out to better understand the potential of these compounds/extracts to act as therapeutic agents for hyperglycaemia associated with diabetes mellitus and obesity.
Collapse
Affiliation(s)
- Asiri Perera
- Tropical Medicine and Biology Platform, School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - So Ha Ton
- Tropical Medicine and Biology Platform, School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Mohanambal Moorthy
- Tropical Medicine and Biology Platform, School of Science, Monash University, Bandar Sunway, Selangor, Malaysia.,School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Uma Devi Palanisamy
- Tropical Medicine and Biology Platform, School of Science, Monash University, Bandar Sunway, Selangor, Malaysia.,School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
23
|
Zhu B, Li MY, Lin Q, Liang Z, Xin Q, Wang M, He Z, Wang X, Wu X, Chen GG, Tong PCY, Zhang W, Liu LZ. Lipid oversupply induces CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1: an early event prior to insulin resistance. Theranostics 2020; 10:1332-1354. [PMID: 31938068 PMCID: PMC6956797 DOI: 10.7150/thno.40021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/27/2019] [Indexed: 12/19/2022] Open
Abstract
Lipid oversupply may induce CD36 sarcolemmal translocation to facilitate fatty acid transport, which in turn causes dyslipidemia and type 2 diabetes. However, the underlying mechanisms of CD36 redistribution are still yet to be unraveled. Methods: High fat diet fed mice and palmitate/oleic acid-treated L6 cells were used to investigate the initial events of subcellular CD36 recycling prior to insulin resistance. The regulation of CD36 sarcolemmal translocation by lipid oversupply was assessed by insulin tolerance test (ITT), oral glucose tolerance test (OGTT), glucose/fatty acid uptake assay, surface CD36 and GLUT4 detection, and ELISA assays. To elucidate the underlying mechanisms, specific gene knockout, gene overexpression and/or gene inhibition were employed, followed by Western blot, co-immunoprecipitation, immunostaining, and kinase activity assay. Results: Upon lipid/fatty acid overload, PKCζ activity and TBC1D1 phosphorylation were enhanced along with increased sarcolemmal CD36. The inhibition of PKCζ or TBC1D1 was shown to block fatty acid-induced CD36 translocation and was synergistic in impairing CD36 redistribution. Mechanically, we revealed that AMPK was located upstream of PKCζ to control its activity whereas Rac1 facilitated PKCζ translocation to the dorsal surface of the cell to cause actin remodeling. Furthermore, AMPK phosphorylated TBC1D1 to release retained cytosolic CD36. The activated PKCζ and phosphorylated TBC1D1 resulted in a positive feedback regulation of CD36 sarcolemmal translocation. Conclusion: Collectively, our study demonstrated exclusively that lipid oversupply induced CD36 sarcolemmal translocation via dual modulation of PKCζ and TBC1D1, which was as an early event prior to insulin resistance. The acquired data may provide potential therapy targets to prevent lipid oversupply-induced insulin resistance.
Collapse
|
24
|
Kazeem MI, Bankole HA, Fatai AA, Adenowo AF, Davies TC. Antidiabetic Functional Foods with Antiglycation Properties. REFERENCE SERIES IN PHYTOCHEMISTRY 2019:1283-1310. [DOI: 10.1007/978-3-319-78030-6_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Xu SH, Xu W, Wang L, Hu YK, Liu JP, Zhao Y, Li MJ, Li F, Huang SX, Zhao Y. New phloroglucinol derivatives with protein tyrosine phosphatase 1B (PTP1B) inhibitory activities from Syzygium austroyunnanense. Fitoterapia 2018; 131:141-145. [DOI: 10.1016/j.fitote.2018.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/03/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
|
26
|
Li CH, Ren XM, Ruan T, Cao LY, Xin Y, Guo LH, Jiang G. Chlorinated Polyfluorinated Ether Sulfonates Exhibit Higher Activity toward Peroxisome Proliferator-Activated Receptors Signaling Pathways than Perfluorooctanesulfonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3232-3239. [PMID: 29389105 DOI: 10.1021/acs.est.7b06327] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chlorinated polyfluorinated ether sulfonates (Cl-PFAESs) are the alternative products of perfluorooctanesulfonate (PFOS) in the metal plating industry in China. The similarity in chemical structures between Cl-PFAESs and PFOS makes it reasonable to assume they possess similar biological activities. In the present study, we investigated whether Cl-PFAESs could induce cellular effects through peroxisome proliferator-activated receptors (PPARs) signaling pathways like PFOS. By using fluorescence competitive binding assay, we found two dominant Cl-PFAESs (6:2 Cl-PFAES and 8:2 Cl-PFAES) bound to PPARs with affinity higher than PFOS. Based on the luciferase reporter gene transcription assay, the two Cl-PFAESs also showed agonistic activity toward PPARs signaling pathways with potency similar to (6:2 Cl-PFAES) or higher than (8:2 Cl-PFAES) PFOS. Molecular docking simulation showed the two Cl-PFAESs fitted into the ligand binding pockets of PPARs with very similar binding mode as PFOS. The cell function results showed Cl-PFAESs promoted the process of adipogenesis in 3T3-L1 cells with potency higher than PFOS. Taken together, we found for the first time that Cl-PFAESs have the ability to interfere with PPARs signaling pathways, and current exposure level of 6:2 Cl-PFAES in occupational workers has exceeded the margin of safety. Our study highlights the potential health risks of Cl-PFAESs as PFOS alternatives.
Collapse
Affiliation(s)
- Chuan-Hai Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , P. R. China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , P. R. China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , P. R. China
| | - Lin-Ying Cao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , P. R. China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Yan Xin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , P. R. China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , P. R. China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , Beijing 100085 , P. R. China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| |
Collapse
|
27
|
Kazeem MI, Bankole HA, Fatai AA, Adenowo AF, Davies TC. Antidiabetic Functional Foods with Antiglycation Properties. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-54528-8_16-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
28
|
Leung W, Ho FM, Li WP, Liang YC. Vitis thunbergii var. taiwaniana Leaf Extract Reduces Blood Glucose Levels in Mice with Streptozotocin-induced Diabetes. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.457.464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Li Y, Zheng X, Yi X, Liu C, Kong D, Zhang J, Gong M. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist. FASEB J 2017; 31:2603-2611. [PMID: 28270518 PMCID: PMC5434659 DOI: 10.1096/fj.201601339r] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
Abstract
The physiologic properties of glucagon-like peptide 1 (GLP-1) make it a potent candidate drug target in the treatment of type 2 diabetes mellitus (T2DM). GLP-1 is capable of regulating the blood glucose level by insulin secretion after administration of oral glucose. The advantages of GLP-1 for the avoidance of hypoglycemia and the control of body weight are attractive despite its poor stability. The clinical efficacies of long-acting GLP-1 derivatives strongly support discovery pursuits aimed at identifying and developing orally active, small-molecule GLP-1 receptor (GLP-1R) agonists. The purpose of this study was to identify and characterize a novel oral agonist of GLP-1R (i.e., myricetin). The insulinotropic characterization of myricetin was performed in isolated islets and in Wistar rats. Long-term oral administration of myricetin demonstrated glucoregulatory activity. The data in this study suggest that myricetin might be a potential drug candidate for the treatment of T2DM as a GLP-1R agonist. Further structural modifications on myricetin might improve its pharmacology and pharmacokinetics.-Li, Y., Zheng, X., Yi, X., Liu, C., Kong, D., Zhang, J., Gong, M. Myricetin: a potent approach for the treatment of type 2 diabetes as a natural class B GPCR agonist.
Collapse
Affiliation(s)
- Ying Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xuemin Zheng
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Xiulin Yi
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Dexin Kong
- Department of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China;
| | - Min Gong
- Department of Pharmacy, Tianjin Medical University, Tianjin, China; .,Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Arumugam B, Palanisamy UD, Chua KH, Kuppusamy UR. Potential antihyperglycaemic effect of myricetin derivatives from Syzygium malaccense. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
31
|
Geraniin inhibits TGF-β1-induced epithelial–mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance. Bioorg Med Chem Lett 2015. [DOI: 10.1016/j.bmcl.2015.06.093 pmid: 26169124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Ko H. Geraniin inhibits TGF-β1-induced epithelial-mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance. Bioorg Med Chem Lett 2015; 25:3529-34. [PMID: 26169124 DOI: 10.1016/j.bmcl.2015.06.093] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 06/02/2015] [Accepted: 06/25/2015] [Indexed: 01/25/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is an important cellular process during which epithelial polarized cells become motile mesenchymal-appeared cells, which, in turn, induces the metastatic of cancer. Geraniin is a polyphenolic component isolated from Phyllanthus amarus, which exhibits a wide range of pharmacological and physiological activities, such as antitumor, anti-hyperglycemic, anti-hypertensive, antimicrobial, and antiviral activities. However, the possible role of geraniin in the EMT is unclear. We investigated the effect of geraniin on the EMT. Transforming growth factor-beta 1 (TGF-β1) induces the EMT to promote lung adenocarcinoma migration, invasion, and anoikis resistance. To understand the suppressive role of geraniin in lung cancer migration, invasion, and anoikis resistance, we investigated the use of geraniin as inhibitors of TGF-β1-induced EMT in A549 lung cancer cells in vitro. Here, we show that geraniin remarkably increased expression of the epithelial marker E-cadherin and repressed Snail upregulation and expression of the mesenchymal marker N-cadherin and vimentin during the TGF-β1-induced EMT. Geraniin also inhibited the TGF-β1-induced increase in cell migration, invasion, and anoikis resistance of A549 lung cancer cells. Additionally, geraniin markedly inhibited TGF-β1-regulated activation of Smad2. Taken together, our findings provide new evidence that geraniin suppresses lung cancer migration, invasion, and anoikis resistance in vitro by inhibiting the TGF-β1-induced EMT.
Collapse
Affiliation(s)
- Hyeonseok Ko
- Laboratory of Molecular Oncology, Cheil General Hospital & Women's Healthcare Center, Dankook University College of Medicine, Seoul, South Korea.
| |
Collapse
|
33
|
Yamamoto J, Yamane T, Oishi Y, Shimizu M, Tadaishi M, Kobayashi-Hattori K. Chrysanthemum Promotes Adipocyte Differentiation, Adiponectin Secretion and Glucose Uptake. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 43:255-67. [DOI: 10.1142/s0192415x15500172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The adipose tissue is an endocrine organ, and its endocrine function is closely related to type 2 diabetes. Edible Chrysanthemum morifolium Ramat. (ECM) possesses several biological properties; however, its effect on adipocytes remains unclear. We investigated the effect of the hot water extract of ECM (HW-ECM) on 3T3-L1 adipocytes. HW-ECM enhanced adipocyte differentiation, adiponectin secretion, and glucose uptake in 3T3-L1 cells. It also increased the mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ), a regulator of adipocyte differentiation, adiponectin transcription, and GLUT4 expression. In addition, HW-ECM increased the mRNA levels of CCAAT/enhancer-binding protein-delta (C/EBPδ), which induces PPARγ expression, but not C/EBPβ, during early adipocyte differentiation. These results suggest that HW-ECM enhances adipocyte differentiation, adiponectin secretion, and glucose uptake through C/EBPδ-induced PPARγ expression. These effects of HW-ECM on adipocytes suggest that HW-ECM is potentially beneficial for type 2 diabetes.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Takumi Yamane
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuichi Oishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Makoto Shimizu
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Miki Tadaishi
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| | - Kazuo Kobayashi-Hattori
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
34
|
Zhang Y, Jin L, Chen Q, Wu Z, Dong Y, Han L, Wang T. Hypoglycemic activity evaluation and chemical study on hollyhock flowers. Fitoterapia 2015; 102:7-14. [DOI: 10.1016/j.fitote.2015.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 11/15/2022]
|
35
|
Arumugam B, Manaharan T, Heng CK, Kuppusamy UR, Palanisamy UD. Antioxidant and antiglycemic potentials of a standardized extract of Syzygium malaccense. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.06.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Huang Q, Gao B, Wang L, Hu YQ, Lu WG, Yang L, Luo ZJ, Liu J. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines. Toxicol Appl Pharmacol 2014; 280:550-60. [DOI: 10.1016/j.taap.2014.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/26/2014] [Accepted: 08/04/2014] [Indexed: 12/27/2022]
|
37
|
In vivo toxicity evaluation of a standardized extract of Syzygium aqueum leaf. Toxicol Rep 2014; 1:718-725. [PMID: 28962285 PMCID: PMC5598474 DOI: 10.1016/j.toxrep.2014.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
In this study, the acute and subchronic toxicity effect of the Syzygium aqueum leaf extract (SA) was evaluated. For the acute toxicity study, a single dose of 2000 mg/kg of the SA was given by oral-gavage to male Sprague-Dawley (SD) rats. The rats were observed for mortality and toxicity signs for 14 days. In the subchronic toxicity study the SA was administered orally at doses of 50, 100, and 200 mg/kg per day for 28 days to male SD rats. The animals were sacrificed at the end of the experiment. The parameters measured including food and water intake, body weight, absolute and relative organ weight, blood biochemical tests and histopathology observation. In both the acute and subchronic toxicity studies, SA did not show any visible signs of toxicity. There were also no significant differences between the control and SA treated rats in terms of their food and water intake, body weight, absolute and relative organ weight, biochemical parameters or gross and microscopic appearance of the organs. There were no acute or subchronic toxicity observed and our results indicate that this extract could be devoid of any toxic risk. This is the first in vivo study reported the safety and toxicity of SA.
Collapse
|
38
|
Leucaena leucocephala fruit aqueous extract stimulates adipogenesis, lipolysis, and glucose uptake in primary rat adipocytes. ScientificWorldJournal 2014; 2014:737263. [PMID: 25180205 PMCID: PMC4142670 DOI: 10.1155/2014/737263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/25/2022] Open
Abstract
Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro “insulin-like” activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.
Collapse
|
39
|
Determination of anti-hyperglycaemic activity in steroidal glycoside rich fraction of lily bulbs and characterization of the chemical profiles by LC-Q-TOF-MS/MS. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Chen L, Li QY, Shi XJ, Mao SL, Du YL. 6-Hydroxydaidzein enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10714-10719. [PMID: 24180341 DOI: 10.1021/jf402694m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fermented soybean foods have been shown to reduce incidence of diabetes and improve insulin sensitivity. 6-Hydroxydaidzein (6-HD) is a bioactive ingredient isolated from fermented soybean. In this study, we examined the effects of 6-HD on adipocyte differentiation and insulin-stimulated glucose uptake, as well as the mechanisms involved. In our experiments, 6-HD enhanced 3T3-L1 adipocyte differentiation and insulin-stimulated glucose uptake in a dosage-dependent manner. In addition, 6-HD increased peroxisome proliferator-activated receptor gamma (PPARγ) gene expression and PPARγ transcriptional activity. 6-HD increased CCAAT/enhanced binding protein alpha (C/EBPα) expression as well. Although having no effects on glucose transporter type 4 (GLUT4) gene expression, 6-HD facilitated GLUT4 protein translocation to the cell membranes. Our results indicate that 6-HD exhibited the actions of promoting adipocyte differentiation and improving insulin sensitivity by increasing the expression of C/EBPα and facilitating the translocation of GLUT4 via the activation of PPARγ, suggesting that 6-HD can be promising in diabetes management.
Collapse
Affiliation(s)
- Li Chen
- Pharmacy Department, Xuhui District Central Hospital , 966 Huai Hai M Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|