1
|
Yang J, Wang D, Yu H, Wang L, Wang Y, Liu X, Huang Y, Ouyang C, Hong Y, Ren S, Wang Y, Jin Y, Hu J, Feng J. Lauric acid-mediated gelatin/hyaluronic acid composite hydrogel with effective antibacterial and immune regulation for accelerating MRSA-infected diabetic wound healing. Int J Biol Macromol 2025; 290:138792. [PMID: 39689796 DOI: 10.1016/j.ijbiomac.2024.138792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
The infected diabetic wound healing is an increasingly severe healthcare problem worldwide. Bacterial infection and the inflammatory microenvironment hinder diabetic wound healing. Meanwhile, the combination of inhibiting bacterial growth and promoting macrophage polarization in the wound microenvironment is beneficial for treating diabetic wounds. Nowadays, hydrogels, as an emerging wound dressing, have great potential to replace or supplement traditional bandages or gauze. Here, glycyl methacrylate gelatin (Gel-Gym), oxidized hyaluronic acid (HA-CHO) and lauric acid (LA) were used to prepare the composite hydrogel (GH/LA) in addressing the clinical dilemma. The hydrogel could withstand 50 % compression deformation, its swelling rate was as low as 18 %, and its adhesion to pig skin reached 14 kPa. Moreover, a diabetic infected wound model was used to evaluate the feasibility of GH/LA hydrogel in vivo. The hydrogels' antimicrobial, anti-inflammatory and prorestitutive potentials were further investigated, and GH/LA showed a therapeutic effect on diabetic wounds. Interestingly, macrophage polarization into the M2 phenotype was significantly enhanced in the presence of GH/LA via GPR40/NF-κB pathway. This study provided a new avenue for treating methicillin-resistant staphylococcus aureus (MRSA) infected diabetic wounds.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Dongyu Wang
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yun Wang
- Zhejiang TUANYUAN Composite Materials Co., Ltd., Pinghu 314200, PR China
| | - Xiaowei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Jin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jian Hu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Jingyi Feng
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| |
Collapse
|
2
|
Gu X, Huang L, Lian J. Biomanufacturing of γ-linolenic acid-enriched galactosyldiacylglycerols: Challenges in microalgae and potential in oleaginous yeasts. Synth Syst Biotechnol 2023; 8:469-478. [PMID: 37692201 PMCID: PMC10485790 DOI: 10.1016/j.synbio.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/12/2023] Open
Abstract
γ-Linolenic acid-enriched galactosyldiacylglycerols (GDGs-GLA), as the natural form of γ-linolenic acid in microalgae, have a range of functional activities, including anti-inflammatory, antioxidant, and anti-allergic properties. The low abundance of microalgae and the structural stereoselectivity complexity impede microalgae extraction or chemical synthesis, resulting in a lack of supply of GDGs-GLA with a growing demand. At present, there is a growing interest in engineering oleaginous yeasts for mass production of GDGs-GLA based on their ability to utilize a variety of hydrophobic substrates and a high metabolic flux toward fatty acid and lipid (triacylglycerol, TAG) production. Here, we first introduce the GDGs-GLA biosynthetic pathway in microalgae and challenges in the engineering of the native host. Subsequently, we describe in detail the applications of oleaginous yeasts with Yarrowia lipolytica as the representative for GDGs-GLA biosynthesis, including the development of synthetic biology parts, gene editing tools, and metabolic engineering of lipid biosynthesis. Finally, we discuss the development trend of GDGs-GLA biosynthesis in Y. lipolytica.
Collapse
Affiliation(s)
- Xiaosong Gu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Khalil RT, Alshimy A, Elsherbini E, Abd-Ellah ME. Disinfection of 3D-printed surgical guides using virgin coconut oil (in vitro study). BMC Oral Health 2023; 23:379. [PMID: 37301954 PMCID: PMC10257485 DOI: 10.1186/s12903-023-03092-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND/OBJECTIVE Disinfection of a 3D-printed surgical guide is of utmost importance as it comes into contact with hard and soft tissue during implant placement so it poses a potential risk of pathogenic transmission. Methods used for disinfection in the surgical field should be reliable, practical, and safe for the instruments and the patients. The objectives of this study were to compare the antimicrobial potential of 100% Virgin Coconut Oil, 2% Glutaraldehyde, and 70% Ethyl Alcohol used to decontaminate 3D-printed surgical guides. MATERIALS AND METHODS Thirty identical surgical guides were printed and cut into two halves (N = 60). Both halves were then contaminated with a defined amount of human saliva samples (2 ml). The first half (n = 30) was sub-grouped into three study groups which were immersed in one of the three disinfectants for 20 min as follows; group VCO was immersed in 100% Virgin Coconut Oil, group GA was immersed in 2% Glutaraldehyde, and group EA was immersed in 70% Ethyl Alcohol. The second half (n* = 30) was sub-grouped into three control groups which were immersed in sterile distilled water as follows group VCO*, group GA*, and group EA*. The microbial count was expressed as colony-forming units per plate and the comparison of the antimicrobial potential of the three tested disinfectants between the three study and three control groups was done using the One-Way ANOVA test. RESULTS The culture results of three study groups revealed no bacterial growth with the highest % of reduction in the mean microbial count of the oral microorganisms (about100%) and an uncountable bacterial growth was shown between the three control groups (more than 100 CFU/plate) representing the baseline of the oral microorganisms. Therefore; statistically significant differences were found between the three control and three study groups (P < .001). CONCLUSION The antimicrobial potential of Virgin Coconut Oil was comparable and equivalent to Glutaraldehyde and Ethyl Alcohol with a significant inhibitory action against oral pathogens.
Collapse
Affiliation(s)
- Rania T Khalil
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Ahmed Alshimy
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Eglal Elsherbini
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mervat E Abd-Ellah
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Lipophilic Compounds and Antibacterial Activity of Opuntia ficus-indica Root Extracts from Algeria. Int J Mol Sci 2022; 23:ijms231911161. [PMID: 36232458 PMCID: PMC9569945 DOI: 10.3390/ijms231911161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/21/2022] Open
Abstract
The chemical composition, investigated by gas chromatography-mass spectrometry, and antibacterial activity of lipophilic extractives of three varieties of Opuntia ficus-indica roots from Algeria are reported in this paper for the first time. The results obtained revealed a total of 55 compounds, including fatty acids, sterols, monoglycerides and long chain aliphatic alcohols that were identified and quantified. β-Sitosterol was found as the major compound of the roots of the three varieties. Furthermore, considerable amounts of essential fatty acids (ω3, ω6, and ω9) such as oleic, linoleic, and linolenic acids were also identified. The green variety was the richest among the three studied varieties. The antibacterial activity, evaluated with disc diffusion method, revealed that lipophilic extracts were effective mainly against Gram-positive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) (19~23 mm). Gram-negative strains mainly Pseudomonas aeruginosa gave an inhibition zone of 18 mm, which is considered high antibacterial activity. The minimal inhibitory concentrations of the tested bacteria revealed interesting values against the majority of bacteria tested: 75–100 µg mL−1 for Bacillus sp., 250–350 µg/mL for the two Staphylococcus strains, 550–600 µg mL−1 for E. coli, and 750–950 µg mL−1 obtained with Pseudomonas sp. This study allows us to conclude that the lipophilic fractions of cactus roots possess interesting phytochemicals such as steroids, some fatty acids and long chain alcohols that acted as antibiotic-like compounds countering pathogenic strains.
Collapse
|
5
|
Han CE, Ewe JA, Kuan CS, Yeo SK. Growth characteristic of probiotic in fermented coconut milk and the antibacterial properties against Streptococcus pyogenes. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3379-3386. [PMID: 35875243 PMCID: PMC9304481 DOI: 10.1007/s13197-021-05321-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 06/01/2023]
Abstract
This study investigated growth characteristics and antibacterial properties of probiotics in fermented coconut milk (CM) against Streptococcus pyogenes. A total of eight probiotics were screened for their survivability in CM. Antibacterial test against S. pyogenes was carried out on strain with highest growth rate. The survivability of probiotics in CM is strain dependent with S. salivarius ATCC 13419 showing the highest growth rate. Titratable acidity of the CM increased significantly while pH decreased significantly upon 9 h fermentation. The antibacterial properties of CM fermented with S. salivarius ATCC 13419 and K12 against S. pyogenes enhanced by 60.60% and 67.69%, respectively, compared to non-fermented CM. Their ability to metabolise carbohydrates and fats in CM was proven where alpha-glucosidase activity of S. salivarius ATCC 13419 and K12 was 22.42 ± 1.73 and 24.92 ± 7.22 unit/L, respectively, whereas, lipase activity was 1498.29 ± 48.50 and 1749.90 ± 254.28 unit/L, respectively. Lipolytic activity of these strains was further evidenced by GC-MS results whereby lauric acid content (potent antibacterial substance) in CM fermented with S. salivarius ATCC 13419 and K12 increased significantly by 5.03% and 10.74%, respectively. In conclusion, fermented CM provided a new alternative of non-dairy functional product with antibacterial potential against S. pyogenes.
Collapse
Affiliation(s)
- Ching Enn Han
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, 1, Jalan Taylors, 47500 Subang Jaya, Malaysia
| | - Joo-Ann Ewe
- Nano and Advanced Material Institute Limited, Lakeside 1, New Territories, Shatin, Science and Technology W Ave, Science Park, Hong Kong
| | - Chee-Sian Kuan
- NeoGenix Laboratoire, Kelana Square, C707, Jalan SS17/26, 47301 Petaling Jaya, Selangor Malaysia
| | - Siok Koon Yeo
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor’s University, 1, Jalan Taylors, 47500 Subang Jaya, Malaysia
| |
Collapse
|
6
|
Chen Y, Liu Y, Liu H, Gao Y. Stabilizing emulsions using high-amylose maize starch treated by solvothermal process. Carbohydr Polym 2022; 284:119190. [DOI: 10.1016/j.carbpol.2022.119190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/25/2022] [Indexed: 11/02/2022]
|
7
|
Surface Functionalization of Ureteral Stents-Based Polyurethane: Engineering Antibacterial Coatings. MATERIALS 2022; 15:ma15051676. [PMID: 35268903 PMCID: PMC8910958 DOI: 10.3390/ma15051676] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/10/2022]
Abstract
Bacterial colonization of polyurethane (PU) ureteral stents usually leads to severe and challenging clinical complications. As such, there is an increasing demand for an effective response to this unmet medical challenge. In this study, we offer a strategy based on the functionalization of PU stents with chitosan-fatty acid (CS-FA) derivatives to prevent bacterial colonization. Three different fatty acids (FAs), namely stearic acid (SA), oleic acid (OA), and linoleic acid (LinA), were successfully grafted onto chitosan (CS) polymeric chains. Afterwards, CS-FA derivatives-based solutions were coated on the surface of PU stents. The biological performance of the modified PU stents was evaluated against the L929 cell line, confirming negligible cytotoxicity of the developed coating formulations. The antibacterial potential of coated PU stents was also evaluated against several microorganisms. The obtained data indicate that the base material already presents an adequate performance against Staphylococcus aureus, which slightly improved with the coating. However, the performance of the PU stents against Gram-negative bacteria was markedly increased with the surface functionalization approach herein used. As a result, this study reveals the potential use of CS-FA derivatives for surface functionalization of ureteral PU stents and allows for conjecture on its successful application in other biomedical devices.
Collapse
|
8
|
Zhao Y, Sun Q, Tian B, Zhu S, Du F, Mao R, Li S, Liu L, Zhu Y. Evaluation of Four Indigenous Non-Saccharomyces Yeasts Isolated from the Shangri-La Wine Region (China) for Their Fermentation Performances and Aroma Compositions in Synthetic Grape Juice Fermentation. J Fungi (Basel) 2022; 8:jof8020146. [PMID: 35205900 PMCID: PMC8879568 DOI: 10.3390/jof8020146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the fermentation performances and aroma compositions of synthetic grape juice that was fermented by four indigenous non-Saccharomyces yeast isolates that were obtained from the Shangri-La wine region (China): Meyerozyma guilliermondii (AD-58), Saccharomycopsis vini (BZL-28), Saturnispora diversa (BZL-11), and Wickerhamomyces anomalus (DR-110), in comparison to those of Saccharomyces cerevisiae (EC1118). The four indigenous non-Saccharomyces yeasts showed a lower fermentative capacity and a lower conversion rate of sugar to alcohol, but a higher yield of volatile acidity. W. anomalus (DR-110) had a greater ability to produce numerous esters and short-chain fatty acids and the representative flavors of its fermented medium were fruity and fatty. Sac. vini (BZL-28), interestingly, exhibited great capacity in the formation of many monoterpenes, particularly (Z)-β-ocimene, E-β-ocimene, linalool, citral, and geraniol and its fermented medium was characterized by a strong fruity (citrus-like) and floral flavor. M. guilliermondii (AD-58) and Sat. diversa (BZL-11) only mildly affected the aroma profiles of their resultant fermented media, since the concentrations of most of the volatiles that were produced by these two isolates were much lower than their sensory thresholds. The four indigenous non-Saccharomyces yeasts exhibited distinctive fermentation performances and aroma production behaviors. In particularly, W. anomalus (DR-110) and Sac. vini (BZL-28) have shown good potential in enhancing the aromas and complexity of wine.
Collapse
Affiliation(s)
- Yue Zhao
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
- College of Food Science, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China
| | - Qingyang Sun
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
| | - Bin Tian
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand;
| | - Shusheng Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
| | - Fei Du
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
| | - Ruzhi Mao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (L.L.)
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Su Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Lijing Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (L.L.)
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yifan Zhu
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.Z.); (Q.S.); (S.Z.); (F.D.)
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (R.M.); (L.L.)
- University Engineering Research Center for Grape & Wine of Yunan Province, Yunnan Agricultural University, Kunming 650201, China
- Correspondence:
| |
Collapse
|
9
|
Lesage J, Timoumi A, Cenard S, Lombard E, Lee HLT, Guillouet SE, Gorret N. Accelerostat study in conventional and microfluidic bioreactors to assess the key role of residual glucose in the dimorphic transition of Yarrowia lipolytica in response to environmental stimuli. N Biotechnol 2021; 64:37-45. [PMID: 34058397 DOI: 10.1016/j.nbt.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/19/2022]
Abstract
Yarrowia lipolytica, with a diverse array of biotechnological applications, is able to grow as ovoid yeasts or filamentous hyphae depending on environmental conditions. This study has explored the relationship between residual glucose levels and dimorphism in Y. lipolytica. Under pH stress conditions, the morphological and physiological characteristics of the yeast were examined during well-controlled accelerostat cultures using both a 1 L-laboratory scale and a 1 mL-microfluidic bioreactor. The accelerostat mode, via a smooth increase of dilution rate (D), enabled the cell growth rate to increase gradually up to the cell wash-out (D ≥μmax of the strain), which was accompanied by a progressive increase in residual glucose concentration. The results showed that Y. lipolytica maintained an ovoid morphology when residual glucose concentration was below a threshold value of around 0.35-0.37 mg L-1. Transitions towards more elongated forms were triggered at this threshold and progressively intensified with the increase in residual glucose levels. The effect of cAMP on the dimorphic transition was assessed by the exogenous addition of cAMP and the quantification of its intracellular levels during the accelerostat. cAMP has been reported to be an important mediator of environmental stimuli that inhibit filamentous growth in Y. lipolytica by activating the cAMP-PKA regulatory pathway. It was confirmed that the exogenous addition of cAMP inhibited the mycelial morphology of Y. lipolytica, even with glucose concentrations exceeding the threshold level. The results suggest that dimorphic responses in Y. lipolytica are regulated by sugar signaling pathways, most likely via the cAMP-PKA dependent pathway.
Collapse
Affiliation(s)
- Julie Lesage
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Asma Timoumi
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Stéphanie Cenard
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Eric Lombard
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Harry L T Lee
- Erbi Bio, Inc, 325 New Boston Stress, Unit 6, Woburn, MA, 01801, USA
| | - Stéphane E Guillouet
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France
| | - Nathalie Gorret
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil. 35077, Toulouse Cedex, France.
| |
Collapse
|
10
|
Orchard A, van Vuuren SF. Carrier oils in dermatology. Arch Dermatol Res 2019; 311:653-672. [PMID: 31321504 DOI: 10.1007/s00403-019-01951-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
Wounds are a common medical infliction. With the increase in microbial resistance and a shift of interest towards complementary medicines, essential oils have been shown to be beneficial in suppressing microbial growth. However, in practice, essential oils are more often diluted into a base due to the risk of topical adverse effects, such as dermatitis. There is a lack of collated evidence-based information on toxicity and efficacy of carrier oils. The current information on the subject matter is restricted to generic, aroma-therapeutic books and pamphlets, based on anecdotal evidence rather than an experimental approach. Therefore, this review aimed at identifying the recommended carrier oils used in dermatology and thereafter collating the scientific evidence to support the use of carrier oils together with essential oils recommended for dermatological use. Aloe vera gel had multiple studies demonstrating the ability to enhance wound healing; however, several other carrier oils have been largely neglected. It was observed that the extracts for certain plant species had been used to justify the use of the carrier oils of the same plant species. This is an inaccurate cross assumption due to the difference in chemical composition and biological activities. Lastly, despite these carrier oils being recommended as a base for essential oils, very little data was found on the interactive profile of the carrier oil with the essential oil. This review provides a platform for further studies, especially if essential oils are to receive credence in the scientific field.
Collapse
Affiliation(s)
- Ané Orchard
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Sandy F van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
11
|
Suckling lamb meat quality from ewes fed with different sources of fat, during storage under display conditions. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Wu J, Wang Z, Zhang X, Zhou P, Xia X, Dong M. Improving medium chain fatty acid production in Escherichia coli by multiple transporter engineering. Food Chem 2019; 272:628-634. [DOI: 10.1016/j.foodchem.2018.08.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023]
|
13
|
Ponphaiboon J, Limmatvapirat S, Chaidedgumjorn A, Limmatvapirat C. Optimization and comparison of GC-FID and HPLC-ELSD methods for determination of lauric acid, mono-, di-, and trilaurins in modified coconut oil. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1099:110-116. [DOI: 10.1016/j.jchromb.2018.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/12/2018] [Accepted: 09/22/2018] [Indexed: 10/28/2022]
|
14
|
Khor YP, Koh SP, Long K, Chong GH, Tan CP. Stability Assessment of Virgin Coconut Oil-Based Emulsion Products. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yih Phing Khor
- Department of Food Technology, Faculty of Food Science and Technology; Universiti Putra Malaysia; Serdang Selangor 43400 Malaysia
| | - Soo Peng Koh
- Biotechnology Research Center; Malaysian Agricultural Research and Development Institute (MARDI) Headquarters; P.O. Box 12301, Serdang Selangor 50774 Malaysia
| | - Kamariah Long
- Biotechnology Research Center; Malaysian Agricultural Research and Development Institute (MARDI) Headquarters; P.O. Box 12301, Serdang Selangor 50774 Malaysia
| | - Gun Hean Chong
- Department of Food Technology, Faculty of Food Science and Technology; Universiti Putra Malaysia; Serdang Selangor 43400 Malaysia
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology; Universiti Putra Malaysia; Serdang Selangor 43400 Malaysia
| |
Collapse
|
15
|
Nguyen TAV, Le TD, Phan HN, Tran LB. Hydrolysis Activity of Virgin Coconut Oil Using Lipase from Different Sources. SCIENTIFICA 2018; 2018:9120942. [PMID: 29623233 PMCID: PMC5829430 DOI: 10.1155/2018/9120942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
Two types of lipase, Candida rugosa lipase (CRL) and porcine pancreas lipase (PPL), were used to hydrolyze virgin coconut oil (VCO). The hydrolysis process was carried out under four parameters, VCO to buffer ratio, lipase concentration, pH, and temperature, which have a significant effect on hydrolysis of lipase. CRL obtained the best hydrolysis condition at 1 : 5 of VCO to buffer ratio, 1.5% of CRL concentration, pH 7, and temperature of 40°C. Meanwhile, PPL gave different results at 1 : 4 of VCO to buffer ratio, 2% of lipase concentration, pH 7.5, and 40°C. The highest hydrolysis degree of CRL and PPL was obtained after 16 hours and 26 hours, reaching 79.64% and 27.94%, respectively. Besides, the hydrolysis process was controlled at different time course (every half an hour) at the first 4 hours of reaction to compare the initial hydrolysis degree of these two lipase types. FFAs from hydrolyzed products were isolated and determined the percentage of each fatty acid which contributes to the FFAs mixture. As a result, medium chain fatty acids (MCFAs) made up the main contribution in composition of FFAs and lauric acid (C12) was the largest segment (47.23% for CRL and 44.23% for PPL).
Collapse
Affiliation(s)
- T. A. V. Nguyen
- Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Bach Khoa University, Ho Chi Minh City, Vietnam
| | - Truong D. Le
- Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hoa N. Phan
- Bach Khoa University, Ho Chi Minh City, Vietnam
| | - Lam B. Tran
- Bach Khoa University, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Antibacterial Activity of Free Fatty Acids from Hydrolyzed Virgin Coconut Oil Using Lipase from Candida rugosa. J Lipids 2017; 2017:7170162. [PMID: 29259829 PMCID: PMC5702975 DOI: 10.1155/2017/7170162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 11/29/2022] Open
Abstract
Free fatty acids (FFAs) were obtained from hydrolyzed virgin coconut oil (VCO) by Candida rugosa lipase (CRL). Four factors' influence on hydrolysis degree (HD) was examined. The best hydrolysis conditions in order to get the highest HD value were determined at VCO to buffer ratio 1 : 5 (w/w), CRL concentration 1.5% (w/w oil), pH 7, and temperature 40°C. After 16 hours' reaction, the HD value achieved 79.64%. FFAs and residual hydrolyzed virgin coconut oil (HVCO) were isolated from the hydrolysis products. They were tested for their antibacterial activity against Gram-negative and Gram-positive bacteria, which can be found in contaminated food and cause food poisoning. FFAs showed their inhibition against Bacillus subtilis (ATCC 11774), Escherichia coli (ATCC 25922), Salmonella enteritidis (ATCC 13076), and Staphylococcus aureus (ATCC 25923) at minimum inhibitory concentration (MIC) of 50%, 60%, 20%, and 40%, respectively. However, VCO and HVCO did not show their antibacterial activity against these tested bacteria.
Collapse
|
17
|
Influence of oxygen availability on the metabolism and morphology of Yarrowia lipolytica: insights into the impact of glucose levels on dimorphism. Appl Microbiol Biotechnol 2017; 101:7317-7333. [DOI: 10.1007/s00253-017-8446-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 10/18/2022]
|
18
|
Horincar G, Horincar VB, Gottardi D, Bahrim G. Tailoring the potential of Yarrowia lipolytica for bioconversion of raw palm fat for antimicrobials production. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Lizardi-Jiménez MA, Hernández-Martínez R. Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech 2017; 7:44. [PMID: 28444587 DOI: 10.1007/s13205-017-0692-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/13/2017] [Indexed: 12/01/2022] Open
Abstract
Solid state fermentation is currently used in a range of applications including classical applications, such as enzyme or antibiotic production, recently developed products, such as bioactive compounds and organic acids, new trends regarding bioethanol and biodiesel as sources of alternative energy, and biosurfactant molecules with environmental purposes of valorising unexploited biomass. This work summarizes the diversity of applications of solid state fermentation to valorize biomass regarding alternative energy and environmental purposes. The success of applying solid state fermentation to a specific process is affected by the nature of specific microorganisms and substrates. An exhaustive number of microorganisms able to grow in a solid matrix are presented, including fungus such as Aspergillus or Penicillum for antibiotics, Rhizopus for bioactive compounds, Mortierella for biodiesel to bacteria, Bacillus for biosurfactant production, or yeast for bioethanol.
Collapse
Affiliation(s)
- M A Lizardi-Jiménez
- CONACYT-Instituto Tecnológico Superior de Tierra Blanca, Av. Veracruz S/N Esq., Héroes de Puebla, Colonia Pemex, C.P. 95180, Tierra Blanca, Veracruz, Mexico
| | - R Hernández-Martínez
- CONACYT-Instituto Tecnológico Superior de Tierra Blanca, Av. Veracruz S/N Esq., Héroes de Puebla, Colonia Pemex, C.P. 95180, Tierra Blanca, Veracruz, Mexico.
| |
Collapse
|
20
|
Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: dependence of the stress response on the culture mode. Appl Microbiol Biotechnol 2016; 101:351-366. [DOI: 10.1007/s00253-016-7856-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/12/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
|
21
|
Speranza P, Ribeiro APB, Macedo GA. Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area. J Biotechnol 2016; 218:13-20. [DOI: 10.1016/j.jbiotec.2015.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 12/24/2022]
|
22
|
Liu HH, Ji XJ, Huang H. Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol Adv 2015; 33:1522-46. [DOI: 10.1016/j.biotechadv.2015.07.010] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 01/01/2023]
|
23
|
Lipids containing medium-chain fatty acids are specific to post-whole genome duplication Saccharomycotina yeasts. BMC Evol Biol 2015; 15:97. [PMID: 26018144 PMCID: PMC4446107 DOI: 10.1186/s12862-015-0369-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 04/29/2015] [Indexed: 12/04/2022] Open
Abstract
Background Yeasts belonging to the subphylum Saccharomycotina have been used for centuries in food processing and, more recently, biotechnology. Over the past few decades, these yeasts have also been studied in the interest of their potential to produce oil to replace fossil resources. Developing yeasts for massive oil production requires increasing yield and modifying the profiles of the fatty acids contained in the oil to satisfy specific technical requirements. For example, derivatives of medium-chain fatty acids (MCFAs, containing 6–14 carbons) are used for the production of biodiesels, cleaning products, lubricants and cosmetics. Few studies are available in the literature on the production of MCFAs in yeasts. Results We analyzed the MCFA content in Saccharomyces cerevisiae grown in various conditions. The results revealed that MCFAs preferentially accumulated when cells were grown on synthetic media with a high C/N ratio at low temperature (23 °C). Upon screening deletion mutant strains for genes encoding lipid droplet-associated proteins, we found two genes, LOA1 and TGL3, involved in MCFA homeostasis. A phylogenetic analysis on 16 Saccharomycotina species showed that fatty acid profiles differed drastically among yeasts. Interestingly, MCFAs are only present in post-whole genome duplication yeast species. Conclusions In this study, we produced original data on fatty acid diversity in yeasts. We demonstrated that yeasts are amenable to genetic and metabolic engineering to increase their MCFA production. Furthermore, we revealed that yeast lipid biodiversity has not been fully explored, but that yeasts likely harbor as-yet-undiscovered strains or enzymes that can contribute to the production of high-value fatty acids for green chemistry. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0369-2) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Liang Y, Yuan Y, Liu T, Mao W, Zheng Y, Li D. Identification and computational annotation of genes differentially expressed in pulp development of Cocos nucifera L. by suppression subtractive hybridization. BMC PLANT BIOLOGY 2014; 14:205. [PMID: 25084812 PMCID: PMC4236756 DOI: 10.1186/s12870-014-0205-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/22/2014] [Indexed: 05/16/2023]
Abstract
BACKGROUND Coconut (Cocos nucifera L.) is one of the world's most versatile, economically important tropical crops. Little is known about the physiological and molecular basis of coconut pulp (endosperm) development and only a few coconut genes and gene product sequences are available in public databases. This study identified genes that were differentially expressed during development of coconut pulp and functionally annotated these identified genes using bioinformatics analysis. RESULTS Pulp from three different coconut developmental stages was collected. Four suppression subtractive hybridization (SSH) libraries were constructed (forward and reverse libraries A and B between stages 1 and 2, and C and D between stages 2 and 3), and identified sequences were computationally annotated using Blast2GO software. A total of 1272 clones were obtained for analysis from four SSH libraries with 63% showing similarity to known proteins. Pairwise comparing of stage-specific gene ontology ids from libraries B-D, A-C, B-C and A-D showed that 32 genes were continuously upregulated and seven downregulated; 28 were transiently upregulated and 23 downregulated. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT), phospholipase D, acetyl-CoA carboxylase carboxyltransferase beta subunit, 3-hydroxyisobutyryl-CoA hydrolase-like and pyruvate dehydrogenase E1 β subunit were associated with fatty acid biosynthesis or metabolism. Triose phosphate isomerase, cellulose synthase and glucan 1,3-β-glucosidase were related to carbohydrate metabolism, and phosphoenolpyruvate carboxylase was related to both fatty acid and carbohydrate metabolism. Of 737 unigenes, 103 encoded enzymes were involved in fatty acid and carbohydrate biosynthesis and metabolism, and a number of transcription factors and other interesting genes with stage-specific expression were confirmed by real-time PCR, with validation of the SSH results as high as 66.6%. Based on determination of coconut endosperm fatty acids content by gas chromatography-mass spectrometry, a number of candidate genes in fatty acid anabolism were selected for further study. CONCLUSION Functional annotation of genes differentially expressed in coconut pulp development helped determine the molecular basis of coconut endosperm development. The SSH method identified genes related to fatty acids, carbohydrate and secondary metabolites. The results will be important for understanding gene functions and regulatory networks in coconut fruit.
Collapse
Affiliation(s)
- Yuanxue Liang
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Yijun Yuan
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Tao Liu
- Annoroad Gene Technology Co. Ltd, Beijing 100176, PR China
| | - Wei Mao
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Yusheng Zheng
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
| | - Dongdong Li
- Department of Biotechnology, College of Materials and Chemical Engineering, Hainan University, Haikou 570228, Hainan, PR China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, Hainan, PR China
| |
Collapse
|
25
|
Zinjarde S, Apte M, Mohite P, Kumar AR. Yarrowia lipolytica and pollutants: Interactions and applications. Biotechnol Adv 2014; 32:920-33. [PMID: 24780156 DOI: 10.1016/j.biotechadv.2014.04.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/21/2014] [Accepted: 04/18/2014] [Indexed: 11/25/2022]
Abstract
Yarrowia lipolytica is a dimorphic, non-pathogenic, ascomycetous yeast species with distinctive physiological features and biochemical characteristics that are significant in environment-related matters. Strains naturally present in soils, sea water, sediments and waste waters have inherent abilities to degrade hydrocarbons such as alkanes (short and medium chain) and aromatic compounds (biphenyl and dibenzofuran). With the application of slow release fertilizers, design of immobilization techniques and development of microbial consortia, scale-up studies and in situ applications have been possible. In general, hydrocarbon uptake in this yeast is mediated by attachment to large droplets (via hydrophobic cell surfaces) or is aided by surfactants and emulsifiers. Subsequently, the internalized hydrocarbons are degraded by relevant enzymes innately present in the yeast. Some wild-type or recombinant strains also detoxify nitroaromatic (2,4,6-trinitrotoluene), halogenated (chlorinated and brominated hydrocarbons) and organophosphate (methyl parathion) compounds. The yeast can tolerate some metals and detoxify them via different biomolecules. The biomass (unmodified, in combination with sludge, magnetically-modified and in the biofilm form) has been employed in the biosorption of hexavalent chromium ions from aqueous solutions. Yeast cells have also been applied in protocols related to nanoparticle synthesis. The treatment of oily and solid wastes with this yeast reduces chemical oxygen demand or value-added products (single cell oil, single cell protein, surfactants, organic acids and polyalcohols) are obtained. On account of all these features, the microorganism has established a place for itself and is of considerable value in environment-related applications.
Collapse
Affiliation(s)
- Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India.
| | - Mugdha Apte
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| | - Pallavi Mohite
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India
| |
Collapse
|
26
|
Yarrowia lipolytica and its multiple applications in the biotechnological industry. ScientificWorldJournal 2014; 2014:476207. [PMID: 24715814 PMCID: PMC3970049 DOI: 10.1155/2014/476207] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/22/2013] [Indexed: 11/17/2022] Open
Abstract
Yarrowia lipolytica is a nonpathogenic dimorphic aerobic yeast that stands out due to its ability to grow in hydrophobic environments. This property allowed this yeast to develop an ability to metabolize triglycerides and fatty acids as carbon sources. This feature enables using this species in the bioremediation of environments contaminated with oil spill. In addition, Y. lipolytica has been calling the interest of researchers due to its huge biotechnological potential, associated with the production of several types of metabolites, such as bio-surfactants, γ-decalactone, citric acid, and intracellular lipids and lipase. The production of a metabolite rather than another is influenced by the growing conditions to which Y. lipolytica is subjected. The choice of carbon and nitrogen sources to be used, as well as their concentrations in the growth medium, and the careful determination of fermentation parameters, pH, temperature, and agitation (oxygenation), are essential for efficient metabolites production. This review discusses the biotechnological potential of Y. lipolytica and the best growing conditions for production of some metabolites of biotechnological interest.
Collapse
|
27
|
Zinjarde SS. Food-related applications of Yarrowia lipolytica. Food Chem 2013; 152:1-10. [PMID: 24444899 DOI: 10.1016/j.foodchem.2013.11.117] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/16/2013] [Accepted: 11/20/2013] [Indexed: 01/01/2023]
Abstract
Yarrowia lipolytica is a non-pathogenic generally regarded as safe yeast. It displays unique physiological as well as biochemical properties that are relevant in food-related applications. Strains naturally associated with meat and dairy products contribute towards specific textures and flavours. On some occasions they cause food spoilage. They produce food-additives such as aroma compounds, organic acids, polyalcohols, emulsifiers and surfactants. The yeast biomass has been projected as single cell oil and single cell protein. Y. lipolytica degrades or upgrades different types of food wastes and in some cases, value-added products have also been obtained. The yeast is thus involved in the manufacture of food stuffs, making of food ingredients, generation of biomass that can be used as food or feed and in the effective treatment of food wastes. On account of all these features, this versatile yeast is of considerable significance in food-related applications.
Collapse
Affiliation(s)
- Smita S Zinjarde
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune 411 007, India.
| |
Collapse
|
28
|
Improvement of medium chain fatty acid content and antimicrobial activity of coconut oil via solid-state fermentation using a Malaysian Geotrichum candidum. BIOMED RESEARCH INTERNATIONAL 2013; 2013:954542. [PMID: 23971051 PMCID: PMC3732585 DOI: 10.1155/2013/954542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/19/2013] [Accepted: 06/28/2013] [Indexed: 11/17/2022]
Abstract
Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.
Collapse
|