1
|
Alizadeh Sani M, Khezerlou A, Rezvani-Ghalhari M, McClements DJ, Varma RS. Advanced carbon-based nanomaterials: Application in the development of multifunctional next-generation food packaging materials. Adv Colloid Interface Sci 2025; 339:103422. [PMID: 39904277 DOI: 10.1016/j.cis.2025.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Carbon-based nanomaterials (CNMs) hold great promise for food packaging applications due to their ability to improve barrier properties, mechanical strength, sensing capabilities, and resistance to environmental factors. CNMs, such as graphene and carbon nanotubes, can also be used as preservatives to extend the shelf life of food products by preventing spoilage and maintaining freshness. Additionally, their ability to respond to changes in environmental conditions means they can be used as sensors to provide information about food quality, freshness, or safety. SCOPE AND APPROACH This article reviews the properties of CNMs, their impact on packaging film properties, their utilization in smart and active food packaging systems in the food sector, and their potential safety concerns. KEY FINDINGS AND CONCLUSIONS These innovative nanomaterials offer a range of unique properties that can enhance the safety, shelf-life, quality, and sustainability of packaged food products. However, CNMs have their own set of challenges that need to be addressed, including their functional performance and safety assessment. Collaborations among material scientists, food technologists, and regulatory bodies are required to drive the development of safe and effective CNM-based food packaging solutions.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Antibiotics Stewardship and Antimicrobial Resistance, Infectious Diseases Department, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz 5166614711, Iran
| | - Mohammad Rezvani-Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Pattnaik R, Panda SK, Biswas S, De S, Satahrada S, Kumar S. Prospects and challenges of nanomaterials in sustainable food preservation and packaging: a review. DISCOVER NANO 2024; 19:178. [PMID: 39532764 PMCID: PMC11557778 DOI: 10.1186/s11671-024-04142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Nanomaterials play a pivotal role in food preservation and its safety, offering ingenious solutions for sustainable food packaging. Nanomaterials enable the creation of packaging materials having unique functional properties. It not only extends the shelf life of the foods by releasing preservatives but also enhances food safety by preventing microbial contamination or food spoilage. In this review, we aim to provide an overview of the various applications of nanotechnology in food packaging, highlighting its key advantages. We also delve into the safety considerations and regulatory issues involved in developing nanotechnology-based food packaging materials. Additionally, advancements in the field of nanotechnology-based packaging have the potential to create safer, more sustainable, and high-quality packaging with greater functionality that delivers essential benefits to manufacturers and consumers.
Collapse
Affiliation(s)
- Ritesh Pattnaik
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | | | - Soumyadeep Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Sayanti De
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Subhra Satahrada
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India
| | - Subrat Kumar
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India.
| |
Collapse
|
3
|
Truong TQ, Park YJ, Jeon JS, Choi J, Koo SY, Choi YB, Huynh PK, Moon J, Kim SM. Myrosinase isogenes in wasabi (Wasabia japonica Matsum) and their putative roles in glucosinolate metabolism. BMC PLANT BIOLOGY 2024; 24:353. [PMID: 38693493 PMCID: PMC11061951 DOI: 10.1186/s12870-024-05057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Wasabi, a Brassicaceae member, is well-known for its unique pungent and hot flavor which is produced from glucosinolate (GSL) degradation. Myrosinase (MYR) is a principle enzyme catalyzing the primary conversion of GSLs to GSL hydrolysis products (GHPs) which is responsible for plant defense system and food quality. Due to the limited information in relation to MYRs present in wasabi (Wasabia japonica M.), this study aimed to identify the MYR isogenes in W. japonica and analyze their roles in relation to GSL metabolism. RESULTS In results, WjMYRI-1 was abundantly expressed in all organs, whereas WjMYRI-2 showed only trace expression levels. WjMYRII was highly expressed in the aboveground tissues. Interestingly, WjMYRII expression was significantly upregulated by certain abiotic factors, such as methyl jasmonate (more than 40-fold in petioles and 15-fold in leaves) and salt (tenfold in leaves). Young leaves and roots contained 97.89 and 91.17 µmol‧g-1 of GSL, whereas less GSL was produced in mature leaves and petioles (38.36 and 44.79 µmol‧g-1, respectively). Similar pattern was observed in the accumulation of GHPs in various plant organs. Notably, despite the non-significant changes in GSL production, abiotic factors treated samples enhanced significantly GHP content. Pearson's correlation analysis revealed that WjMYRI-1 expression significantly correlated with GSL accumulation and GHP formation, suggesting the primary role of WjMYRI-1-encoding putative protein in GSL degradation. In contrast, WjMYRII expression level showed no correlation with GSL or GHP content, suggesting another physiological role of WjMYRII in stress-induced response. CONCLUSIONS In conclusions, three potential isogenes (WjMYRI-1, WjMYRI-2, and WjMYRII) encoding for different MYR isoforms in W. japonica were identified. Our results provided new insights related to MYR and GSL metabolism which are important for the implications of wasabi in agriculture, food and pharmaceutical industry. Particularly, WjMYRI-1 may be primarily responsible for GSL degradation, whereas WjMYRII (clade II) may be involved in other regulatory pathways induced by abiotic factors.
Collapse
Affiliation(s)
- To Quyen Truong
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul, 02792, Republic of Korea
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Yun Ji Park
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Je-Seung Jeon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Jaeyoung Choi
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Song Yi Koo
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Yeong Bin Choi
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Phuong Kim Huynh
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul, 02792, Republic of Korea
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Jinyoung Moon
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea
| | - Sang Min Kim
- Division of Bio-Medical Science & Technology, Korea Institute of Science and Technology (KIST), University of Science and Technology, Seoul, 02792, Republic of Korea.
- Smart Farm Research Center, KIST Gangneung Institute of Natural Products, Gangneung, 25451, Republic of Korea.
| |
Collapse
|
4
|
Goli SAH, Keramat S, Soleimanian-Zad S, Ghasemi Baghabrishami R. Antioxidant and antimicrobial efficacy of microencapsulated mustard essential oil against Escherichia coli and Salmonella Enteritidis in mayonnaise. Int J Food Microbiol 2024; 410:110484. [PMID: 37977079 DOI: 10.1016/j.ijfoodmicro.2023.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
The aim of this study was to investigate the effect of pure and encapsulated mustard essential oil (MEO) on the shelf life of mayonnaise and its ability to be an alternative for synthetic preservatives. Determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) indicated higher sensitivity of Escherichia coli O157:H7 (E. coli O157:H7) (MIC: 512 ppm, MBC: 1024 ppm) than Salmonella Enteritidis (S. enteritidis) (MIC: 1024 ppm, MBC: 2048 ppm) to MEO. Mayonnaise samples, were subsequently prepared according to the determined MIC and MBC of MEO for microbial analysis and physicochemical analysis. The antimicrobial activity of MEO in mayonnaise over 40-day storage indicated that the application of free and encapsulated MEO could inhibit the growth of target bacteria. In addition, the oxidative stability of mayonnaise samples exhibited decreasing trends over the storage time. At the end of the storage, the control sample without any preservatives revealed the highest peroxide value (3.59 meq O2 /kg of oil) whereas the sample containing 4096 ppm encapsulated MEO (2 meq O2/kg of oil) exhibited better oxidative stability, following t-butyl-hydroxyquinone (TBHQ) (1.84 meq O2 /kg of oil) as commercial antioxidant. Interestingly, the application of 2048 and 4096 ppm encapsulated essential oil had no undesirable effect on overall acceptance of mayonnaise, while the application of pure MEO at the same concentrations negatively affected the color, odor, taste and overall acceptability.
Collapse
Affiliation(s)
- Sayed Amir Hossein Goli
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran.
| | - Sara Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Sabihe Soleimanian-Zad
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| | - Reyhaneh Ghasemi Baghabrishami
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156 83111, Iran
| |
Collapse
|
5
|
Pires JRA, Rodrigues C, Coelhoso I, Fernando AL, Souza VGL. Current Applications of Bionanocomposites in Food Processing and Packaging. Polymers (Basel) 2023; 15:polym15102336. [PMID: 37242912 DOI: 10.3390/polym15102336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Nanotechnology advances are rapidly spreading through the food science field; however, their major application has been focused on the development of novel packaging materials reinforced with nanoparticles. Bionanocomposites are formed with a bio-based polymeric material incorporated with components at a nanoscale size. These bionanocomposites can also be applied to preparing an encapsulation system aimed at the controlled release of active compounds, which is more related to the development of novel ingredients in the food science and technology field. The fast development of this knowledge is driven by consumer demand for more natural and environmentally friendly products, which explains the preference for biodegradable materials and additives obtained from natural sources. In this review, the latest developments of bionanocomposites for food processing (encapsulation technology) and food packaging applications are gathered.
Collapse
Affiliation(s)
- João Ricardo Afonso Pires
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carolina Rodrigues
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Coelhoso
- LAQV-REQUIMTE, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Luisa Fernando
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Victor Gomes Lauriano Souza
- MEtRiCS, CubicB, Departamento de Química, NOVA School of Science and Technology (FCT NOVA), Campus de Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| |
Collapse
|
6
|
Effect of Two-Step Sous Vide Cooking and Storage on Microbiological and Oxidative Stability of Chicken Breast. Foods 2023; 12:foods12061213. [PMID: 36981140 PMCID: PMC10047949 DOI: 10.3390/foods12061213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
A two-step sous vide method, which included a low temperature initial stage, was shown to improve texture parameters, increase the solubility of proteins, and decrease the cook loss in chicken breasts. The current work was designed to determine the effect of two-step sous vide and subsequent storage on the microbiological and oxidative stability of chicken breasts. Inoculated chicken breasts were vacuum packaged and cooked at two temperatures, 50 °C and 60 °C, combined in different ratios of the same total cooking time (120 min), and then stored for 21 days at 4 °C, 10 °C, and −20 °C, and compared with the one-step temperature treatment (60 °C for 120 min). One-step sous vide treatment resulted in the total inactivation of Enterococcus faecalis NCAIM B. 01312. Meanwhile, the two-step sous vide treatments resulted in a higher than 3 log reduction in Enterococcus faecalis NCAIM B. 01312, reaching the target pasteurization performance criterion of sous vide for poultry meat. Lipid oxidation and the odor of all chicken breasts remained acceptable for 21 days of storage at 4 °C and −20 °C. Conversely, all chicken breasts had higher lipid oxidation rates and odor after 21 days of storage at 10 °C. Two-step-sous-vide-treated chicken breasts were found to be microbiologically stable regarding Enterococcus faecalis NCAIM B. 01312 and total mesophilic aerobic counts during 21 days of storage at 4 °C and −20 °C, in contrast with those stored at 10 °C. It can be concluded that two-step-sous-vide-cooked chicken breasts had acceptable oxidative and microbiological stability during chilled and frozen storage, similar to one-step sous vide ones. These outcomes highlight that two-step heat treatment can be used as an alternative cooking method to improve the quality properties without compromising the storage life of chicken breasts.
Collapse
|
7
|
Manzoor A, Khan S, Dar AH, Pandey VK, Shams R, Ahmad S, Jeevarathinam G, Kumar M, Singh P, Pandiselvam R. Recent insights into green antimicrobial packaging towards food safety reinforcement: A review. J Food Saf 2023. [DOI: 10.1111/jfs.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology University Putra Malaysia Serdang Malaysia
| | - Aamir Hussain Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora Kashmir India
| | - Vinay Kumar Pandey
- Department of Biotechnology Axis Institute of Higher Education Kanpur Uttar Pradesh India
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - G. Jeevarathinam
- Department of Food Technology Hindusthan College of Engineering and Technology Coimbatore India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR ‐ Central Institute for Research on Cotton Technology Mumbai India
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering GLA University Mathura Mathura India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR –Central Plantation Crops Research Institute Kasaragod Kerala India
| |
Collapse
|
8
|
Fernandes BCN, Paulo BB, Guimarães MC, Sarantopoulos CIGDL, Melo NR, Prata AS. Prospection of the use of encapsulation in food packaging. Compr Rev Food Sci Food Saf 2022; 21:2309-2334. [DOI: 10.1111/1541-4337.12933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Affiliation(s)
| | - Bruna Barbon Paulo
- Department of Food Engineering, School of Food Engineering State University of Campinas Campinas Brazil
| | - Maria Clara Guimarães
- Department of Food Technology, Institute of Technology Federal Rural University of Rio de Janeiro Seropédica Brazil
| | | | - Nathália Ramos Melo
- Department of Food Technology, Institute of Technology Federal Rural University of Rio de Janeiro Seropédica Brazil
- Department of Agribusiness Engineering Federal Fluminense University Volta Redonda Brazil
| | - Ana Silvia Prata
- Department of Food Engineering, School of Food Engineering State University of Campinas Campinas Brazil
| |
Collapse
|
9
|
Raul PK, Thakuria A, Das B, Devi RR, Tiwari G, Yellappa C, Kamboj DV. Carbon Nanostructures As Antibacterials and Active Food-Packaging Materials: A Review. ACS OMEGA 2022; 7:11555-11559. [PMID: 35449978 PMCID: PMC9016856 DOI: 10.1021/acsomega.2c00848] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 05/08/2023]
Abstract
In this article, we discuss carbon nanoparticles for application as antibacterials and food-packaging materials. The use of petroleum-derived products, synthetic materials, ceramics, wax, etc. in the food-packaging industry emits polluted gas and wastewater, which leads to environmental pollution. To overcome the problems faced by the industry to preserve and package food, carbon nanomaterials may be good alternatives to enhance the shelf life of food without affecting the nutrients. Carbon atoms bond with each other in diverse ways to form many allotropes, resulting in a variety of carbon nanomaterials (CNMs). CNMs include zero-dimensional carbon dots, graphene quantum dots, 1-dimensional carbon nanotubes, 2-dimensional pristine graphene, graphene oxide, reduced graphene oxide, and other derivatives of graphene. Most of the carbon-based nanomaterials are synthesized through a green process that is widely used in the field of food science and technology, and they are used mostly as antibacterial agents and as a biofiller in the development of active food-packaging materials. Carbon nanomaterials (CNMs), viz., carbon dots, graphene, activated carbon-based nanocomposites, carbon nanotubes, etc., are found to be environmentally benign and better materials for food packaging. With antibacterial efficiency, they support food preservation and other applications as well. Thus, carbon nanostructures are found to be applicable as superior materials for food preservation and packaging in modern industry.
Collapse
Affiliation(s)
- Prasanta K. Raul
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
- E-mail:
| | | | - Bodhaditya Das
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| | - Rashmi R Devi
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| | - Gaurav Tiwari
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| | - Chidugundi Yellappa
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| | - Dev Vrat Kamboj
- Defence
Research Laboratory, Defence Research and
Development Organisation, Post bag no. 2, Tezpur, Assam, India 784001
| |
Collapse
|
10
|
Hasani E, Csehi B, Darnay L, Ladányi M, Dalmadi I, Kenesei G. Effect of Combination of Time and Temperature on Quality Characteristics of Sous Vide Chicken Breast. Foods 2022; 11:foods11040521. [PMID: 35205995 PMCID: PMC8870995 DOI: 10.3390/foods11040521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
The use of minimal thermal processing techniques such as sous vide technology to improve the quality of meat-based foods has gained a special focus in recent years. A proper combination of temperature and time parameters in sous vide processing plays an important role in the water-holding capacity, texture properties, and juiciness of the meat. The present study aimed to assess the impact of the one-step and two-step sous vide processing on different quality properties of chicken breast with special emphasis on the cooking loss, color, texture properties, protein solubility, and lipid oxidation. According to the results, chicken breast treated with a two-step temperature (50 and 60 °C) showed improved texture parameters (shear force, hardness, chewiness, and gumminess), lower cooking loss, acceptable redness values, and decreased lipid oxidation levels than the chicken breast treated with the one-step temperature of 60 °C. Moreover, the two-step sous vide technique revealed significantly higher total protein solubility of the chicken breast than the one-step sous vide. Based on pasteurization values, the two-step sous vide technique was equally safe as the one-step sous vide technique for vegetative cells’ inactivation for the main pathogens of interest (C. perfringens and L. monocytogenes).
Collapse
Affiliation(s)
- Endrit Hasani
- Department of Livestock Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary; (B.C.); (I.D.); (G.K.)
- Department of Food Technology and Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
- Correspondence: ; Tel.: +36-702449392
| | - Barbara Csehi
- Department of Livestock Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary; (B.C.); (I.D.); (G.K.)
| | - Lívia Darnay
- Department of Food Hygiene, University of Veterinary Medicine Budapest, István u.2., 1078 Budapest, Hungary;
| | - Márta Ladányi
- Department of Applied Statistics, Institute of Mathematics and Basic Science, Hungarian University of Agriculture and Life Sciences, Villányi út 29-43, 1118 Budapest, Hungary;
| | - István Dalmadi
- Department of Livestock Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary; (B.C.); (I.D.); (G.K.)
| | - György Kenesei
- Department of Livestock Products and Food Preservation Technology, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Ménesi út 43-45, 1118 Budapest, Hungary; (B.C.); (I.D.); (G.K.)
| |
Collapse
|
11
|
Zaitoon A, Luo X, Lim LT. Triggered and controlled release of active gaseous/volatile compounds for active packaging applications of agri-food products: A review. Compr Rev Food Sci Food Saf 2021; 21:541-579. [PMID: 34913248 DOI: 10.1111/1541-4337.12874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022]
Abstract
Gaseous and volatile active compounds are versatile to enhance safety and preserve quality of agri-food products during storage and distribution. However, the use of these compounds is limited by their high vapor pressure and/or chemical instability, especially in active packaging (AP) applications. Various approaches for stabilizing and controlling the release of active gaseous/volatile compounds have been developed, including encapsulation (e.g., into supramolecular matrices, polymer-based films, electrospun nonwovens) and triggered release systems involving precursor technology, thereby allowing their safe and effective use in AP applications. In this review, encapsulation technologies of gases (e.g., CO2 , ClO2 , SO2 , ethylene, 1-methylcyclopropene) and volatiles (e.g., ethanol, ethyl formate, essential oils and their constituents) into different solid matrices, polymeric films, and electrospun nonwovens are reviewed, especially with regard to encapsulation mechanisms and controlled release properties. Recent developments on utilizing precursor compounds of bioactive gases/volatiles to enhance their storage stability and better control their release profiles are discussed. The potential applications of these controlled release systems in AP of agri-food products are presented as well.
Collapse
Affiliation(s)
- Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Agricultural and Biosystems Engineering, Alexandria University, Alexandria, 21545, Egypt
| | - Xiaoyu Luo
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, 519087, China
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
12
|
Basavegowda N, Baek KH. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers (Basel) 2021; 13:4198. [PMID: 34883701 PMCID: PMC8659840 DOI: 10.3390/polym13234198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 01/03/2023] Open
Abstract
Polymeric nanocomposites have received significant attention in both scientific and industrial research in recent years. The demand for new methods of food preservation to ensure high-quality, healthy foods with an extended shelf life has increased. Packaging, a crucial feature of the food industry, plays a vital role in satisfying this demand. Polymeric nanocomposites exhibit remarkably improved packaging properties, including barrier properties, oxygen impermeability, solvent resistance, moisture permeability, thermal stability, and antimicrobial characteristics. Bio-based polymers have drawn considerable interest to mitigate the influence and application of petroleum-derived polymeric materials and related environmental concerns. The integration of nanotechnology in food packaging systems has shown promise for enhancing the quality and shelf life of food. This article provides a general overview of bio-based polymeric nanocomposites comprising polymer matrices and inorganic nanoparticles, and describes their classification, fabrication, properties, and applications for active food packaging systems with future perspectives.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Korea;
| |
Collapse
|
13
|
Effect of α-Terpineol on Chicken Meat Quality during Refrigerated Conditions. Foods 2021; 10:foods10081855. [PMID: 34441632 PMCID: PMC8392150 DOI: 10.3390/foods10081855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/08/2021] [Indexed: 01/11/2023] Open
Abstract
The present study was designed to evaluate the in vitro antimicrobial properties of nine bioactive compounds (BACs). Applying the disc paper and minimum inhibitory concentration (MIC) assays, we found that the BACs with the widest spectrum of in vitro antibacterial activity against the studied bacteria were carvacrol and α-terpineol (αTPN). Subsequently, αTPN was selected and applied at different concentrations into the fresh minced chicken meat. The meat was then vacuum packaged and stored for 14 days at 4 °C. Physicochemical properties, lipid oxidation (thiobarbituric acid reactive substances, TBARS), electronic-nose-based smell detection, and microbiological characteristics were monitored. At day 14, meat treated with higher concentrations of αTPN (MIC-2 and MIC-4) exhibited a significantly increased pH and lightness (L*), increased yellowness (b*), decreased redness (a*), caused a significant decrease in water holding capacity (WHC), and decreased lipid oxidation by keeping TBARS scores lower than the control. Although αTPN showed perceptibly of overlapped aroma profiles, the E-nose was able to distinguish the odor accumulation of αTPN between the different meat groups. During the 2-week storage period, αTPN, particularly MIC-4, showed 5.3 log CFU/g reduction in aerobic mesophilic counts, causing total inhibition to the Pseudomonas lundessis, Listeria monocytogenes, and Salmonella Typhimurium. These promising results highlight that αTPN is exploitable to improve the shelf life and enhance the safety of meat and meat products.
Collapse
|
14
|
|
15
|
Natural Anti-Microbials for Enhanced Microbial Safety and Shelf-Life of Processed Packaged Meat. Foods 2021; 10:foods10071598. [PMID: 34359468 PMCID: PMC8305275 DOI: 10.3390/foods10071598] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
Microbial food contamination is a major concern for consumers and food industries. Consumers desire nutritious, safe and “clean label” products, free of synthetic preservatives and food industries and food scientists try to meet their demands by finding natural effective alternatives for food preservation. One of the alternatives to synthetic preservatives is the use of natural anti-microbial agents in the food products and/or in the packaging materials. Meat and processed meat products are characteristic examples of products that are highly perishable; hence natural anti-microbials can be used for extending their shelf-life and enhancing their safety. Despite several examples of the successful application of natural anti-microbial agents in meat products reported in research studies, their commercial use remains limited. This review objective is to present an extensive overview of recent research in the field of natural anti-microbials, covering essential oils, plant extracts, flavonoids, animal-derived compounds, organic acids, bacteriocins and nanoparticles. The anti-microbial mode of action of the agents, in situ studies involving meat products, regulations and, limitations for usage and future perspectives are described. The review concludes that naturally derived anti-microbials can potentially support the meat industry to provide “clean label”, nutritious and safe meat products for consumers.
Collapse
|
16
|
Polysaccharide-Based Packaging Functionalized with Inorganic Nanoparticles for Food Preservation. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functionalization of polysaccharide-based packaging incorporating inorganic nanoparticles for food preservation is an active research area. This review summarizes the use of polysaccharide-based materials functionalized with inorganic nanoparticles (TiO2, ZnO, Ag, SiO2, Al2O3, Fe2O3, Zr, MgO, halloysite, and montmorillonite) to develop hybrid packaging for fruit, vegetables, meat (lamb, minced, pork, and poultry), mushrooms, cheese, eggs, and Ginkgo biloba seeds preservation. Their effects on quality parameters and shelf life are also discussed. In general, treated fruit, vegetables, mushrooms, and G. biloba seeds markedly increased their shelf life without significant changes in their sensory attributes, associated with a slowdown effect in the ripening process (respiration rate) due to the excellent gas exchange and barrier properties that effectively prevented dehydration, weight loss, enzymatic browning, microbial infections by spoilage and foodborne pathogenic bacteria, and mildew apparition in comparison with uncoated or polysaccharide-coated samples. Similarly, hybrid packaging showed protective effects to preserve meat products, cheese, and eggs by preventing microbial infections and lipid peroxidation, extending the food product’s shelf life without changes in their sensory attributes. According to the evidence, polysaccharide-hybrid packaging can preserve the quality parameters of different food products. However, further studies are needed to guarantee the safe implementation of these organic–inorganic packaging materials in the food industry.
Collapse
|
17
|
Colussi R, Ferreira da Silva WM, Biduski B, Mello El Halal SL, da Rosa Zavareze E, Guerra Dias AR. Postharvest quality and antioxidant activity extension of strawberry fruit using allyl isothiocyanate encapsulated by electrospun zein ultrafine fibers. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
|
19
|
Assad I, Bhat SU, Gani A, Shah A. Protein based packaging of plant origin: Fabrication, properties, recent advances and future perspectives. Int J Biol Macromol 2020; 164:707-716. [PMID: 32693126 DOI: 10.1016/j.ijbiomac.2020.07.140] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 11/19/2022]
Abstract
Huge plastic waste is receiving worldwide attention nowadays due to its resistance to degradation and toxicity on environmental components including humans. Improper disposal of plastics affect the food chain and compromise various activities of aquatic life. Each facet of the plastic waste problem requires a significant attention and compels its elimination from the environment due to its ecologically deleterious threats. Therefore, this problem of plastic pollution and issues related thereof merits an attention regarding the alternatives wherein biopolymer based packaging has a potential role to play. This line of research has received a renewed focus where biodegradable films are being developed from proteins which are obtained from animals (include fish myofibrillar protein, collagen, gelatine, etc), and plants especially graminacea (rice, wheat, maize, barley etc), leguminaceae (soya beans, pea, etc.), asteraceae (sunflower) but little attention has been paid towards the potential of aquatic plants for development of packaging material. The present review provides a comprehensive account of biodegradable films developed from plant proteins viz. soy protein, wheat gluten, corn zein and sunflower protein as emerging supplement to plastics. Moreover, this article also tip-offs the potential of macrophytes for fabrication of protein based packaging films incorporated with bioactive materials extracted from macrophytes.
Collapse
Affiliation(s)
- Irfana Assad
- Department of Environmental Science, University of Kashmir, Srinagar, J&K 190006, India
| | - Sami Ullah Bhat
- Department of Environmental Science, University of Kashmir, Srinagar, J&K 190006, India.
| | - Adil Gani
- Department of Food Science and Technology, University of Kashmir, Srinagar, J&K 190006, India
| | - Asima Shah
- Department of Food Science and Technology, University of Kashmir, Srinagar, J&K 190006, India
| |
Collapse
|
20
|
Alfei S, Marengo B, Zuccari G. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns. Food Res Int 2020; 137:109664. [PMID: 33233243 DOI: 10.1016/j.foodres.2020.109664] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/11/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Environmental factors, oxidation and microorganisms contamination, are the major causes for food spoilage, which leads to sensory features alteration, loss of quality, production of harmful chemicals and growth of foodborne pathogens capable to cause severe illness. Synthetic preservatives, traditional conserving methods and food packaging (FP), although effective in counteracting food spoilage, do not allow the real-time monitoring of food quality during storage and transportation and assent a relatively short shelf life. In addition, FP may protect food by the spoilage caused by external contaminations, but is ineffective against foodborne microorganisms. FP preservative functionalities could be improved adding edible natural antioxidants and antimicrobials, but such chemicals are easily degradable. Nowadays, thanks to nanotechnology techniques, it is possible to improve the FP performances, formulating and inserting more stable antioxidant/antimicrobial ingredients, improving mechanical properties and introducing intelligent functions. The state-of-the-art in the field of nanomaterial-based improved FP, the advantages that might derive from their extensive introduction on the market and the main concerns associated to the possible migration and toxicity of nanomaterials, frequently neglected in existing reviews, have been herein discussed.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DiFAR), University of Genoa, Genova (GE), Viale Cembrano, 4, I-16148, Italy.
| | - Barbara Marengo
- Department of Experimental Medicine - DIMES, University of Genoa, Genova (GE), Via Alberti L.B. 2, I- 16132, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DiFAR), University of Genoa, Genova (GE), Viale Cembrano, 4, I-16148, Italy
| |
Collapse
|
21
|
Using particle size and fat content to control the release of Allyl isothiocyanate from ground mustard seeds for its application in antimicrobial packaging. Food Chem 2020; 308:125573. [DOI: 10.1016/j.foodchem.2019.125573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022]
|
22
|
Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. NANO-MICRO LETTERS 2020; 12:45. [PMID: 34138283 PMCID: PMC7770847 DOI: 10.1007/s40820-020-0383-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/31/2019] [Indexed: 02/05/2023]
Abstract
Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Venkidasamy Baskar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Dhivya Selvaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Arti Nile
- Department of Bioresources and Food Science, Sanghuh College of Life Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau, Macau SAR, People's Republic of China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| |
Collapse
|
23
|
de Castro e Silva P, Pereira LAS, Lago AMT, Valquíria M, de Rezende ÉM, Carvalho GR, Oliveira JE, Marconcini JM. Physical-Mechanical and Antifungal Properties of Pectin Nanocomposites / Neem Oil Nanoemulsion for Seed Coating. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-019-09592-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Dias MV, Sousa MM, Lara BRB, de Azevedo VM, de Fátima Ferreira Soares N, Borges SV, Queiroz F. Thermal and morphological properties and kinetics of diffusion of antimicrobial films on food and a simulant. Food Packag Shelf Life 2018. [DOI: 10.1016/j.fpsl.2018.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Nanotechnology in the food sector and potential applications for the poultry industry. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Carvalho RA, Santos TA, de Azevedo VM, Felix PHC, Dias MV, Borges SV. Bio-nanocomposites for food packaging applications: effect of cellulose nanofibers on morphological, mechanical, optical and barrier properties. POLYM INT 2018. [DOI: 10.1002/pi.5518] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Pereira RC, Carneiro JDDS, Assis OB, Borges SV. Mechanical and structural characterization of whey protein concentrate/montmorillonite/lycopene films. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:4978-4986. [PMID: 28402582 DOI: 10.1002/jsfa.8376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/19/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The production/characterization of nanocomposites based on whey protein concentrate (WPC) and montmorillonite (MMT) with lycopene as functional substance is presented and their potential use as alternative biomaterials in foodstuff applications is discussed. A full factorial design with varying levels of MMT (0 and 20 g kg-1 ) and lycopene (0, 60 and 120 g kg-1 ) was used. The mechanical properties (tensile and puncture tests), thermal stability, Fourier transform infrared vibrational spectra and film morphology of the resulting materials were evaluated. RESULTS Lycopene and MMT nanoparticles could be successfully included in WPC films using the casting/evaporation method. The films were flexible and homogeneous and a uniform dispersion of the components was achieved. CONCLUSION Inclusion of 20 g kg-1 of MMT in the polymeric matrix improved both mechanical and thermal properties. Lycopene at the tested concentrations, besides its red coloring ability, did not promote any detectable interference in the structural or physical properties. These findings are important in devising applications and open a new perspective on the use of these materials in bioactive packaging processing. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafaela C Pereira
- Department of Food Science, Federal University of Lavras, Lavras, (MG), Brazil
| | | | | | - Soraia V Borges
- Department of Food Science, Federal University of Lavras, Lavras, (MG), Brazil
| |
Collapse
|
28
|
Sharma C, Dhiman R, Rokana N, Panwar H. Nanotechnology: An Untapped Resource for Food Packaging. Front Microbiol 2017; 8:1735. [PMID: 28955314 PMCID: PMC5601076 DOI: 10.3389/fmicb.2017.01735] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 08/25/2017] [Indexed: 11/24/2022] Open
Abstract
Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Romika Dhiman
- Department of Microbiology, D.A.V. College for GirlsYamuna Nagar, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences UniversityLudhiana, India
| |
Collapse
|
29
|
Lashkari E, Wang H, Liu L, Li J, Yam K. Innovative application of metal-organic frameworks for encapsulation and controlled release of allyl isothiocyanate. Food Chem 2017; 221:926-935. [DOI: 10.1016/j.foodchem.2016.11.072] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/26/2016] [Accepted: 11/16/2016] [Indexed: 01/12/2023]
|
30
|
Rossi M, Passeri D, Sinibaldi A, Angjellari M, Tamburri E, Sorbo A, Carata E, Dini L. Nanotechnology for Food Packaging and Food Quality Assessment. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 82:149-204. [PMID: 28427532 DOI: 10.1016/bs.afnr.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanotechnology has paved the way to innovative food packaging materials and analytical methods to provide the consumers with healthier food and to reduce the ecological footprint of the whole food chain. Combining antimicrobial and antifouling properties, thermal and mechanical protection, oxygen and moisture barrier, as well as to verify the actual quality of food, e.g., sensors to detect spoilage, bacterial growth, and to monitor incorrect storage conditions, or anticounterfeiting devices in food packages may extend the products shelf life and ensure higher quality of foods. Also the ecological footprint of food chain can be reduced by developing new completely recyclable and/or biodegradable packages from natural and eco-friendly resources. The contribution of nanotechnologies to these goals is reviewed in this chapter, together with a description of portable devices ("lab-on-chip," sensors, nanobalances, etc.) which can be used to assess the quality of food and an overview of regulations in force on food contact materials.
Collapse
Affiliation(s)
- Marco Rossi
- SAPIENZA University of Rome, Rome, Italy; Research Center for Nanotechnology Applied to Engineering of SAPIENZA University of Rome (CNIS), Rome, Italy.
| | | | | | | | | | | | | | - Luciana Dini
- University of Salento, Lecce, Italy; CNR-Nanotec, Lecce, Italy
| |
Collapse
|
31
|
Ahmed J, Hiremath N, Jacob H. Efficacy of antimicrobial properties of polylactide/cinnamon oil film with and without high-pressure treatment against Listeria monocytogenes and Salmonella typhimurium inoculated in chicken sample. Food Packag Shelf Life 2016. [DOI: 10.1016/j.fpsl.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
SaxA-Mediated Isothiocyanate Metabolism in Phytopathogenic Pectobacteria. Appl Environ Microbiol 2016; 82:2372-2379. [PMID: 26873319 DOI: 10.1128/aem.04054-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/03/2016] [Indexed: 01/07/2023] Open
Abstract
Pectobacteria are devastating plant pathogens that infect a large variety of crops, including members of the family Brassicaceae. To infect cabbage crops, these plant pathogens need to overcome the plant's antibacterial defense mechanisms, where isothiocyanates are liberated by hydrolysis of glucosinolates. Here, we found that a Pectobacterium isolate from the gut of cabbage root fly larvae was particularly resistant to isothiocyanate and even seemed to benefit from the abundant Brassica root metabolite 2-phenylethyl isothiocyanate as a nitrogen source in an ecosystem where nitrogen is scarce. The Pectobacterium isolate harbored a naturally occurring mobile plasmid that contained a sax operon. We hypothesized that SaxA was the enzyme responsible for the breakdown of 2-phenylethyl isothiocyanate. Subsequently, we heterologously produced and purified the SaxA protein and characterized the recombinant enzyme. It hydrolyzed 2-phenylethyl isothiocyanate to yield the products carbonyl sulfide and phenylethylamine. It was also active toward another aromatic isothiocyanate but hardly toward aliphatic isothiocyanates. It belongs to the class B metal-dependent beta-lactamase fold protein family but was not, however, able to hydrolyze beta-lactam antibiotics. We discovered that several copies of the saxA gene are widespread in full and draft Pectobacterium genomes and therefore hypothesize that SaxA might be a new pathogenicity factor of the genus Pectobacterium, possibly compromising food preservation strategies using isothiocyanates.
Collapse
|
33
|
Abstract
This review addresses an important public health hazard affecting food safety. Antimicrobial agents are used in foods to reduce or eliminate microorganisms that cause disease. Many traditional organic compounds, novel synthetic organic agents, natural products, peptides, and proteins have been extensively studied for their effectiveness as antimicrobial agents against foodborne Campylobacter spp., Escherichia coli, Listeria spp. and Salmonella. However, antimicrobial resistance can develop in microorganisms, enhancing their ability to withstand the inhibiting or killing action of antimicrobial agents. Knowledge gaps still exist with regard to the actual chemical and microbiological mechanisms that must be identified to facilitate the search for new antimicrobial agents. Technical implementation of antimicrobial active packing films and coatings against target microorganisms must also be improved for extended product shelf life. Recent advances in antimicrobial susceptibility testing can provide researchers with new momentum to pursue their quest for a resistance panacea.
Collapse
Affiliation(s)
- Edward P C Lai
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | - Zafar Iqbal
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Tyler J Avis
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
34
|
Welte CU, de Graaf RM, van den Bosch TJM, Op den Camp HJM, van Dam NM, Jetten MSM. Plasmids from the gut microbiome of cabbage root fly larvae encode SaxA that catalyses the conversion of the plant toxin 2-phenylethyl isothiocyanate. Environ Microbiol 2015; 18:1379-90. [DOI: 10.1111/1462-2920.12997] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Cornelia U. Welte
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Rob M. de Graaf
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Tijs J. M. van den Bosch
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Nicole M. van Dam
- Molecular Interaction Ecology; IWWR; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
- Molecular Interaction Ecology; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; Deutscher Platz 5e 04103 Leipzig Germany
- Institute of Ecology; Friedrich Schiller University Jena; Dornburger-Str. 159 07743 Jena Germany
| | - Mike S. M. Jetten
- Department of Microbiology; Radboud University; Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
35
|
Yah CS, Simate GS. Nanoparticles as potential new generation broad spectrum antimicrobial agents. Daru 2015; 23:43. [PMID: 26329777 PMCID: PMC4557602 DOI: 10.1186/s40199-015-0125-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
The rapid emergence of antimicrobial resistant strains to conventional antimicrobial agents has complicated and prolonged infection treatment and increased mortality risk globally. Furthermore, some of the conventional antimicrobial agents are unable to cross certain cell membranes thus, restricting treatment of intracellular pathogens. Therefore, the disease-causing-organisms tend to persist in these cells. However, the emergence of nanoparticle (NP) technology has come with the promising broad spectrum NP-antimicrobial agents due to their vast physiochemical and functionalization properties. In fact, NP-antimicrobial agents are able to unlock the restrictions experienced by conventional antimicrobial agents. This review discusses the status quo of NP-antimicrobial agents as potent broad spectrum antimicrobial agents, sterilization and wound healing agents, and sustained inhibitors of intracellular pathogens. Indeed, the perspective of developing potent NP-antimicrobial agents that carry multiple-functionality will revolutionize clinical medicine and play a significant role in alleviating disease burden.
Collapse
Affiliation(s)
- Clarence S Yah
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, E7146, 615 N. Wolfe Street, Baltimore, 21205, , MD, USA.
| | - Geoffrey S Simate
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, P/Bag 3, Wits 2050, Johannesburg, South Africa.
| |
Collapse
|
36
|
Patel S. Plant essential oils and allied volatile fractions as multifunctional additives in meat and fish-based food products: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1049-64. [DOI: 10.1080/19440049.2015.1040081] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Hannon JC, Kerry J, Cruz-Romero M, Morris M, Cummins E. Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2015.01.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Ramachandraiah K, Han SG, Chin KB. Nanotechnology in meat processing and packaging: potential applications - a review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:290-302. [PMID: 25557827 PMCID: PMC4283176 DOI: 10.5713/ajas.14.0607] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/06/2014] [Accepted: 11/26/2014] [Indexed: 11/27/2022]
Abstract
Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.
Collapse
Affiliation(s)
- Karna Ramachandraiah
- Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Korea
| | - Koo Bok Chin
- Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Korea
| |
Collapse
|
39
|
Williams JR, Rayburn JR, Cline GR, Sauterer R, Friedman M. Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos. Toxicol Rep 2014; 2:222-227. [PMID: 28962355 PMCID: PMC5598435 DOI: 10.1016/j.toxrep.2014.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/24/2022] Open
Abstract
The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica) plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also reported to damage DNA and is toxic to aquatic organisms, the objective of the present study was to determine whether it possesses teratogenic properties. The frog embryo teratogenesis assay-Xenopus (FETAX) was used to determine the following measures of developmental toxicity of the allyl isothiocyanate: (a) 96-h LC50, defined as the median concentration causing 50% embryo lethality; (b) 96-h EC50, defined as the median concentration causing 50% malformations of the surviving embryos; and (c) teratogenic malformation index (TI), equal to 96-h LC50/96-h EC50. The quantitative results and the photographs of embryos before and after exposure suggest that allyl isothiocyanate seems to exhibit moderate teratogenic properties. The results also indicate differences in the toxicity of allyl isothiocyanate toward exposed embryos observed in the present study compared to reported adverse effects of allyl isothiocyanate in fish, rodents, and humans. The significance of the results for food safety and possible approaches to protect against adverse effects of allyl isothiocyanate are discussed.
Collapse
Affiliation(s)
| | - James R. Rayburn
- Biology Department, Jacksonville State University, Jacksonville, AL 36265, USA
| | - George R. Cline
- Biology Department, Jacksonville State University, Jacksonville, AL 36265, USA
| | - Roger Sauterer
- Biology Department, Jacksonville State University, Jacksonville, AL 36265, USA
| | - Mendel Friedman
- Produce Safety and Microbiology Research, Western Regional Research Center, ARS-USDA, Albany, CA 94710, USA
| |
Collapse
|
40
|
Dias MV, Machado Azevedo V, Borges SV, Soares NDFF, de Barros Fernandes RV, Marques JJ, Medeiros ÉAA. Development of chitosan/montmorillonite nanocomposites with encapsulated α-tocopherol. Food Chem 2014; 165:323-9. [DOI: 10.1016/j.foodchem.2014.05.120] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
|
41
|
Active and intelligent packaging systems for a modern society. Meat Sci 2014; 98:404-19. [PMID: 25034453 DOI: 10.1016/j.meatsci.2014.06.031] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/31/2023]
Abstract
Active and intelligent packaging systems are continuously evolving in response to growing challenges from a modern society. This article reviews: (1) the different categories of active and intelligent packaging concepts and currently available commercial applications, (2) latest packaging research trends and innovations, and (3) the growth perspectives of the active and intelligent packaging market. Active packaging aiming at extending shelf life or improving safety while maintaining quality is progressing towards the incorporation of natural active agents into more sustainable packaging materials. Intelligent packaging systems which monitor the condition of the packed food or its environment are progressing towards more cost-effective, convenient and integrated systems to provide innovative packaging solutions. Market growth is expected for active packaging with leading shares for moisture absorbers, oxygen scavengers, microwave susceptors and antimicrobial packaging. The market for intelligent packaging is also promising with strong gains for time-temperature indicator labels and advancements in the integration of intelligent concepts into packaging materials.
Collapse
|