1
|
Ouyang PW, Wu YN, Gu SS, Liu Q, Yi WZ, Xia LX, Chen JY, Cui YH, Meng J, Pan HW. Procyanidin B2 attenuates microvascular dysfunction in diabetic retinopathy via inhibition of caspase-1/GSDMD mediated pyroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119528. [PMID: 39986358 DOI: 10.1016/j.jep.2025.119528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM), grape seeds (Vitis vinifera) are believed to nourish the liver and kidney and improve blood circulation, which aligns with the pathophysiological needs of conditions characterized by microvascular dysfunction. Procyanidin B2 (PB2), a major active compound in grape seeds, has shown potent anti-inflammatory and vascular-protective effects. However, the specific role of PB2 in diabetic retinal microvasculature and its underlying molecular mechanisms remain unexplored. AIMS OF THE STUDY This study aimed to evaluate the therapeutic potential of Procyanidin B2 (PB2) in alleviating microvascular damage in diabetic retinopathy and the possible mechanisms. MATERIALS AND METHODS Pyroptosis in endothelial cells was analyzed under high glucose conditions and in the retinas of diabetic mice. The effects of PB2 on pyroptosis and endothelial dysfunction were examined through in vitro assays evaluating cell proliferation, migration, and tube formation. In vivo experiments using diabetic mouse models were conducted to assess retinal vascular integrity, with a focus on PB2's impact on endothelial pyroptosis and its associated molecular mechanisms. RESULTS PB2 significantly suppressed pyroptosis in endothelial cells exposed to high glucose by inhibiting the caspase-1/GSDMD signaling pathway. This suppression enhanced endothelial cell proliferation, migration, and tube formation. In diabetic mice, PB2 treatment effectively alleviated retinal microvascular dysfunction by reducing pyroptosis and preserving retinal vascular integrity. CONCLUSION These findings provide a molecular basis for PB2's therapeutic potential in DR and support its further development as an intervention for diabetic vascular complications.
Collapse
Affiliation(s)
- Pei-Wen Ouyang
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ya-Ni Wu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shuo-Shuo Gu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qi Liu
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wan-Zhao Yi
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Ling-Xiao Xia
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jian-Ying Chen
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yu-Hong Cui
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing Meng
- Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China; The Affiliated Shunde Hospital of Jinan University, Foshan, China.
| | - Hong-Wei Pan
- Institute of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Ren S, Hu H, Zhu X, Wang S, Zhao W, Xie D, Xi J, Liu K. Inhibitory effects and reactions of gallic acid, catechin, and procyanidin B2 with nitrosation under stomach simulating conditions. Food Funct 2024; 15:3130-3140. [PMID: 38436057 DOI: 10.1039/d3fo02877a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Nitrite widely exists in meat products, and has the functions of bacteriostasis, antisepsis, and color development. However, in an acidic environment, nitrite will react with amines, and further generate nitrosamines with carcinogenic and teratogenic effects. Polyphenols have good antioxidant and nitrite-scavenging effects. This study aimed to evaluate the inhibitory effects of gallic acid, catechin, and procyanidin B2 on the nitrosation reaction under stomach simulating conditions and discuss the potential inhibitory mechanism. The nitrite scavenging rate and nitrosamine synthesis blocking rate of gallic acid, catechin, and procyanidin B2 under different reaction times and contents was determined by UV-vis spectrophotometry. The possible products of the reaction of the three polyphenols with nitrite were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) to reveal the mechanism of inhibiting nitrification. The results showed that the scavenging rate of the three polyphenols on nitrite and the blocking rate of nitrosamine synthesis increased with the increase of the content and reaction time. The ability of the three polyphenols to inhibit nitrosation was catechin > procyanidin B2 > gallic acid. HPLC-MS analysis showed that under simulated gastric juice conditions, the three phenolics were oxidized by nitrous acid to form their semiquinone radicals as the intermediates and nitrosated derivatives, while nitrite might be converted to ˙NO. These results suggested that gallic acid, catechin, and procyanidin B2 could inhibit nitrosation reactions in an acidic environment and may be used as food additives to reduce nitrite residues and nitrosamines in food.
Collapse
Affiliation(s)
- Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Haiyang Hu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Xiaoai Zhu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Shenli Wang
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Wenhong Zhao
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Dongdong Xie
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Jun Xi
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Kunlun Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, School of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China.
| |
Collapse
|
3
|
Maffei ME, Salata C, Gribaudo G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022; 27:8353. [PMID: 36500445 PMCID: PMC9736452 DOI: 10.3390/molecules27238353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.
Collapse
Affiliation(s)
- Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
4
|
Fan W, Zong H, Zhao T, Deng J, Yang H. Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: A critical review of in vivo and clinical studies. Crit Rev Food Sci Nutr 2022; 64:3522-3538. [PMID: 36226711 DOI: 10.1080/10408398.2022.2132375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Proanthocyanidins, widespread in natural plant sources, are bioactive substances that exhibit broad benefits to human health. Of note, proanthocyanidins have been reported to lower blood pressure and prevent hypertension, but a critical review of this is lacking. In this review, information on the basic structures and absorption of dietary proanthocyanidins as well as their bioactivities and related mechanisms on the lowering of blood pressure derived via in vivo and clinical studies are summarized. Clinical studies have shown that proanthocyanidins have a pronounced blood pressure-lowering effect, effectively preventing hypertension and reducing the occurrence of cardiovascular and cerebrovascular diseases. The potential mechanisms, which are herein reviewed in detail, involve the improvement of vascular function, reduction of oxidative stress and inflammation, and modulation of lipid metabolism. Taken together, this work provides information for a better understanding of the antihypertensive effects of proanthocyanidins, which may promote their use to reduce the risk of developing hypertension.
Collapse
Affiliation(s)
- Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Houru Zong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jianjun Deng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Han X, Zhao W, Zhou Q, Chen H, Yuan J, Zhang XF, Zhang Z. Procyanidins from Hawthorn ( Crataegus Pinnatifida) Alleviates Lipid Metabolism Disorder via Inhibiting Insulin Resistance and Oxidative Stress, Normalizing Gut Microbiota Structure and Intestinal Barrier, Further Suppressing Hepatic Inflammation and Lipid Accumulation. Food Funct 2022; 13:7901-7917. [DOI: 10.1039/d2fo00836j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, lipid metabolism disorder (LMD) has been regarded as a risky factor leading to multiple diseases and affecting human health. Procyanidins have been reported to be the potential therapy for...
Collapse
|
6
|
Qi W, Zhou C, Kunyi L, Dongmei M, Zhengwei L. Optimization of extraction process of proanthocyanidins from Zijuan tea (
Camellia sinensis
var.
kitmaura
) by response surface design. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Wang Qi
- College of Wuliangye Technology and Food Engineering Yibin Vocational and Technical College Yibin China
- College of Food Science and Technology & College of Agronomy and Biotechnology Yunnan Agricultural University Kunming China
| | - Cheng Zhou
- College of Wuliangye Technology and Food Engineering Yibin Vocational and Technical College Yibin China
| | - Liu Kunyi
- College of Wuliangye Technology and Food Engineering Yibin Vocational and Technical College Yibin China
- College of Food Science and Technology & College of Agronomy and Biotechnology Yunnan Agricultural University Kunming China
| | - Mao Dongmei
- Agricultural and Rural Comprehensive Service Center of Fulianpeng Township Eshan Yi Autonomous County Yunnan Province Yuxi China
| | - Liang Zhengwei
- College of Food Science and Technology & College of Agronomy and Biotechnology Yunnan Agricultural University Kunming China
| |
Collapse
|
7
|
Sui Y, Shi J, Cai S, Xiong T, Xie B, Sun Z, Mei X. Metabolites of Procyanidins From Litchi Chinensis Pericarp With Xanthine Oxidase Inhibitory Effect and Antioxidant Activity. Front Nutr 2021; 8:676346. [PMID: 34621770 PMCID: PMC8490629 DOI: 10.3389/fnut.2021.676346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Procyanidins from litchi pericarp (LPPC) has been evidenced to possess strong antioxidant activities in vivo that is possibly correlated with their intestinal metabolites. However, the xanthine oxidase inhibitory effect of LPPC and its metabolites was less concerned. In this study, three oligomeric procyanidins and eight metabolic phenolic acids were identified in the urine of rats administrated with LPPC by high performance liquid chromatography and liquid chromatography-mass spectrometry analysis. Data indicated that all the metabolites excreted were significantly increased by the treatment of 300 mg/kg body weight of LPPC (P < 0.05), revealing considerable 1, 1-Diphenyl-2-Picrylhydrazyl (DPPH) and hydroxyl radicals activities of scavenging. Moreover, phenolic metabolites involving epicatechin, A-type dimer, A-type trimer, caffeic acid, and shikimic acid exhibited greater xanthine oxidase inhibition effects compared with other metabolites, with an inhibitory rate higher than 50% at the concentration 200 μg/ml. The IC50 value of these five phenols were 58.43 ± 1.86, 68.37 ± 3.50, 74.87 ± 1.30, 95.67 ± 3.82, and 96.17 ± 1.64 μg/ml, respectively. As a whole, this work suggests that the xanthine oxidase inhibition and antioxidant activity of LPPC-derived metabolites as one of the mechanisms involved in the beneficial effects of LPPC against hyperuricemia or gout.
Collapse
Affiliation(s)
- Yong Sui
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianbin Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Sha Cai
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Tian Xiong
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin Mei
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
8
|
Jiang CK, Liu ZL, Li XY, Ercisli S, Ma JQ, Chen L. Non-Volatile Metabolic Profiling and Regulatory Network Analysis in Fresh Shoots of Tea Plant and Its Wild Relatives. FRONTIERS IN PLANT SCIENCE 2021; 12:746972. [PMID: 34659317 PMCID: PMC8519607 DOI: 10.3389/fpls.2021.746972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
There are numerous non-volatile metabolites in the fresh shoots of tea plants. However, we know little about the complex relationship between the content of these metabolites and their gene expression levels. In investigating this, this study involved non-volatile metabolites from 68 accessions of tea plants that were detected and identified using untargeted metabolomics. The tea accessions were divided into three groups from the results of a principal component analysis based on the relative content of the metabolites. There were differences in variability between the primary and secondary metabolites. Furthermore, correlations among genes, gene metabolites, and metabolites were conducted based on Pearson's correlation coefficient (PCC) values. This study offered several significant insights into the co-current network of genes and metabolites in the global genetic background. Thus, the study is useful for providing insights into the regulatory relationship of the genetic basis for predominant metabolites in fresh tea shoots.
Collapse
Affiliation(s)
- Chen-Kai Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhi-Long Liu
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Xuan-Ye Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Jian-Qiang Ma
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Liang Chen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
9
|
Yang S, Zhang Y, Li W, You B, Yu J, Huang X, Yang R. Gut Microbiota Composition Affects Procyanidin A2-Attenuated Atherosclerosis in ApoE -/- Mice by Modulating the Bioavailability of Its Microbial Metabolites. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6989-6999. [PMID: 34142543 DOI: 10.1021/acs.jafc.1c00430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Procyanidin A2 (PCA2) has been shown to improve lipid metabolism. However, it remains to know whether it can play a role in preventing atherosclerosis (AS) through gut microbiota. This study examined the effect of PCA2 on high fat diet (HFD)-induced AS in ApoE-/- mice with an intact and antibiotic-depleted microbiota. PCA2 administration for 12 weeks attenuated HFD-induced AS in ApoE-/- mice, evidenced by obviously alleviating the histological abnormalities of the aorta, lipid accumulation, oxidative stress, and inflammation, which were accompanied by downregulating the expression of vascular cell adhesion molecule-1 and intracellular adhesion molecule-1 and upregulating peroxisome proliferator-activated receptor gamma, cholesterol 7 alpha-hydroxylase, and ATP-binding cassette transporter A1. Moreover, PCA2 treatment reshaped the gut microbiota imbalance caused by HFD, especially reducing the ratio of Firmicutes/Bacteroidetes and increasing the abundance of Verrucomicrobia. However, antibiotic intervention almost offset the alleviation of AS by PCA2 and prevented the biotransformation of PCA2 by gut microbiota, thus resulting in a 2327.21-6.27-fold decrease in its microbial metabolites of plasma. There was a marked correlation among the microbiota composition, the bioavailability of PCA2-derived microbial metabolites, and AS indicators. The findings indicate that the gut microbiota robustly influences the bioavailability of microbial metabolites that may partially drive the AS resilience property of PCA2.
Collapse
Affiliation(s)
- Shiying Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yuying Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wu Li
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Bangyan You
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiawen Yu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Huang
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Ruili Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
10
|
Li X, Sui Y, Xie B, Sun Z, Li S. Diabetes diminishes a typical metabolite of litchi pericarp oligomeric procyanidins (LPOPC) in urine mediated by imbalanced gut microbiota. Food Funct 2021; 12:5375-5386. [PMID: 33982735 DOI: 10.1039/d1fo00587a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Animal studies and clinical trials have shown that dietary polyphenols and polyphenol-rich foods can reduce the risk of type 2 diabetes (T2D) and its complications, but how diabetes regulates the metabolism of polyphenol has not been fully elucidated. This study investigated the effects of diabetes on litchi pericarp oligomeric procyanidin (LPOPC) dynamic metabolism and its major static metabolites in urine. First, a high-fat and streptozotocin (STZ)-induced diabetic Sprague Dawley (SD) rat model was established. In the diabetic rat model, elevated fasting blood glucose, severely impaired glucose tolerance test, and increased reactive oxygen species (ROS) levels in serum and the liver were observed. Subsequently, 200 mg per kg body weight of LPOPC was administrated to control and diabetic SD rats, and the gastrointestinal tract was collected at 0.5 h, 1 h, 3 h, and 6 h. The results showed that the retention time of LPOPC was not changed in our diabetic rat model. However, the gut microbiota were significantly altered, with elevated Proteobacteria and Verrucomicrobia abundance in diabetic rats and decreased short chain fatty acid (SCFA)-producing bacteria. Interestingly, after one dose of 300 mg per kg body weight LPOPC, the total antioxidant capacity of urine in diabetic rats significantly decreased. We then tested the static metabolites of LPOPC, demonstrating that epicatechin had not changed in urine in diabetic rats, but that shikimic acid was significantly reduced in urine in diabetic rats. The changes in shikimic acid may be due to the alteration of gut microbiota and elevated ROS levels in serum.
Collapse
Affiliation(s)
- Xiaopeng Li
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Sui
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, 430068, Wuhan, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Shuyi Li
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
11
|
Li S, Li J, Sun Y, Huang Y, He J, Zhu Z. Transport of Flavanolic Monomers and Procyanidin Dimer A2 across Human Adenocarcinoma Stomach Cells (MKN-28). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3354-3362. [PMID: 30848127 DOI: 10.1021/acs.jafc.9b00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It has been proven that A-type procyanidins, containing an additional ether bond, compared to B-type procyanidins are also bioavailable in vitro and in vivo. However, their bioavailability and absorption in the gastrointestinal tract remain uncertain. In this study, a model of the human adenocarcinoma stomach cell line (MKN-28) was established to explore the cellular transport of flavanolic monomers and procyanidin dimer A2, which were isolated from the litchi pericarp extract. After the integrity and permeability of the cell monolayer were ensured by measurement of the transepithelial electrical resistance and the apparent permeability coefficient for Lucifer yellow, the transportation of procyanidins A2 and B2, (-)-epicatechin (EC), and (+)-catechin (CC) was studied at pH 3.0, 5.0, or 7.0 in the apical side, with compound concentrations of 0.05 and 0.1 mg/mL based on the cytotoxicity test. High-performance liquid chromatography and liquid chromatography-mass spectrometry analyses indicated that EC, CC, and A2 were transported in the MKN-28 cell line from 30 to 180 min, while B2 showed no transport. The maximal transport efficiencies of EC, CC, and A2 were 23 ± 0.81, 13.16 ± 1.53, and 16.41 ± 1.36%, respectively, existing at 120, 180, and 120 min of transportation. Laser scanning confocal microscopy analysis presented the dynamic transmission of EC, in accordance with the result of concentration determination, suggesting that the A-type procyanidins are possibly absorbed through the stomach barrier, which is pH- and time-dependent.
Collapse
|
12
|
Zheng F, Han M, He Y, Zhang Y, Liu S, Yue H, Wen L. Biotransformation of anthocyanins from Vitis amurensis Rupr of “Beibinghong” extract by human intestinal microbiota. Xenobiotica 2019; 49:1025-1032. [DOI: 10.1080/00498254.2018.1532132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Fei Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxin Han
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yan Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Hao Yue
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| |
Collapse
|
13
|
Su H, Li Y, Hu D, Xie L, Ke H, Zheng X, Chen W. Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Free Radic Biol Med 2018; 126:269-286. [PMID: 30142454 DOI: 10.1016/j.freeradbiomed.2018.08.024] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Procyanidin B2, a naturally occurring phenolic compound, has been reported to exert multiple beneficial functions. However, the effect of procyanidin B2 on free fatty acids (FFAs)-induced hepatic steatosis remains obscure. The present study is therefore aimed to elucidate the protective effect of procyanidin B2 against hepatic steatosis and its underlying mechanism. Herein, we reported that procyanidin B2 attenuated FFAs-induced lipid accumulation and its associated oxidative stress by scavenging excessive ROS and superoxide anion radicals, blocking loss of mitochondrial membrane potential, restoring glutathione content, and increasing activity of antioxidant enzymes (GPx, SOD and CAT) in hepatocytes. Procyanidin B2 mechanistically promoted lipid degradation via modulation of transcription factor EB (TFEB), a master regulator of lysosomal pathway. Molecular docking analysis indicated a possible ligand-binding position of procyanidin B2 with TFEB. In addition, administration of procyanidin B2 resulted in a significant reduction of hepatic fat accumulation in high-fat diet (HFD)-induced obese mice, and also ameliorated HFD-induced metabolic abnormalities, including hyperlipidemia and hyperglycemia. It was confirmed that procyanidin B2 prevented HFD-induced hepatic fat accumulation through down-regulating lipogenesis-related gene expressions (PPARγ, C/EBPα and SREBP-1c), inhibiting pro-inflammatory cytokines production (IL-6 and TNF-α) and increasing antioxidant enzymes activity (GPx, SOD and CAT). Moreover, hepatic fatty acids analysis indicated that procyanidin B2 caused a significant increase in the levels of palmitic acid, oleic acid and linoleic acid. Intriguingly, procyanidin B2 restored the decreased nuclear TFEB expression in HFD-induced liver steatosis and up-regulated its target genes involved in lysosomal pathway (Lamp1, Mcoln, Uvrag), which suggested a previously unrecognized mechanism of procyanidin B2 on ameliorating HFD-induced hepatic steatosis. Taken together, our results demonstrated that procyanidin B2 attenuated FFAs-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state, which had important implications that modulation of TFEB might be a potential therapeutic strategy for hepatic steatosis and procyanidin B2 could represent a promising novel agent in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yuting Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Dongwen Hu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Huihui Ke
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Ge F, Qi MM, Liu LN, Yan J, Kang A, Zhu SL, Ji Y, Tian ZC, Dai HF, Ge NJ. Tissue distribution of main active components of Fagopyrum cymosum extracts in mice with ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2017; 25:3123-3132. [DOI: 10.11569/wcjd.v25.i35.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the tissue distribution of the main active components of Fagopyrum cymosum (FAG) extracts in dextran sulfate sodium (DSS) induced colitis mice.
METHODS LC-MS/MS analytical method was developed to simultaneously determine catechin, epicatechin, procyanidin B1, and procyanidin B2, four main components of FAG extracts, in different mouse biological samples. The method was then validated by specificity, linearity, lower limit of quantification (LLOQ), precision, accuracy, matrix effect, recovery, and stability tests. Ulcerative colitis was then induced in mice by administering 3% DSS in drinking water for 7 d. The plasma, liver, jejunum, and colon samples from normal mice or ulcerative colitis mice were collected to analyze the distribution of the main active components of FAG extracts in mice after oral administration of FAG extracts (2.24 g/kg).
RESULTS The initial method validation indicated that the LC-MS/MS method could be used for determining the concentrations of catechin, epicatechin, procyanidins B1, and procyanidins B2 in mouse biological samples. The plasma exposures of catechin, epicatechin, procyanidins B1, and procyanidins B2 were increased in the DSS induced colitis mice compared with normal mice, but there was no significant difference (P > 0.05). However, in the tissue distribution study, we found that the concentrations of the main components of FAG in different tissue samples were significantly increased when compared with the normal mice. Taking epicatechin as an example, the concentration of epicatechin in the colitis tissue was significantly increased from 4.44 μg/g ± 0.32 μg/g to 5.77 μg/g ± 0.59 μg/g (P = 0.0014).
CONCLUSION Increased systemic exposures of main active components of FAG in ulcerative colitis may be beneficial for the therapeutic effects of FAG on ulcerative colitis.
Collapse
Affiliation(s)
- Fei Ge
- Department of Gastroenterology, Hai'an County Hospital of Traditional Chinese Medicine, Nantong 226600, Jiangsu Province, China
| | - Ming-Ming Qi
- College of Basic Medical Sciences, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Li-Na Liu
- First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Jing Yan
- First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - An Kang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shi-Lin Zhu
- Department of Gastroenterology, Hai'an County Hospital of Traditional Chinese Medicine, Nantong 226600, Jiangsu Province, China
| | - Yu Ji
- Department of Gastroenterology, Hai'an County Hospital of Traditional Chinese Medicine, Nantong 226600, Jiangsu Province, China
| | - Zu-Cheng Tian
- Department of Gastroenterology, Hai'an County Hospital of Traditional Chinese Medicine, Nantong 226600, Jiangsu Province, China
| | - Hai-Feng Dai
- Department of Gastroenterology, Hai'an County Hospital of Traditional Chinese Medicine, Nantong 226600, Jiangsu Province, China
| | - Nai-Jian Ge
- Mini-invasive Intervention Center, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
15
|
Zhang J, Cui L, Han X, Zhang Y, Zhang X, Chu X, Zhang F, Zhang Y, Chu L. Protective effects of tannic acid on acute doxorubicin-induced cardiotoxicity: Involvement of suppression in oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 2017; 93:1253-1260. [DOI: 10.1016/j.biopha.2017.07.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/01/2017] [Accepted: 07/11/2017] [Indexed: 01/10/2023] Open
|
16
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 2017; 174:1244-1262. [PMID: 27646690 PMCID: PMC5429339 DOI: 10.1111/bph.13630] [Citation(s) in RCA: 346] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022] Open
Abstract
Tannins are a heterogeneous group of high MW, water-soluble, polyphenolic compounds, naturally present in cereals, leguminous seeds and, predominantly, in many fruits and vegetables, where they provide protection against a wide range of biotic and abiotic stressors. Tannins exert several pharmacological effects, including antioxidant and free radical scavenging activity as well as antimicrobial, anti-cancer, anti-nutritional and cardio-protective properties. They also seem to exert beneficial effects on metabolic disorders and prevent the onset of several oxidative stress-related diseases. Although the bioavailability and pharmacokinetic data for these phytochemicals are still sparse, gut absorption of these compounds seems to be inversely correlated with the degree of polymerization. Further studies are mandatory to better clarify how these molecules and their metabolites are able to cross the intestinal barrier in order to exert their biological properties. This review summarizes the current literature on tannins, focusing on the main, recently proposed mechanisms of action that underlie their pharmacological and disease-prevention properties, as well as their bioavailability, safety and toxicology. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| |
Collapse
|
17
|
Xiao Y, Hu Z, Yin Z, Zhou Y, Liu T, Zhou X, Chang D. Profiling and Distribution of Metabolites of Procyanidin B2 in Mice by UPLC-DAD-ESI-IT-TOF-MS n Technique. Front Pharmacol 2017; 8:231. [PMID: 28522973 PMCID: PMC5415559 DOI: 10.3389/fphar.2017.00231] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
The metabolite profiles and distributions of procyanidin B2 were qualitatively described using UPLC-DAD-ESI-IT-TOF-MSn without help of reference standards, and a possible metabolic pathway was proposed in the present study. Summarily, 53 metabolites (24 new metabolites) were detected as metabolites of procyanidin B2, and 45 of them were tentatively identified. Twenty seven metabolites were assigned as similar metabolites of (-)-epicatechin by scission of the flavanol interflavanic bond C4-C8, including 16 aromatic metabolites, 5 conjugated metabolites, 3 ring-cleavage metabolites, and 2 phenylvalerolactone metabolites. Additionally, 14 metabolites were conjugates of free procyanidin B2, comprising 9 methylation metabolites, 8 sulfation metabolites, 5 hydration metabolites, 2 hydroxylation metabolites, 1 hydrogenation metabolites, and 1 glucuronidation metabolites. The results of metabolite distributions in organs indicated that the conjugated reaction of free procyanidin B2 mainly occurred in liver and diversified metabolites forms were observed in small intestine. The metabolic components of procyanidin B2 identified in mice provided useful information for further study of the bioactivity and mechanism of its action.
Collapse
Affiliation(s)
- Ying Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of TechnologyShanghai, China
| | - Zhongzhi Hu
- School of Perfume and Aroma Technology, Shanghai Institute of TechnologyShanghai, China
| | - Zhiting Yin
- School of Perfume and Aroma Technology, Shanghai Institute of TechnologyShanghai, China
| | - Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of TechnologyShanghai, China
| | - Taiyi Liu
- School of Perfume and Aroma Technology, Shanghai Institute of TechnologyShanghai, China
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of TechnologyShanghai, China
| | - Dawei Chang
- School of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an, China
| |
Collapse
|
18
|
Li S, Liu Y, Liu G, He J, Qin X, Yang H, Hu Z, Lamikanra O. Effect of the A-Type Linkage on the Pharmacokinetics and Intestinal Metabolism of Litchi Pericarp Oligomeric Procyanidins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1893-1899. [PMID: 28195469 DOI: 10.1021/acs.jafc.7b00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The bioavailability of A-type procyanidins in vivo has been rarely investigated; as such, this study discusses the effect of A-type linkage and degree of polymerization on the metabolism of procyanidins extracted from litchi pericarp (LPOPC). Sprague-Dawley rats were gavaged with (-)-epicatechin (EC) and LPOPC and sacrificed at different time points after ingestion. A-type linkage procyanidin oligomers inhibited the absorption of EC. Analysis of urinary contents from rats administered with EC, A-type procyanidin dimer (A-2), and A-type procyanidin trimer (A-3) showed distinct native and metabolite profiles for each rat. Rats fed with A-2 and A-3 presented significantly higher levels of shikimic acid and less amount of m(p)-coumaric acid metabolites in vivo and provide insight into the quantitative structure-activity relationship of procyanidin oligomers during metabolism, indicating that procyanidins with A-type linkage could induce an altered metabolic pathway of oligomers in the gastrointestinal system.
Collapse
Affiliation(s)
- Shuyi Li
- College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan, Hubei 430023, People's Republic of China
| | - Yang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan, Hubei 430023, People's Republic of China
| | - Gang Liu
- College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan, Hubei 430023, People's Republic of China
| | - Jingren He
- College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan, Hubei 430023, People's Republic of China
| | - Xinguang Qin
- College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan, Hubei 430023, People's Republic of China
| | - Haochen Yang
- College of Chemical Engineering, Tianjin University , Tianjin 300072, People's Republic of China
| | - Zhongze Hu
- College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan, Hubei 430023, People's Republic of China
| | - Olusola Lamikanra
- College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan, Hubei 430023, People's Republic of China
| |
Collapse
|
19
|
Li S, Li X, Shpigelman A, Lorenzo JM, Montesano D, Barba FJ. Direct and indirect measurements of enhanced phenolic bioavailability from litchi pericarp procyanidins by Lactobacillus casei-01. Food Funct 2017; 8:2760-2770. [DOI: 10.1039/c7fo00749c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Litchi pericarp procyanidins (LPP) are dietary supplements with high antioxidant activity, but poor oral bioavailability and efficacy, that can be enhanced by probiotics addition.
Collapse
Affiliation(s)
- Shuyi Li
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan 430023
- PR China
| | - Xiaopeng Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- PR China
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering
- Technion
- Israel Institute of Technology
- Haifa
- Israel
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia
- 32900 San Ciprián de Viñas
- Spain
| | - Domenico Montesano
- Dipartimento di Scienze Farmaceutiche
- Sezione di Scienza degli Alimenti e Nutrizione
- Università di Perugia
- Perugia
- Italy
| | - Francisco J. Barba
- Nutrition and Food Science Area
- Preventive Medicine and Public Health
- Food Sciences
- Toxicology and Forensic Medicine Department
- Faculty of Pharmacy
| |
Collapse
|
20
|
A-type procyanidins from litchi pericarp ameliorate hyperglycaemia by regulating hepatic and muscle glucose metabolism in streptozotocin (STZ)-induced diabetic mice fed with high fat diet. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 2016. [DOI: 10.1111/bph.13630 pmid: 27646690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| |
Collapse
|
22
|
Analysis of distribution and pharmacokinetics of litchi pericarp procyanidins in rat plasma and organs by using liquid chromatography–tandem mass spectrometry. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2733-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Feliciano RP, Boeres A, Massacessi L, Istas G, Ventura MR, Nunes dos Santos C, Heiss C, Rodriguez-Mateos A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch Biochem Biophys 2016; 599:31-41. [DOI: 10.1016/j.abb.2016.01.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
|
24
|
Chen L, Chen L, Wang T, Yuan P, Chen K, Jia Q, Wang H, Li Y. Preparation of Methylated Products of A-type Procyanidin Trimers in Cinnamon Bark and Their Protective Effects on Pancreatic β-Cell. J Food Sci 2016; 81:C1062-9. [DOI: 10.1111/1750-3841.13294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/06/2016] [Accepted: 03/06/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Lu Chen
- School of Pharmacy; Shanghai Univ. of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Liang Chen
- School of Pharmacy; Shanghai Univ. of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Ting Wang
- Shanghai Inst. of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road Shanghai 201203 China
| | - Pulong Yuan
- School of Pharmacy; Shanghai Univ. of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Kaixian Chen
- School of Pharmacy; Shanghai Univ. of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
- Shanghai Inst. of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road Shanghai 201203 China
| | - Qi Jia
- School of Pharmacy; Shanghai Univ. of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| | - Heyao Wang
- Shanghai Inst. of Materia Medica; Chinese Academy of Sciences; 555 Zuchongzhi Road Shanghai 201203 China
| | - Yiming Li
- School of Pharmacy; Shanghai Univ. of Traditional Chinese Medicine; 1200 Cailun Road Shanghai 201203 China
| |
Collapse
|
25
|
Walsh JM, Ren X, Zampariello C, Polasky DA, McKay DL, Blumberg JB, Chen CYO. Liquid chromatography with tandem mass spectrometry quantification of urinary proanthocyanin A2 dimer and its potential use as a biomarker of cranberry intake. J Sep Sci 2015; 39:342-9. [DOI: 10.1002/jssc.201500922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jason M. Walsh
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Tufts University; Boston MA USA
| | - Xiaobai Ren
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Tufts University; Boston MA USA
| | - Carly Zampariello
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Tufts University; Boston MA USA
| | - Daniel A. Polasky
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Tufts University; Boston MA USA
| | - Diane L. McKay
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Tufts University; Boston MA USA
| | - Jeffrey B. Blumberg
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Tufts University; Boston MA USA
| | - C.-Y. Oliver Chen
- Antioxidants Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging; Tufts University; Boston MA USA
| |
Collapse
|
26
|
Xiao J, Li S, Sui Y, Wu Q, Li X, Xie B, Zhang M, Sun Z. Lactobacillus casei-01 facilitates the ameliorative effects of proanthocyanidins extracted from lotus seedpod on learning and memory impairment in scopolamine-induced amnesia mice. PLoS One 2014; 9:e112773. [PMID: 25396737 PMCID: PMC4232518 DOI: 10.1371/journal.pone.0112773] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/16/2014] [Indexed: 02/07/2023] Open
Abstract
Learning and memory abilities are associated with alterations in gut function. The two-way proanthocyanidins-microbiota interaction in vivo enhances the physiological activities of proanthocyanidins and promotes the regulation of gut function. Proanthocyanidins extracted from lotus seedpod (LSPC) have shown the memory-enhancing ability. However, there has been no literature about whether Lactobacillus casei-01 (LC) enhances the ameliorative effects of LSPC on learning and memory abilities. In this study, learning and memory abilities of scopolamine-induced amnesia mice were evaluated by Y-maze test after 20-day administration of LC (109 cfu/kg body weight (BW)), LSPC (low dose was 60 mg/kg BW (L-LSPC) and high dose was 90 mg/kg BW (H-LSPC)), or LSPC and LC combinations (L-LSPC+LC and H-LSPC+LC). Alterations in antioxidant defense ability and oxidative damage of brain, serum and colon, and brain cholinergic system were investigated as the possible mechanisms. As a result, the error times of H-LSPC+LC group were reduced by 41.59% and 68.75% relative to those of H-LSPC and LC groups respectively. LSPC and LC combinations ameliorated scopolamine-induced memory impairment by improving total antioxidant capacity (TAOC) level, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) activities of brain, serum and colon, suppressing malondialdehyde (MDA) level of brain, serum and colon, and inhibiting brain acetylcholinesterase (AchE), myeloperoxidase, total nitric oxide synthase and neural nitric oxide synthase (nNOS) activities, and nNOS mRNA level. Moreover, LC facilitated the ameliorative effects of H-LSPC on GSH-Px activity of colon, TAOC level, GSH-Px activity and ratio of T-SOD to MDA of brain and serum, and the inhibitory effects of H-LSPC on serum MDA level, brain nNOS mRNA level and AchE activity. These results indicated that LC promoted the memory-enhancing effect of LSPC in scopolamine-induced amnesia mice.
Collapse
Affiliation(s)
- Juan Xiao
- Key Laboratory of Functional Foods, Ministry of Agriculture/ Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, 133 Yiheng Road, Dongguan Zhuang, Tianhe District, Guangzhou 510610, Guangdong, China
| | - Shuyi Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road, Changqing Garden, Dongxihu District, Wuhan 430023, Hubei, China
| | - Yong Sui
- College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Qian Wu
- College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Xiaopeng Li
- College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Mingwei Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture/ Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, 133 Yiheng Road, Dongguan Zhuang, Tianhe District, Guangzhou 510610, Guangdong, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
- * E-mail:
| |
Collapse
|
27
|
Nagahora N, Ito Y, Nagasawa T. Dietary Chinese quince polyphenols suppress generation of α-dicarbonyl compounds in diabetic KK-A(y) mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6629-6635. [PMID: 23730977 DOI: 10.1021/jf401231j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many dietary polyphenols can provide health benefits, such as antioxidant and antidiabetic effects, and can down-regulate the progression of glycation (one cause of diabetic complications). Chinese quince (CQ) is rich in polyphenols, especially procyanidins. A few studies have indicated that CQ has an effect on diabetes. In this study, a procyanidin-rich extract was prepared from Chinese quince fruit (CQE), and its effects were investigated and compared with those of green tea extract (GTE) in type 2 diabetes model KK-A(y) mice. Mice were provided one of two high-fat (HF) diets for 4 weeks: a HF diet containing 0.5% CQE or a HF diet containing 0.5% GTE. Blood glucose was suppressed in mice fed CQE and GTE during the experimental period (p < 0.05), although the effect of CQE was weaker than that of GTE. Intake of CQE had no effect on the blood insulin level, whereas GTE decreased the insulin level. Body weight gain was suppressed in mice fed CQE similarly to mice fed GTE (p < 0.05). Hepatic lipid content and α-dicarbonyl compounds in the kidney were reduced in mice fed CQE and GTE (p < 0.05). These results suggest that intake of CQE could moderate type 2 diabetes and diabetic complications.
Collapse
Affiliation(s)
- Nozomi Nagahora
- Bioresources Science, The United Graduate School of Agricultural Sciences, Iwate University 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | |
Collapse
|