1
|
Ierna A, Mauromicale G. How physicochemical and nutritional traits of potatoes may vary under field conditions over long periods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3842-3852. [PMID: 38233738 DOI: 10.1002/jsfa.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Potato is the most important non-grain crop worldwide, whose quality characteristics are always affected by temporal and spatial variability. Knowledge of the performance consistency of quality characteristics over long periods could prove very important to identify which quality traits are less variable over time, and therefore provide greater guarantees of stability. In this research, variations in physicochemical and nutritional traits of tubers over five consecutive growing seasons of two potato genotypes (Arizona and Vogue) were monitored in two locations. RESULTS Although qualitative performances of genotypes fluctuated across the seasons in both locations, two physicochemical traits (pH and dry matter content) and starch content showed less variability throughout the five seasons compared to total soluble solids and most of the nutritional traits (namely reducing sugars, citric acid, vitamin C, total phenolics and antioxidant capacity), which were considerably influenced by weather conditions. CONCLUSION The results suggest that pH, dry matter content and starch content traits could be used advantageously in studies of temporal stability in potatoes. This approach could prove useful in providing scientific support for the setup of potato protected geographical identifications. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anita Ierna
- Institute of BioEconomy, National Research Council (CNR-IBE), Catania, Italy
| | - Giovanni Mauromicale
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
| |
Collapse
|
2
|
Wang C, Bao R, Zhang H, Shang L, Wang H, Yang Z, Du C. Study on Potato Bud Cultivation Techniques in a Greenhouse in Spring. PLANTS (BASEL, SWITZERLAND) 2023; 12:3545. [PMID: 37896009 PMCID: PMC10610138 DOI: 10.3390/plants12203545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023]
Abstract
The species degeneration caused by traditional potato cultivation methods is becoming increasingly evident, and it is particularly important to study new potato cultivation methods. Sprout planting technology has the advantages of large reproductive capacity, fast growth speed, and simplified maintenance of cultivated crops. In this study, four disease-free potato varieties ('Fujin', 'Youjin', 'Zhongshu 4', and 'Feiwuruita') were treated with different parts (top bud, middle bud, and tail bud) and different bud lengths (10 cm, 15 cm, and 20 cm), and then potato sprout planting was carried out. A nutrient pot experiment was performed following a randomized complete block design (RCBD) with various replicates and a natural control (CK) treatment. By comprehensively measuring the emergence, chlorophyll content, net photosynthetic rate, dry matter distribution during the bulking period of blocks, and effect of growth and quality with bud direct seeding under both treatments, it was found that potato block top bud direct seeding cultivation is significantly superior to other parts. In terms of early maturity and yield statistics, the advantage of top bud cultivation in 'zhongshu 4' is most obvious; it reaches maturity an average of 14 days earlier, and the yield can be increased by 38.05%. Therefore, top bud direct seeding is more suitable for potato sprout planting technology. On this basis, the 20 cm and 15 cm bud length treatments of top buds were used for direct cultivation, and all the above indicators performed well. Among them, in the zhongshu 4 variety, the yields of 15 cm and 20 cm bud length treatments increased by 41.78% and 38.05%, the growth rates of commercial potatoes increased by 6% and 6.9%, respectively, and the effects were the most obvious. In conclusion, the deep research and application of potato sprouting technology has high utilization value for improving potato yield and quality and has guiding significance for greenhouse potato cultivation in early spring.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chong Du
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China; (C.W.); (R.B.); (H.Z.); (L.S.); (H.W.); (Z.Y.)
| |
Collapse
|
3
|
Çakmakçı S, Çakmakçı R. Quality and Nutritional Parameters of Food in Agri-Food Production Systems. Foods 2023; 12:foods12020351. [PMID: 36673443 PMCID: PMC9857782 DOI: 10.3390/foods12020351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Organic farming is a production system that avoids or largely excludes the use of synthetic agricultural inputs such as pesticides, growth regulators, highly soluble mineral fertilisers, supplements, preservatives, flavouring, aromatic substances and genetically modified organisms, and their products. This system aims to maintain and increase soil fertility and quality, and relies on systems such as crop rotation, polyculture, intercropping, ecosystem management, covering crops, legumes, organic and bio-fertilisers, mechanical cultivation and biological control methods. The present review summarises and evaluates research comparing the quality of traditionally, organically and conventionally produced foods. In some cases, although the results of the studies contradict each other, organically grown in vegetables, especially berries and fruits are slightly higher dry matter, minerals such as P, Ca, Mg, Fe and Zn, vitamin C, sugars, carotenoids, antioxidant activity, phenolic and flavonoid compounds. In addition, their sensory properties are more pleasant. The nutritional content, quality and safety of organic foods are acceptable if the recent trends are reviewed, tested and verified. Therefore, the aim of this review is to compile, describe and update scientific evidence and data on the quality, safety, bioactive compounds and nutritional and phytochemical quality of foods in traditional and organic fruit, vegetable and cereal production systems.
Collapse
Affiliation(s)
- Songül Çakmakçı
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Turkey
- Correspondence: ; Tel.: +90-442-2312491
| | - Ramazan Çakmakçı
- Department of Field Crops, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey
| |
Collapse
|
4
|
Alarcón S, Tereucán G, Cornejo P, Contreras B, Ruiz A. Metabolic and antioxidant effects of inoculation with arbuscular mycorrhizal fungi in crops of flesh-coloured Solanum tuberosum treated with fungicides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2270-2280. [PMID: 34625964 DOI: 10.1002/jsfa.11565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Solanum tuberosum tubers have higher content of phenolic compounds such as hydroxycinnamic acid derivatives (HCAD) and anthocyanins in coloured genotypes. The use of fungicides for crops is common, but there are few studies regarding the interaction of fungicides and arbuscular mycorrhizal fungi (AMF). Here, the AMF-plant interactions and the metabolic responses of three potato genotypes with different tuber colorations (VR808, CB2011-509 and CB2011-104) inoculated with Claroideoglomus claroideum (CC), Claroideoglomus lamellosum (HMC26) or Funneliformis mosseae (HMC7) were studied together with the use of the fungicides MONCUT (M) and ReflectXtra (R). Mycorrhizal traits, phenolic compound profiles and antioxidant activity (AA) were evaluated. RESULTS Despite only two HCADs being identified, with 5-caffeolquinic acid the most abundant, four anthocyanins were detected only in purple potato genotypes. The anthocyanin and HCAD profiles, as well as AA, showed that the CB2011-104 genotype had better characteristics than the other genotypes, while VR808 and CB509 showed similar responses. The responses were dependent on the specific combinations of genotype, fungicide and the AMF strain, and generally showed better responses when colonized by AMFs. CONCLUSION The three potato genotypes had differential responses depending on the inoculated AMFs and the fungicide applied before sowing, where the optimal combinations for antioxidant response, mycorrhization degree and performance were HMC26/R for VR808, HMC7/M for CB2011-509 and HMC26/M for CB2011-104. Our results suggest the existence of functional compatibility that can be registered as beneficial effects even at the genotypic level of the host regarding a specific AMF strain. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sebastián Alarcón
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - Gonzalo Tereucán
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| | - Boris Contreras
- Novaseed Ltda. and Papas Arcoiris Ltda., Puerto Varas, Chile
| | - Antonieta Ruiz
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
5
|
Shen Y, Gao M, Liang Y, Li Y, Zhong J, Lu L, Zhang Z. Role of Isotope Internal Standards and Matrix-matched Curves in the Analysis of Metribuzin and Its Metabolite Residues in Potato Tuber. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02195-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Ivanov AA, Ukladov EO, Golubeva TS. Phytophthora infestans: An Overview of Methods and Attempts to Combat Late Blight. J Fungi (Basel) 2021; 7:1071. [PMID: 34947053 PMCID: PMC8707485 DOI: 10.3390/jof7121071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Phytophthora infestans (Mont.) de Bary is one of the main pathogens in the agricultural sector. The most affected are the Solanaceae species, with the potato (Solanum tuberosum) and the tomato (Solanum lycopersicum) being of great agricultural importance. Ornamental Solanaceae can also host the pests Petunia spp., Calibrachoa spp., as well as the wild species Solanum dulcamara, Solanum sarrachoides, etc. Annual crop losses caused by this pathogen are highly significant. Although the interaction between P. infestans and the potato has been investigated for a long time, further studies are still needed. This review summarises the basic approaches in the fight against the late blight over the past 20 years and includes four sections devoted to methods of control: (1) fungicides; (2) R-gene-based resistance of potato species; (3) RNA interference approaches; (4) other approaches to control P. infestans. Based on the latest advances, we have provided a description of the significant advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Artemii A. Ivanov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Egor O. Ukladov
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Tatiana S. Golubeva
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
7
|
Kang L, He D, Wang H, Han G, Lv H, Xiao W, Zhang Z, Yan Z, Huang L. "Breeding on Mountains" Resulted in the Reorganization of Endophytic Fungi in Asexually Propagated Plants ( Ligusticum chuanxiong Hort.). FRONTIERS IN PLANT SCIENCE 2021; 12:740456. [PMID: 34858448 PMCID: PMC8631752 DOI: 10.3389/fpls.2021.740456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/04/2021] [Indexed: 05/05/2023]
Abstract
"Breeding on mountains, cultivation in dam areas" is a unique propagation method for the vegetatively propagated plant Ligusticum chuanxiong, including two transplants between the mountain and the dam area. It is well known that the environment can influence the endophytic community structure of plants. However, the change of host endophytic flora caused by transplanting in different places and its influence on asexual reproduction are still poorly understood. We carried out three cycles of cultivation experiments on L. chuanxiong and collected stem nodes (LZ), immature rhizomes (PX), medicinal rhizomes (CX), and rhizosphere. High-throughput sequencing was performed to analyze the endophytic fungi in all samples. We observed that the diversity and richness of endophytic fungi in L. chuanxiong increased as a result of transplanting cultivation from dam areas to mountains. Local transplantation caused minor changes in the endophytic fungus structure of L. chuanxiong, while remote transplantation caused significant changes. Compared with LZ after breeding in the dam area, the LZ after breeding on mountains has more abundant Gibberella, Phoma, Pericona, Paraphoma, and Neocosmospora. The regular pattern of the relative abundance of endophytic fungi is consistent with that of the fungus in the soil, while there are also some cases that the relative abundance of endophytic fungi is the opposite of that of soil fungi. In addition, there is a significant correlation among certain kinds of endophytic fungi whether in the soil or the plants. We have isolated more gibberellin-producing and auxin-producing fungi in the LZ cultivated in the mountains than that in the LZ cultivated in the dam area. The results of pot experiments showed that the three fungi isolated from LZ cultivated in mountainous areas can promote the development of shoots, stem nodes, and internodes of LZ, and increase the activity of plant peroxidase, catalase, phenylalanine ammonia lyase, and other enzymes. We can conclude that transplantation leads to the recombination of the host endophytic fungus, the more significant the difference in the environment is, the greater the reorganization caused by transplanting. Reorganization is determined by the soil environment, hosts, and the interaction of microorganisms. Remote transplantation is a crucial opportunity to reshuffle the micro-ecological structure of the asexual reproduction of plants, and regulate the growth, development, and resistance of plants, and prevent germplasm degradation caused by asexual reproduction.
Collapse
Affiliation(s)
- Lei Kang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongmei He
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory Breeding Base of Dao-di Herbs, Center for Post-doctoral Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guiqi Han
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongyang Lv
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wanting Xiao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanling Zhang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhuyun Yan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, Center for Post-doctoral Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Koudela M, Schulzova V, Krmela A, Chmelarova H, Hajslova J, Novotny C. Effect of Agroecological Conditions on Biologically Active Compounds and Metabolome in Carrot. Cells 2021; 10:cells10040784. [PMID: 33916284 PMCID: PMC8066420 DOI: 10.3390/cells10040784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Carrot serves as a source of health-beneficial phytochemicals for human diet whose content is affected by agroecological conditions. The effect of conventional, integrated and organic farming on ascorbic acid (AA) and α,β-carotene levels of new carrot cultivars Cortina F1 and Afalon F1 was investigated and their metabolomic profiles were measured by direct analysis in real time ion source coupled with a high-resolution mass spectrometer (DART-HRMS). Cortina and Afalon exhibited high levels of AA and total carotenes under all agroecological conditions tested that fluctuated in broad ranges of 215–539 and 173–456 mg AA.kg−1 dry biomass and 1069–2165 and 1683–2165 mg carotene.kg−1 dry biomass, respectively. The ratio of β- to α-carotene in both cultivars was about 1.3. The most important variable for the PCA and the partial least squares discriminant analysis (PLS-DA) models for ethyl acetate extracts measured in positive and negative ionization mode was 6-methoxymellein (6-MM). Total carotene content and 6-MM levels were higher in the organic carrot compared to the conventional one and were correlated with a higher level of spontaneous infection. Other important compounds identified were sitosterol, hexose and various organic acids including antioxidant ferulic and coumaric acids. The findings allow comparison of metabolomic profiles and the AA and carotene contents of both cultivars with those of other commercially used carrots.
Collapse
Affiliation(s)
- Martin Koudela
- Department of Horticulture, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6, Czech Republic;
| | - Vera Schulzova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; (V.S.); (A.K.); (H.C.); (J.H.)
| | - Ales Krmela
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; (V.S.); (A.K.); (H.C.); (J.H.)
| | - Hana Chmelarova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; (V.S.); (A.K.); (H.C.); (J.H.)
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; (V.S.); (A.K.); (H.C.); (J.H.)
| | - Cenek Novotny
- Department of Horticulture, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6, Czech Republic;
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Correspondence: ; Tel.: +42-029-644-2767
| |
Collapse
|
9
|
Consumer Preference, Quality, and Safety of Organic and Conventional Fresh Fruits, Vegetables, and Cereals. Foods 2021; 10:foods10010105. [PMID: 33419085 PMCID: PMC7825453 DOI: 10.3390/foods10010105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/23/2022] Open
Abstract
Growing and purchasing demand for organic fresh produce is increasing rapidly. Consumers are aware of health, environmental safety, pesticide harmfulness, nutrients, bioactive compounds, and safe food. Many research works are available on organic and conventional fresh produce. As organic fresh produce growing and purchasing demand is increasing, it has become necessary to review the recent trends in quality, safety, and consumer preferences of organic and conventional fresh food products. A few reports have been compiled on organic and conventional fresh produce. Researchers have started working on organic and conventional fresh produce with the help of modern technology to improve nutritional and functional quality, safety, and consumer preferences. Nutritional and functional quality, safety, and consumer preferences depend on cultivation techniques, treatment, crop cultivar, and appearance of products. Therefore, it is necessary to compile the literature on organic and conventional fresh produce based on quality, safety, and consumer preferences.
Collapse
|
10
|
Golijan J, Sečanski M. Organic plant products are of more improved chemical composition than conventional ones. FOOD AND FEED RESEARCH 2021. [DOI: 10.5937/ffr0-30907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Considering the negative effects of conventional agricultural production, organic food production is a sustainable approach to production, which preserves the environment and protects human health. Organic products are products of high quality, without residues of pesticides and other harmful chemicals. Through the review of literature data, the authors of this paper presented a comparative study on the chemical compositions of organically vs. conventionally grown plants and their products. Dry matter, nitrates, sugars, vitamins, macro-and microelements, as well as, secondary metabolites have been singled out. The analysis of collected data revealed that organic products contained more dry matter, significantly fewer nitrates, fewer proteins and a higher proportion of amino acids, more sugars, vitamin C, numerous macro-and microelements (particularly Fe, Mg and P), more polyphenols and they had higher total antioxidant capacity than conventional products. Although many authors have been dealing for many years with the comparison of the nutritional composition of organic and conventional food products, a clear consensus whether organic products have an improved chemical composition compared to conventional products has not been reached yet, i.e. the conclusions are ambivalent. Therefore, further long-term studies are necessary to clarify the existing doubts.
Collapse
|
11
|
Golijan J, Sečanski M. Organic plant products are of more improved chemical composition than conventional ones. FOOD AND FEED RESEARCH 2021. [DOI: 10.5937/ffr48-30907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Considering the negative effects of conventional agricultural production, organic food production is a sustainable approach to production, which preserves the environment and protects human health. Organic products are products of high quality, without residues of pesticides and other harmful chemicals. Through the review of literature data, the authors of this paper presented a comparative study on the chemical compositions of organically vs. conventionally grown plants and their products. Dry matter, nitrates, sugars, vitamins, macro-and microelements, as well as, secondary metabolites have been singled out. The analysis of collected data revealed that organic products contained more dry matter, significantly fewer nitrates, fewer proteins and a higher proportion of amino acids, more sugars, vitamin C, numerous macro-and microelements (particularly Fe, Mg and P), more polyphenols and they had higher total antioxidant capacity than conventional products. Although many authors have been dealing for many years with the comparison of the nutritional composition of organic and conventional food products, a clear consensus whether organic products have an improved chemical composition compared to conventional products has not been reached yet, i.e. the conclusions are ambivalent. Therefore, further long-term studies are necessary to clarify the existing doubts.
Collapse
|
12
|
Characterization of Bioactive Compounds in Colored Potato (Solanum Tuberosum L.) Cultivars Grown with Conventional, Organic, and Biodynamic Methods. SUSTAINABILITY 2020. [DOI: 10.3390/su12072701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The purpose of this research is to evaluate the effect of conventional, biodynamic, and organic cultivation methods on the contents of polyphenols and carotenoids in tubers of potato cultivars with different colored flesh: “Red Emmalie”, “Salad Blue”, “Violetta”, “Tornado”, and “Laura”. These bioactive compounds were determined by the high-performance liquid chromatography method. The data received were analyzed with ANOVA and further explored and visualized by principal component analysis. Higher contents of polyphenols (sum), phenolic acids (sum), chlorogenic acid, p-coumaric acid, and caffeic acid were found in biodynamic and organic samples compared to the conventional tubers. Moreover, organically and biodynamically produced potatoes (except “Salad Blue” cultivar) were significantly richer in flavonoids and anthocyanins. The highest contents of carotenoids (sum), lutein, and β-carotene were found in biodynamic potatoes. Among the tested cultivars, “Tornado”, with white flesh, was richest in polyphenols (sum), phenolic acids (sum), chlorogenic acid, and p-coumaric acid. “Violetta”, with dark purple flesh, accumulated the highest contents of flavonoids (sum), anthocyanins (sum), petunidin-3,5-di-O-glucoside, pelargonidin-3,5-di-O-glucoside, and peonidin-3,5-di-O-glucoside. Carotenoids were only found in “Laura” tubers, and the dominating carotenoid was lutein.
Collapse
|
13
|
The Impact of Organic vs. Conventional Agricultural Practices on Selected Quality Features of Eight Potato Cultivars. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9120799] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An organic agricultural system based on natural methods and means of production is an alternative to intensive agriculture. The available research suggests that organic crops, in comparison to the conventional ones, are richer in phenolics and other antioxidants while containing less undesirable pesticide residues and nitrates. The aim of this study was to determine concentrations of polyphenols, lutein, vitamin C, and nitrates in eight potato cultivars (Mazur, Justa, Lawenda, Lech, Tacja, Laskana, Otolia, Magnolia) grown organically and conventionally in a controlled field experiment in Poland. Significant differences between potato tubers of the tested cultivars coming from organic and conventional production were identified for the majority of parameters. Higher concentrations of nitrates and lutein were found in conventional compared to the organic tubers, while organic potatoes were, on average, richer in phenolic compounds. Among the tested cultivars, Magnolia, Otolia, and Laskara were richest in vitamin C and phenolics. Otolia and Laskara also accumulated the highest levels of nitrates. If further confirmed, these observations might be of importance for the producers and consumers, who increasingly search for foods from sustainable and well-controlled agricultural systems.
Collapse
|
14
|
Hameed A, Zaidi SSEA, Shakir S, Mansoor S. Applications of New Breeding Technologies for Potato Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:925. [PMID: 30008733 PMCID: PMC6034203 DOI: 10.3389/fpls.2018.00925] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/11/2018] [Indexed: 05/17/2023]
Abstract
The first decade of genetic engineering primarily focused on quantitative crop improvement. With the advances in technology, the focus of agricultural biotechnology has shifted toward both quantitative and qualitative crop improvement, to deal with the challenges of food security and nutrition. Potato (Solanum tuberosum L.) is a solanaceous food crop having potential to feed the populating world. It can provide more carbohydrates, proteins, minerals, and vitamins per unit area of land as compared to other potential food crops, and is the major staple food in many developing countries. These aspects have driven the scientific attention to engineer potato for nutrition improvement, keeping the yield unaffected. Several studies have shown the improved nutritional value of potato tubers, for example by enhancing Amaranth Albumin-1 seed protein content, vitamin C content, β-carotene level, triacylglycerol, tuber methionine content, and amylose content, etc. Removal of anti-nutritional compounds like steroidal glycoalkaloids, acrylamide and food toxins is another research priority for scientists and breeders to improve potato tuber quality. Trait improvement using genetic engineering mostly involved the generation of transgenic products. The commercialization of these engineered products has been a challenge due to consumer preference and regulatory/ethical restrictions. In this context, new breeding technolgies like TALEN (transcription activator-like effector nucleases) and CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated 9) have been employed to generate transgene-free products in a more precise, prompt and effective way. Moreover, the availability of potato genome sequence and efficient potato transformation systems have remarkably facilitated potato genetic engineering. Here we summarize the potato trait improvement and potential application of new breeding technologies (NBTs) to genetically improve the overall agronomic profile of potato.
Collapse
Affiliation(s)
- Amir Hameed
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Sara Shakir
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
15
|
Advances of organic products over conventional productions with respect to nutritional quality and food security. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.chnaes.2018.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Organic versus Conventional Cropping Sustainability: A Comparative System Analysis. SUSTAINABILITY 2018. [DOI: 10.3390/su10010272] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We are at a pivotal time in human history, as the agricultural sector undergoes consolidation coupled with increasing energy costs in the context of declining resource availability. Although organic systems are often thought of as more sustainable than conventional operations, the lack of concise and widely accepted means to measure sustainability makes coming to an agreement on this issue quite challenging. However, an accurate assessment of sustainability can be reached by dissecting the scientific underpinnings of opposing production practices and crop output between cropping systems. The purpose of this review is to provide an in-depth and comprehensive evaluation of modern global production practices and economics of organic cropping systems, as well as assess the sustainability of organic production practices through the clarification of information and analysis of recent research. Additionally, this review addresses areas where improvements can be made to help meet the needs of future organic producers, including organic-focused breeding programs and necessity of coming to a unified global stance on plant breeding technologies. By identifying management strategies that utilize practices with long-term environmental and resource efficiencies, a concerted global effort could guide the adoption of organic agriculture as a sustainable food production system.
Collapse
|
17
|
Effect of Organic Potato Farming on Human and Environmental Health and Benefits from New Plant Breeding Techniques. Is It Only a Matter of Public Acceptance? SUSTAINABILITY 2016. [DOI: 10.3390/su8101054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Grudzińska M, Czerko Z, Zarzyńska K, Borowska-Komenda M. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color. PLoS One 2016; 11:e0153980. [PMID: 27139188 PMCID: PMC4854395 DOI: 10.1371/journal.pone.0153980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022] Open
Abstract
We investigated the effect of cultivation system (conventional or organic), cooking method, and flesh color on the contents of ascorbic acid (AA) and total phenolics (TPs), and on total antioxidant activity (Trolox equivalents, TE) in Solanum tuberosum (potato) tubers. The research material, consisting of 4 potato cultivars, was grown in experimental fields, using organic and conventional systems, at the experimental station in 2012 and 2013. The analysis showed that organically grown potatoes with creamy, light yellow, and yellow flesh had significantly higher TPs than did potatoes grown conventionally. Flesh color and cooking method also affected AA. The greatest losses of AA occurred in yellow-fleshed potatoes grown conventionally and cooked in the microwave; such losses were not observed in potatoes grown organically. A dry cooking method (baking in a microwave) increased the TP contents in potatoes by about 30%, regardless of the flesh color and the production system. TE was significantly higher in organically grown potatoes (raw and cooked in a steamer) than in conventionally grown potatoes. TE and AA contents showed a significant positive correlation, but only in potatoes from the organic system [R2 = 0.686]. By contrast, the positive correlation between TE and TPs was observed regardless of the production system. Therefore, we have identified the effects of farming system, cooking method, and flesh color on the contents of bioactive compounds in potato tubers.
Collapse
Affiliation(s)
- Magdalena Grudzińska
- Division of Jadwisin, Plant Breeding and Acclimatization Institute–National Research Institute, Jadwisin, Poland
- * E-mail:
| | - Zbigniew Czerko
- Division of Jadwisin, Plant Breeding and Acclimatization Institute–National Research Institute, Jadwisin, Poland
| | - Krystyna Zarzyńska
- Division of Jadwisin, Plant Breeding and Acclimatization Institute–National Research Institute, Jadwisin, Poland
| | - Monika Borowska-Komenda
- Section of Agricultural Chemistry, Department of Soil Environment Sciences, Faculty of Agriculture and Biology, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
19
|
Polysaccharide composition of raw and cooked chayote ( Sechium edule Sw.) fruits and tuberous roots. Carbohydr Polym 2015; 130:155-65. [DOI: 10.1016/j.carbpol.2015.04.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 01/30/2023]
|
20
|
Johansson E, Hussain A, Kuktaite R, Andersson SC, Olsson ME. Contribution of organically grown crops to human health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:3870-93. [PMID: 24717360 PMCID: PMC4025038 DOI: 10.3390/ijerph110403870] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/14/2022]
Abstract
An increasing interest in organic agriculture for food production is seen throughout the world and one key reason for this interest is the assumption that organic food consumption is beneficial to public health. The present paper focuses on the background of organic agriculture, important public health related compounds from crop food and variations in the amount of health related compounds in crops. In addition, influence of organic farming on health related compounds, on pesticide residues and heavy metals in crops, and relations between organic food and health biomarkers as well as in vitro studies are also the focus of the present paper. Nutritionally beneficial compounds of highest relevance for public health were micronutrients, especially Fe and Zn, and bioactive compounds such as carotenoids (including pro-vitamin A compounds), tocopherols (including vitamin E) and phenolic compounds. Extremely large variations in the contents of these compounds were seen, depending on genotype, climate, environment, farming conditions, harvest time, and part of the crop. Highest amounts seen were related to the choice of genotype and were also increased by genetic modification of the crop. Organic cultivation did not influence the content of most of the nutritional beneficial compounds, except the phenolic compounds that were increased with the amounts of pathogens. However, higher amounts of pesticide residues and in many cases also of heavy metals were seen in the conventionally produced crops compared to the organic ones. Animal studies as well as in vitro studies showed a clear indication of a beneficial effect of organic food/extracts as compared to conventional ones. Thus, consumption of organic food seems to be positive from a public health point of view, although the reasons are unclear, and synergistic effects between various constituents within the food are likely.
Collapse
Affiliation(s)
- Eva Johansson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 101, Alnarp, SE 23053, Sweden.
| | - Abrar Hussain
- Department of Biosciences, COMSATS Institute of InformationTechnology, Sahiwal Campus, Comsats Road, Sahiwal 57000, Pakistan.
| | - Ramune Kuktaite
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 101, Alnarp, SE 23053, Sweden.
| | - Staffan C Andersson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 101, Alnarp, SE 23053, Sweden.
| | - Marie E Olsson
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 101, Alnarp, SE 23053, Sweden.
| |
Collapse
|