1
|
Siatka T, Mát'uš M, Moravcová M, Harčárová P, Lomozová Z, Matoušová K, Suwanvecho C, Krčmová LK, Mladěnka P. Biological, dietetic and pharmacological properties of vitamin B 9. NPJ Sci Food 2025; 9:30. [PMID: 40075081 PMCID: PMC11904035 DOI: 10.1038/s41538-025-00396-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Humans must obtain vitamin B9 (folate) from plant-based diet. The sources as well as the effect of food processing are discussed in detail. Industrial production, fortification and biofortification, kinetics, and physiological role in humans are described. As folate deficiency leads to several pathological states, current opinions toward prevention through fortification are discussed. Claimed risks of increased folate intake are mentioned as well as analytical ways for measurement of folate.
Collapse
Affiliation(s)
- Tomáš Siatka
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Marek Mát'uš
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232, Bratislava, Slovak Republic
| | - Monika Moravcová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Patrícia Harčárová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Zuzana Lomozová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Kateřina Matoušová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Chaweewan Suwanvecho
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Pathikkal A, Bhaskar TK, Prasanthan A, Haritha PK, Puthusseri B, Rudrappa S, Chauhan VS. 5-Methyltetrahydrofolate and aqueous extract of Spirulina ( Arthrospira) ameliorate diabetes and associated complications in STZ-induced diabetic rats. 3 Biotech 2025; 15:15. [PMID: 39711918 PMCID: PMC11655854 DOI: 10.1007/s13205-024-04170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
The present study evaluated the effects of 5-methyltetrahydrofolate (5-MTHF) and Spirulina aqueous extract on diabetes. An in silico docking study with select Spirulina bioactive compounds showed strong binding affinities of folates with glucose metabolism-related proteins. In vitro assay showed 5-MTHF's superior inhibitory activity on alpha-amylase compared to folic acid. The protective effect of Spirulina aqueous extract and 5-MTHF were validated in vivo using an STZ-induced diabetic Wistar rat model. Supplementation with Spirulina extract through diet, and a higher dose of 5-MTHF through gavage effectively lowered fasting blood glucose levels and improved oral glucose tolerance and amylase content. Supplementation also countered hyperlipidemia, improved the levels of antioxidant enzymes, and reduced the inflammatory markers. Weight loss prevention, mitigation of kidney enlargement, and normalisation of the histology of the pancreas, kidney, and liver were also observed. The ameliorative effect of a higher dose of 5-MTHF was comparatively superior to Spirulina aqueous extract and a corresponding higher dose of folic acid. An increase in serum folate levels on supplementation with Spirulina aqueous extract suggests Spirulina to be a source of bioavailable folate. The positive effect of Spirulina aqueous extract suggests a potential synergistic role for folate along with its other bioactive phytochemicals. The study highlights the potential ameliorative effects of Spirulina aqueous extract and 5-MTHF as a dietary supplement on diabetes and associated complications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04170-9.
Collapse
Affiliation(s)
- Ajana Pathikkal
- Plant Cell Biotechnology (PCBT) Department, Central Food Technological Research Institute (CFTRI), Mysuru, 570 020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| | - T. Krishna Bhaskar
- Plant Cell Biotechnology (PCBT) Department, Central Food Technological Research Institute (CFTRI), Mysuru, 570 020 India
| | - Aparna Prasanthan
- Plant Cell Biotechnology (PCBT) Department, Central Food Technological Research Institute (CFTRI), Mysuru, 570 020 India
| | - P. K. Haritha
- Plant Cell Biotechnology (PCBT) Department, Central Food Technological Research Institute (CFTRI), Mysuru, 570 020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| | - Bijesh Puthusseri
- Plant Cell Biotechnology (PCBT) Department, Central Food Technological Research Institute (CFTRI), Mysuru, 570 020 India
| | - Sudha Rudrappa
- Department of Paediatrics, Mysore Medical College & Research Institute (MMC & RI), Mysuru, 570 023 India
| | - Vikas Singh Chauhan
- Plant Cell Biotechnology (PCBT) Department, Central Food Technological Research Institute (CFTRI), Mysuru, 570 020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 India
| |
Collapse
|
3
|
Liu F, Edelmann M, Piironen V, Li Y, Liu X, Yan JK, Li L, Kariluoto S. How food matrices modulate folate bioaccessibility: A comprehensive overview of recent advances and challenges. Compr Rev Food Sci Food Saf 2024; 23:e13328. [PMID: 38551068 DOI: 10.1111/1541-4337.13328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/11/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
The incomplete absorption of dietary folate makes it crucial to understand how food matrices affect folate bioaccessibility. Bioavailability encompasses bioaccessibility, which depicts the proportion that is liberated from the food matrix during digestion and becomes available for absorption. Bioavailability studies are expensive and difficult to control, whereas bioaccessibility studies utilize in vitro digestion models to parameterize the complex digestion, allowing the evaluation of the effect of food matrices on bioaccessibility. This review covers the folate contents in various food matrices, the methods used to determine and the factors affecting folate bioaccessibility, and the advances and challenges in understanding how food matrices affect folate bioaccessibility. The methods for determining bioaccessibility have been improved in the last decade. Current research shows that food matrices modulate folate bioaccessibility by affecting the liberation and stability of folate during digestion but do not provide enough information about folate and food component interactions at the molecular level. In addition, information on folate interconversion and degradation during digestion is scant, hindering our understanding of the impact of food matrices on folate stability. Moreover, the role of conjugase inhibitors should not be neglected when evaluating the nutritional value of food folates. Due to the complexity of food digestion, holistic methods should be applied to investigate bioaccessibility. By synthesizing the current state of knowledge on this topic, this review highlights the lack of in-depth understanding of the mechanisms of how food matrices modulate folate bioaccessibility and provides insights into potential strategies for accurate evaluation of the nutritional value of dietary folate.
Collapse
Affiliation(s)
- Fengyuan Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Minnamari Edelmann
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Yuting Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Lin Li
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan, China
| | - Susanna Kariluoto
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Santibáñez A, Jiménez-Ferrer E, Angulo-Bejarano PI, Sharma A, Herrera-Ruiz M. Coriandrum sativum and Its Utility in Psychiatric Disorders. Molecules 2023; 28:5314. [PMID: 37513187 PMCID: PMC10385770 DOI: 10.3390/molecules28145314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The negative impact on worldwide social well-being by the increasing rate of psychiatric diseases has led to a continuous new drug search. Even though the current therapeutic options exert their activity on multiple neurological targets, these have various adverse effects, causing treatment abandonment. Recent research has shown that Coriandrum sativum offers a rich source of metabolites, mainly terpenes and flavonoids, as useful agents against central nervous system disorders, with remarkable in vitro and in vivo activities on models related to these pathologies. Furthermore, studies have revealed that some compounds exhibit a chemical interaction with γ-aminobutyric acid, 5-hydroxytryptamine, and N-methyl-D-aspartate receptors, which are key components in the pathophysiology associated with psychiatric and neurological diseases. The current clinical evaluations of standardized extracts of C. sativum are scarce; however, one or more of its compounds represents an area of opportunity to test the efficacy of the plant as an anxiolytic, antidepressant, antiepileptic, or sleep enhancer. For this, the aim of the review was based on the pharmacological activities offered by the compounds identified and isolated from coriander and the processes involved in achieving their effect. In addition, lines of technological research, like molecular docking and nanoparticles, are proposed for the future development of phytomedicines, based on the bioactive molecules of C. sativum, for the treatment of psychiatric and neurological disorders addressed in the present study.
Collapse
Affiliation(s)
- Anislada Santibáñez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| | - Paola Isabel Angulo-Bejarano
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Ashutosh Sharma
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| |
Collapse
|
5
|
Hou S, Men Y, Zhang Y, Zhao K, Ma G, Li H, Han Y, Sun Z. Role of miRNAs in regulation of SA-mediated upregulation of genes involved in folate and methionine metabolism in foxtail millet. FRONTIERS IN PLANT SCIENCE 2022; 13:1023764. [PMID: 36561440 PMCID: PMC9763449 DOI: 10.3389/fpls.2022.1023764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The effect of exogenous salicylic acid (SA) on folate metabolism and the related gene regulatory mechanisms is still unclear. In this study, the panicle of foxtail millet treated with different SA concentrations showed that 6 mM SA doubled the 5-methyltetrahydrofolate content compared to that of the control. An untargeted metabolomic analysis revealed that 275 metabolites were enriched in amino acid metabolic pathways. Significantly, the relative content of methionine (Met) after 6 mM SA treatment was 3.14 times higher than the control. Transcriptome analysis revealed that differentially expressed genes were mainly enriched in the folate and amino acid biosynthesis pathways (including Met, Cys, Pro, Ser et al.). The miRNA-mRNA interactions related to the folate and Met metabolic pathways were analyzed and several likely structural gene targets for miRNAs were identified, miRNA-seq analysis revealed that 33 and 51 miRNAs targeted 11 and 15 genes related to the folate and Met pathways, respectively. Eight key genes in the folate metabolism pathway were likely to be up-regulated by 14 new miRNAs and 20 new miRNAs up-regulated the 9 key genes in the Met metabolism pathway. The 6 miRNA-mRNA interactions related to the folate and Met metabolism pathways were verified by qRT-PCR, and consistent with the prediction. The results showed that DHFR1 gene expression level related to folate synthesis was directly up-regulated by Nov-m0139-3p with 3.8 times, but DHFR2 was down-regulated by Nov-m0731-5p with 0.62 times. The expression level of CYSC1 and APIP related to Met synthesis were up-regulated by Nov-m0461-5p and Nov-m0664-3p with 4.27 and 1.32 times, respectively. Our results suggested that exogenous SA could induce the folate and Met accumulated in the panicle of foxtail millet. The higher expression level of DHFR1, FTHFD, CYSC1 and APIP in the folate and Met metabolism pathway and their regulators, including Nov-m0139-3p, Nov-m0717-5p, Nov-m0461-5p and Nov-m0664-3p, could be responsible for these metabolites accumulation. This study lays the theoretical foundation for elucidating the post-transcription regulatory mechanisms of folate and Met metabolism.
Collapse
Affiliation(s)
- Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yihan Men
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yijuan Zhang
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Kai Zhao
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Guifang Ma
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Shanxi Agricultural University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Liu F, Edelmann M, Piironen V, Kariluoto S. 5-Methyltetrahydrofolate Is a Crucial Factor in Determining the Bioaccessibility of Folate in Bread. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13379-13390. [PMID: 36206478 PMCID: PMC9585583 DOI: 10.1021/acs.jafc.2c03861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the bioaccessibility of folate in wheat bread baked with different ingredients and processing methods. Next, different matrices were spiked with 5-methyltetrahydrofolate, gallic acid (GA), or both to investigate the stability of 5-methyltetrahydrofolate during in vitro digestion. The folate bioaccessibility in bread varied from 44 to 96%. The inclusion of whole-grain or faba bean flour significantly improved both folate content and bioaccessibility. Baking with yeast increased the folate content by 145% in bread but decreased folate bioaccessibility compared to the bread without added yeast because of the instability of 5-methyltetrahydrofolate. Spiking experiments confirmed oxidation as a critical reason for 5-methyltetrahydrofolate loss during digestion. However, GA protected this vitamer from degradation. Additionally, 5-methyltetrahydrofolate was less stable in whole-grain wheat matrices than other matrices. This study demonstrated that the stability of 5-methyltetrahydrofolate is crucial for folate bioaccessibility in bread, and methods for stabilizing this vitamer should be further studied.
Collapse
|
7
|
Wei S, Lv J, Wei L, Xie B, Wei J, Zhang G, Li J, Gao C, Xiao X, Yu J. Chemometric approaches for the optimization of headspace-solid phase microextraction to analyze volatile compounds in coriander (Coriandrum sativum L.). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Hou S, Zhang Y, Zhao B, Man X, Ma G, Men Y, Du W, Yang Y, Li H, Han Y, Zhao Y, Sun Z. Heterologous Expression of SiFBP, a Folate-Binding Protein from Foxtail Millet, Confers Increased Folate Content and Altered Amino Acid Profiles with Nutritional Potential to Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6272-6284. [PMID: 35575700 DOI: 10.1021/acs.jafc.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanism underlying folate degradation in foxtail millet grains remains unclear. Here, we identified SiFBP (Setaria italica folate-binding protein) from foxtail millet. A phylogenetic tree revealed that FBPs have close genetic relationships among cereal crop species. Docking analysis and heterologous expression of SiFBP in yeast showed that it could bind folic acid (FA). The SiFBP localized to the plasma membrane in tobacco mesophyll cells by transient expression. In Arabidopsis, it was expressed specifically in the roots and germinating seeds. Overexpressing SiFBP in yeast and Arabidopsis significantly increased folate contents. Untargeted metabolome analysis revealed differentially accumulated metabolites between the transgenic lines (TLs) and wild type (WT); these metabolites were mainly enriched in the amino acid metabolism pathway. The relative contents of lysine and leucine, threonine, and l-methionine were significantly higher in the TLs than in WT. Genes related to the folate and lysine synthesis pathways were upregulated in the TLs. Thus, SiFBP can be used for biofortification of folate and important amino acids in crops via genetic engineering.
Collapse
Affiliation(s)
- Siyu Hou
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Yijuan Zhang
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China
| | - Xiaxia Man
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Guifang Ma
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yihan Men
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Wei Du
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yang Yang
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Hongying Li
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Yuanhuai Han
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Yaofei Zhao
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| | - Zhaoxia Sun
- College of Agriculture, Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, Taiyuan, Shanxi 030031, China
| |
Collapse
|
9
|
Ceylan Z, Yaman M, Sağdıç O, Karabulut E, Yilmaz MT. Effect of electrospun thymol-loaded nanofiber coating on vitamin B profile of gilthead sea bream fillets (Sparus aurata). Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Evaluation of folate-binding proteins and stability of folates in plant foliages. Food Chem 2018; 242:555-559. [DOI: 10.1016/j.foodchem.2017.09.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/06/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022]
|
11
|
Puthusseri B, Divya P, Lokesh V, Kumar G, Savanur MA, Neelwarne B. Novel Folate Binding Protein in Arabidopsis Expressed during Salicylic Acid-Induced Folate Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:505-511. [PMID: 29231735 DOI: 10.1021/acs.jafc.7b04236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Increasing the quantity of natural folates in plant foods is recently gaining significant interest, owing to their acute deficiencies in various populations. This study observed that foliar salicylic acid treatment enhanced the accumulation of folates in Arabidopsis, which correlated with the increase in a folate binding protein (FBP) and the expression of mRNA of a putative folate binding protein At5G27830. A protein band corresponding to ∼43 kDa was observed after resolving the affinity-purified protein on SDS-PAGE, and the partial amino acid sequence indicated that the protein is indeed At5G27830. Docking studies performed with At5G27830 confirmed specific binding of folic acid to predicted site. Heterologous expression of At5G27830 in the yeast resulted in significant uptake and accumulation of folic acid in cells. This novel study of a plant FBP will be useful for folate metabolic engineering of a wide range of crops.
Collapse
Affiliation(s)
- Bijesh Puthusseri
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| | - Peethambaran Divya
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| | - Veeresh Lokesh
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| | - Gyanendra Kumar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| | | | - Bhagyalakshmi Neelwarne
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute , Mysore 570020, India
| |
Collapse
|
12
|
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res Int 2017; 105:305-323. [PMID: 29433220 DOI: 10.1016/j.foodres.2017.11.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/19/2017] [Indexed: 01/03/2023]
Abstract
Coriandrum sativum (C. sativum) or coriander is one of the most popularly used spices in culinary worldwide, and its medicinal values has been recognized since ancient time. C. sativum contains bioactive phytochemicals that are accounted for a wide range of biological activities including antioxidant, anticancer, neuroprotective, anxiolytic, anticonvulsant, analgesic, migraine-relieving, hypolipidemic, hypoglycemic, hypotensive, antimicrobial, and antiinflammatory activities. The major compound, linalool, abundantly found in seeds is remarked for its abilities to modulate many key pathogenesis pathways of diseases. Apart from the modulating effects, the potent antioxidant property of the C. sativum provides a key mechanism behind its protective effects against neurodegenerative diseases, cancer, and metabolic syndrome. This review shed light on comprehensive aspects regarding the therapeutic values of the C. sativum, which indicate its significance of being a promising functional food for promoting the well-being in the era of aging and lifestyle-related diseases.
Collapse
Affiliation(s)
- Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Chemical Biology, Chulabhorn Graduate Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Commission on Higher Education (CHE), Ministry of Education, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
13
|
Saini RK, Nile SH, Keum YS. Folates: Chemistry, analysis, occurrence, biofortification and bioavailability. Food Res Int 2016; 89:1-13. [PMID: 28460896 DOI: 10.1016/j.foodres.2016.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/18/2016] [Accepted: 07/22/2016] [Indexed: 01/27/2023]
Abstract
Folates (Vitamin B9) include both naturally occurring folates and synthetic folic acid used in fortified foods and dietary supplements. Folate deficiency causes severe abnormalities in one-carbon metabolism can result chronic diseases and developmental disorders, including neural tube defects. Mammalian cells cannot synthesize folates de novo; therefore, diet and dietary supplements are the only way to attain daily folate requirements. In the last decade, significant advancements have been made to enhance the folate content of rice, tomato, common bean and lettuce by using genetic engineering approaches. Strategies have been developed to improve the stability of folate pool in plants. Folate deglutamylation through food processing and thermal treatment has the potential to enhance the bioavailability of folate. This review highlights the recent developments in biosynthesis, composition, bioavailability, enhanced production by elicitation and metabolic engineering, and methods of analysis of folate in food. Additionally, future perspectives in this context are identified. Detailed knowledge of folate biosynthesis, degradation and salvage are the prime requirements to efficiently engineer the plants for the enhancement of overall folate content. Similarly, consumption of a folate-rich diet with enhanced bioavailability is the best way to maintain optimum folate levels in the body.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Bioresources and Food Science, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Shivraj Hariram Nile
- Department of Bioresources and Food Science, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young-Soo Keum
- Department of Bioresources and Food Science, College of Life and Environmental Sciences, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
14
|
|
15
|
Zhang S, Li H, Liang X, Yan Y, Xia P, Jia Y, Liang Z. Enhanced production of phenolic acids in Salvia miltiorrhiza hairy root cultures by combing the RNAi-mediated silencing of chalcone synthase gene with salicylic acid treatment. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.07.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|