1
|
Wang C, Gamage PL, Jiang W, Mudalige T. Excipient-related impurities in liposome drug products. Int J Pharm 2024; 657:124164. [PMID: 38688429 DOI: 10.1016/j.ijpharm.2024.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Liposomes are widely used in the pharmaceutical industry as drug delivery systems to increase the efficacy and reduce the off-target toxicity of active pharmaceutical ingredients (APIs). The liposomes are more complex drug delivery systems than the traditional dosage forms, and phospholipids and cholesterol are the major structural excipients. These two excipients undergo hydrolysis and/or oxidation during liposome preparation and storage, resulting in lipids hydrolyzed products (LHPs) and cholesterol oxidation products (COPs) in the final liposomal formulations. These excipient-related impurities at elevated concentrations may affect liposome stability and exert biological functions. This review focuses on LHPs and COPs, two major categories of excipient-related impurities in the liposomal formulations, and discusses factors affecting their formation, and analytical methods to determine these excipient-related impurities.
Collapse
Affiliation(s)
- Changguang Wang
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Prabhath L Gamage
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
2
|
Czerwonka M, Białek A, Bobrowska-Korczak B. A Novel Method for the Determination of Squalene, Cholesterol and Their Oxidation Products in Food of Animal Origin by GC-TOF/MS. Int J Mol Sci 2024; 25:2807. [PMID: 38474053 DOI: 10.3390/ijms25052807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Cholesterol present in food of animal origin is a precursor of oxysterols (COPs), whose high intake through diet can be associated with health implications. Evaluation of the content of these contaminants in food is associated with many analytical problems. This work presents a GC-TOF/MS method for the simultaneous determination of squalene, cholesterol and seven COPs (7-ketocholesterol, 7α-hydroxycholesterol, 7β-hydroxycholesterol, 25-hydroxycholesterol, 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestanetriol). The sample preparation procedure includes such steps as saponification, extraction and silylation. The method is characterized by high sensitivity (limit of quantification, 0.02-0.25 ng mL-1 for instrument, 30-375 μg kg of sample), repeatability (RSD 2.3-6.2%) and a wide linearity range for each tested compound. The method has been tested on eight different animal-origin products. The COP to cholesterol content ratio in most products is about 1%, but the profile of cholesterol derivatives differs widely (α = 0.01). In all the samples, 7-ketocholesterol is the dominant oxysterol, accounting for 31-67% of the total COPs level. The levels of the other COPs range between 0% and 21%. In none of the examined products are cholestanetriol and 25-hydroxycholesterol present. The amount of squalene, which potentially may inhibit the formation of COPs in food, ranges from 2 to 57 mg kg-1.
Collapse
Affiliation(s)
- Małgorzata Czerwonka
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
| | - Agnieszka Białek
- School of Health and Medical Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warsaw, Poland
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
New Function of Cholesterol Oxidation Products Involved in Osteoporosis Pathogenesis. Int J Mol Sci 2022; 23:ijms23042020. [PMID: 35216140 PMCID: PMC8876989 DOI: 10.3390/ijms23042020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic bone disease characterized by decreased bone strength, microarchitectural changes in bone tissues, and increased risk of fracture. Its occurrence is closely related to various factors such as aging, genetic factors, living habits, and nutritional deficiencies as well as the disturbance of bone homeostasis. The dysregulation of bone metabolism is regarded as one of the key influencing factors causing OP. Cholesterol oxidation products (COPs) are important compounds in the maintenance of bone metabolic homeostasis by participating in several important biological processes such as the differentiation of mesenchymal stem cells, bone formation in osteoblasts, and bone resorption in osteoclasts. The effects of specific COPs on mesenchymal stem cells are mainly manifested by promoting osteoblast genesis and inhibiting adipocyte genesis. This review aims to elucidate the biological roles of COPs in OP development, starting from the molecular mechanisms of OP, pointing out opportunities and challenges in current research, and providing new ideas and perspectives for further studies of OP pathogenesis.
Collapse
|
4
|
Liu Y, Yang X, Xiao F, Jie F, Zhang Q, Liu Y, Xiao H, Lu B. Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Compr Rev Food Sci Food Saf 2021; 21:738-779. [PMID: 34953101 DOI: 10.1111/1541-4337.12880] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022]
Abstract
Dietary cholesterol oxidation products (COPs) are heterogeneous compounds formed during the processing and storage of cholesterol-rich foods, such as seafood, meat, eggs, and dairy products. With the increased intake of COPs-rich foods, the concern about health implications of dietary COPs is rising. Dietary COPs may exert deleterious effects on human health to induce several inflammatory diseases including atherosclerosis, neurodegenerative diseases, and inflammatory bowel diseases. Thus, knowledge regarding the effects of processing and storage conditions leading to formation of COPs is needed to reduce the levels of COPs in foods. Efficient methodologies to determine COPs in foods are also essential. More importantly, the biological roles of dietary COPs in human health and effects of phytochemicals on dietary COPs-induced diseases need to be established. This review summarizes the recent information on dietary COPs including their formation in foods during their processing and storage, analytical methods of determination of COPs, metabolic fate, implications for human health, and beneficial interventions by phytochemicals. The formation of COPs is largely dependent on the heating temperature, storage time, and food matrices. Alteration of food processing and storage conditions is one of the potent strategies to restrict hazardous dietary COPs from forming, including maintaining relatively low temperatures, shorter processing or storage time, and the appropriate addition of antioxidants. Once absorbed into the circulation, dietary COPs can contribute to the progression of several inflammatory diseases, where the absorbed dietary COPs may induce inflammation, apoptosis, and autophagy in cells in the target organs or tissues. Improved intake of phytochemicals may be an effective strategy to reduce the hazardous effects of dietary COPs.
Collapse
Affiliation(s)
- Yan Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xuan Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Fan Jie
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Qinjun Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Yuqi Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
5
|
Monodisperse cobalt(II) based metal-organic coordination polymer beads as a sorbent for solid-phase extraction of chlorophenoxy acid herbicides prior to their quantitation by HPLC. Mikrochim Acta 2019; 186:761. [PMID: 31712903 DOI: 10.1007/s00604-019-3932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/12/2019] [Indexed: 10/25/2022]
Abstract
Metal-organic coordination polymer beads (MOCBs) are described for use as a sorbent for solid-phase extraction of chlorophenoxy herbides. By applying regulation of Co(II) ions, micro-sized monodisperse MOCBs were obtained through the microwave heating. The MOCBs-based method displays excellent extraction efficiency towards chlorophenoxy herbicides, specifically of 2-chlorophenoxyacetic acid, 4-chlorophenoxyacetic acid, 4-chloromethylphenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid and 2-(2,4-dichlorophenoxy)propionic acid. Following extraction, the herbicides were eluted with 8% formic acid in methanol and quantified by HPLC. The method, when applied to analyze spiked cereals, exhibits a wide linear range (from 0.6 to 1000 ng g-1) and low limits of quantification (ranging from 0.10 to 0.25 ng g-1). For a single column, the inter-day and intra-day precisions, expressed as the relative standard deviation are in the range of 2.5-6.8%. The batch-to-batch reproducibility (for n = 3) is <4.6%. For spiked cereal samples, relative recoveries are very good (90.3-102.3%, for n = 4). The extraction efficiency of MOCBs remains unchanged after reusing for 40 times. Graphical abstractSchematic presentation of Co(II)-doped metal-organic coordination polymer beads (Co(II)@MOCB) using for solid-phase extraction (SPE).
Collapse
|
6
|
Quantitative analysis of cholesterol oxidation products and desmosterol in parenteral liposomal pharmaceutical formulations. Int J Pharm 2019; 569:118576. [DOI: 10.1016/j.ijpharm.2019.118576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/19/2022]
|
7
|
Cortés-Herrera C, Artavia G, Leiva A, Granados-Chinchilla F. Liquid Chromatography Analysis of Common Nutritional Components, in Feed and Food. Foods 2018; 8:E1. [PMID: 30577557 PMCID: PMC6352167 DOI: 10.3390/foods8010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/28/2018] [Accepted: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Food and feed laboratories share several similarities when facing the implementation of liquid-chromatographic analysis. Using the experience acquired over the years, through application chemistry in food and feed research, selected analytes of relevance for both areas were discussed. This review focused on the common obstacles and peculiarities that each analyte offers (during the sample treatment or the chromatographic separation) throughout the implementation of said methods. A brief description of the techniques which we considered to be more pertinent, commonly used to assay such analytes is provided, including approaches using commonly available detectors (especially in starter labs) as well as mass detection. This manuscript consists of three sections: feed analysis (as the start of the food chain); food destined for human consumption determinations (the end of the food chain); and finally, assays shared by either matrices or laboratories. Analytes discussed consist of both those considered undesirable substances, contaminants, additives, and those related to nutritional quality. Our review is comprised of the examination of polyphenols, capsaicinoids, theobromine and caffeine, cholesterol, mycotoxins, antibiotics, amino acids, triphenylmethane dyes, nitrates/nitrites, ethanol soluble carbohydrates/sugars, organic acids, carotenoids, hydro and liposoluble vitamins. All analytes are currently assayed in our laboratories.
Collapse
Affiliation(s)
- Carolina Cortés-Herrera
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio 11501-2060, Costa Rica.
| | - Graciela Artavia
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio 11501-2060, Costa Rica.
| | - Astrid Leiva
- Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, Ciudad Universitaria Rodrigo 11501-2060, Costa Rica.
| | - Fabio Granados-Chinchilla
- Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, Ciudad Universitaria Rodrigo 11501-2060, Costa Rica.
| |
Collapse
|
8
|
Rapid determination of cholesterol oxidation products in milk powder based products by reversed phase SPE and HPLC-APCI-MS/MS. Food Chem 2017; 230:604-610. [DOI: 10.1016/j.foodchem.2017.03.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 11/20/2022]
|
9
|
Derina KV, Korotkova EI, Dorozhko EV, Voronova OA. Voltammetric determination of cholesterol in human blood serum. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817080068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Tarvainen M, Quirin KW, Kallio H, Yang B. CO 2 Plant Extracts Reduce Cholesterol Oxidation in Fish Patties during Cooking and Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9653-9662. [PMID: 27977183 DOI: 10.1021/acs.jafc.6b03655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol oxidation products (COPs) in foods may pose risks for human health. Suitable antioxidants can reduce the formation of COPs in industrial products. Consumer awareness of food additives has brought a need for more natural alternatives. This is the first study on the effects of supercritical CO2 extracts of rosemary, oregano, and an antimicrobial blend of seven herbs, tested at two levels (1 and 3 g/kg fish), against cholesterol oxidation in patties made of a widely consumed fish species, Atlantic salmon (Salmo salar), during baking and storage. Cholesterol oxidation was reduced by the extracts as indicated by lowered levels of 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol, which were quantified by GC-MS. The total amount of COPs was smaller in all of the cooked samples containing the plant extracts (<1 μg/g extracted fat) than in the cooked control (14 μg/g). Furthermore, the plant extracts exhibited protective effects also during cold storage for up to 14 days.
Collapse
Affiliation(s)
- Marko Tarvainen
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Karl-Werner Quirin
- Flavex Naturextrakte GmbH , Nordstraße 7, 66780 Rehlingen-Siersburg, Germany
| | - Heikki Kallio
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku , FI-20014 Turku, Finland
- Department of Food Science and Engineering, Jinan University , 510632, Guangzhou, China
| |
Collapse
|
11
|
Oxysterols in cosmetics-Determination by planar solid phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 2016; 1473:10-18. [PMID: 28314390 DOI: 10.1016/j.chroma.2016.10.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 11/23/2022]
Abstract
Sterol oxidation products (SOPs) are linked to several toxicological effects. Therefore, investigation of potential dietary uptake sources particularly food of animal origin has been a key issue for these compounds. For the simultaneous determination of oxysterols from cholesterol, phytosterols, dihydrolanosterol and lanosterol in complex cosmetic matrices, planar solid phase extraction (pSPE) was applied as clean-up tool. SOPs were first separated from more non-polar and polar matrix constituents by normal phase thin-layer chromatography and then focussed into one target zone. Zone extraction was performed with the TLC-MS interface, followed by gas chromatography-mass spectrometry analysis. pSPE showed to be effective for cleaning up cosmetic samples as sample extracts were free of interferences, and gas chromatographic columns did not show any signs of overloading. Recoveries were between 86 and 113% with relative standard deviations of below 10% (n=6). Results of our market survey in 2016 showed that some cosmetics with ingredients of plant origin contained phytosterol oxidation products (POPs) in the low ppm range and therefore in line with levels reported for food. In lanolin containing products, total SOPs levels (cholesterol oxidation products (COPs), lanosterol oxidation products (LOPs), dihydrolanosterol oxidation products (DOPs)) being in the low percent range exceeded reported levels for food by several orders of magnitudes.
Collapse
|
12
|
Lozada-Castro JJ, Santos-Delgado MJ, Polo-Díez LM. Determination of free cholesterol oxide products in food samples by gas chromatography and accelerated solvent extraction: influence of electron-beam irradiation on cholesterol oxide formation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4215-4223. [PMID: 26777543 DOI: 10.1002/jsfa.7625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/30/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The aim of this study was to develop an efficient method for cholesterol oxide product (COP) determination in irradiated and non-irradiated ready-to-eat foods with high water content by gas chromatography-flame ionisation detector after accelerated solvent extraction (ASE), and derivatisation with a silylating reagent. RESULTS The ASE solvent was an 85:15 v/v petroleum ether/chloroform mixture at 40 °C and 1500 psi followed by solid phase extraction. The ASE method was compared with the established lixiviation method, proving an advantageous alternative which reduces analysis time by a factor of 15 and solvent volume by 50%, and minimises the use of chlorinated solvents. COP derivative structures were identified by gas chromatography coupled with mass spectrometry. Analytical characteristics were determined from standards and recoveries were 63-95%, establishing the validity of the method. CONCLUSION The results obtained and their analysis by chemometric techniques established COP formation in food samples after e-beam irradiation. Increase in COP concentration depended on both irradiation doses and food composition, mainly water and fat content, although linear correlations among variables were not found. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - María Jesús Santos-Delgado
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| | - Luis María Polo-Díez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
13
|
Mutemberezi V, Masquelier J, Guillemot-Legris O, Muccioli GG. Development and validation of an HPLC-MS method for the simultaneous quantification of key oxysterols, endocannabinoids, and ceramides: variations in metabolic syndrome. Anal Bioanal Chem 2015; 408:733-45. [DOI: 10.1007/s00216-015-9150-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/15/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
|
14
|
Dantas NM, Sampaio GR, Ferreira FS, Labre TDS, Torres EAFDS, Saldanha T. Cholesterol Oxidation in Fish and Fish Products. J Food Sci 2015; 80:R2627-39. [PMID: 26555783 DOI: 10.1111/1750-3841.13124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.
Collapse
Affiliation(s)
- Natalie Marinho Dantas
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Geni Rodrigues Sampaio
- Dept. of Nutrition, School of Public Health, Univ. of São Paulo (USP), Brazil - Av. Dr. Arnaldo, 715, São Paulo, SP, CEP, 01246-904, Brazil
| | - Fernanda Silva Ferreira
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | - Tatiana da Silva Labre
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| | | | - Tatiana Saldanha
- Dept. of Food Technology, Rural Federal Univ. of Rio de Janeiro (UFRRJ), Brazil - Rodovia BR 465, km 7, Seropédica, RJ, CEP, 23890-000, Brazil
| |
Collapse
|
15
|
Georgiou CA, Constantinou MS, Andreou R, Hapeshi E, Fatta-Kassinos D, Kapnissi-Christodoulou CP. Novel approach to fast determination of cholesterol oxidation products in Cypriot foodstuffs using ultra-performance liquid chromatography-tandem mass spectrometry. Electrophoresis 2015; 37:1101-8. [DOI: 10.1002/elps.201500196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | - Evroula Hapeshi
- Department of Civil and Environmental Engineering; University of Cyprus; Nicosia Cyprus
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering; University of Cyprus; Nicosia Cyprus
| | | |
Collapse
|
16
|
Effect of cooking method on the formation of 7-ketocholesterol in Atlantic hake (Merluccius hubbsi) and smooth weakfish (Cynoscion leiarchus) fillets. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.01.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Development of a Reliable Analytical Protocol for the Isolation of Cholesterol Oxidation Products—a Comparison of Different Lipid Extraction and Saponification Methods. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-0034-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|