1
|
Zhao J, Gao G, Ding J, Liu W, Wang T, Zhao L, Xu J, Zhang Z, Zhang X, Xie Z. Astragaloside I Promotes Lipophagy and Mitochondrial Biogenesis to Improve Hyperlipidemia by Regulating Akt/mTOR/TFEB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21548-21559. [PMID: 39226078 DOI: 10.1021/acs.jafc.4c03172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The simultaneous enhancement of lipophagy and mitochondrial biogenesis has emerged as a promising strategy for lipid lowering. The transcription factor EB (TFEB) exhibits a dual role, whereby it facilitates the degradation of lipid droplets (LDs) through the process of lipophagy while simultaneously stimulating mitochondrial biogenesis to support the utilization of lipophagy products. The purpose of this study was to explore the effect of astragaloside I (AS I) on hyperlipidemia and elucidate its underlying mechanism. AS I improved serum total cholesterol and triglyceride levels and reduced hepatic steatosis and lipid accumulation in db/db mice. AS I enhanced the fluorescence colocalization of LDs and autophagosomes and promoted the proteins and genes related to the autolysosome. Moreover, AS I increased the expression of mitochondrial biogenesis-related proteins and genes, indicating that AS I promoted lipophagy and mitochondrial biogenesis. Mechanistically, AS I inhibits the protein level of p-TFEB (ser211) expression and promotes TFEB nuclear translocation. The activation of TFEB by AS I was impeded upon the introduction of the mammalian target of rapamycin (mTOR) agonist MHY1485. The inhibition of p-mTOR by AS I and the activation of TFEB were no longer observed after administration of the Akt agonist SC-79, which indicated that AS I activated TFEB to promote lipophagy-dependent on the Akt/mTOR pathway and may be a potentially effective pharmaceutical and food additive for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Jie Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Gai Gao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jing Ding
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Wei Liu
- Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Tao Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Liang Zhao
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jiangyan Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhenqiang Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiaowei Zhang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhishen Xie
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
2
|
Jiang M, Yang L, Zou L, Zhang L, Wang S, Zhong Z, Wang Y, Li P. A comprehensive quality evaluation for Huangqi Guizhi Wuwu decoction by integrating UPLC-DAD/MS chemical profile and pharmacodynamics combined with chemometric analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117325. [PMID: 37852340 DOI: 10.1016/j.jep.2023.117325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangqi Guizhi Wuwu Decoction (HGWD), a classical Chinese formula originally recorded in Jin Kui Yao Lue, was used for the treatment of human "blood impediment" (a type of "Bi" syndrome). In clinical practice, HGWD has been applied to treat rheumatoid arthritis (RA). AIM OF THE STUDY The characterization of chemical markers reflecting both efficacy and chemical characteristics is of great significance for TCM quality control. With the anti-RA effects of HGWD as an example, the aim of this study was to develop a comprehensive strategy combining the overall chemical profile and biological activity data to identify chemical markers. MATERIALS AND METHODS First, an ultra-performance liquid chromatography-diode array detector (UPLC-DAD) fingerprint was established and validated to evaluate the holistic quality of HGWD of different origins. Characteristic markers associated with HGWD from different geographical origins were screened by a combination of UPLC-DAD fingerprint and chemometrics methods. Second, the chemical profiles of the 15 batches of HGWD samples were characterized by UPLC coupled tohybrid linear ion trap-Orbitrap mass spectrometry (UPLC-HRMS). The in vitro anti-RA activities of the 15 HGWD samples were then evaluated. Third, spectrum-effect relationship analysis was performed to identify bioactive compounds that could potentially be used as quality markers. Finally, a UPLC-triple quadrupole tandem mass spectrometry approach was optimized and established for quantitative analysis of the characteristic and quality markers in 15 batches of HGWD. RESULTS In total, 30 common peaks were assigned in the UPLC-DAD fingerprint. Nine peaks were recognized and considered characteristic markers: protocatechuic acid, coumarin, cinnamic acid, oxypaeoniflorin, paeoniflorin, calycosin, formononetin, catechin, and albiflorin. Furthermore, ninety-five common compounds were identified in the UPLC-HRMS chemical profile. The pharmacological analysis indicated that the anti-RA activities of the 15 HGWD samples were vastly different. The spectrum-effect relationship analysis revealed 30 potential bioactive constituents positively correlated with anti-RA activity. Among them, five compounds with relative amounts >1%, paeoniflorin, astragaloside IV, hexahydrocurcumin, formononetin and calycosin-7-glucoside, were selected as quality markers, and their activity was verified in LPS-induced RAW264.7 macrophages. Finally, the above 12 representative components were simultaneously quantified in the 15 batches of HGWD samples. CONCLUSION Combining a holistic chemical profile with representative component evaluation, this systematic strategy could be a reliable and effective method to improve quality evaluations of HGWD.
Collapse
Affiliation(s)
- Maoyuan Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Lele Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lei Zhang
- Laboratory Animal Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| |
Collapse
|
3
|
Xiang H, Xu P, Qiu H, Wen W, Zhang A, Tong S. Two-dimensional chromatography in screening of bioactive components from natural products. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1161-1176. [PMID: 35934878 DOI: 10.1002/pca.3168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Screening and analysis of bioactive components from natural products is a fundamental part of new drug development and innovation. Two-dimensional (2D) chromatography has been demonstrated to be an effective method for screening and preparation of specific bioactive components from complex natural products. OBJECTIVE To collect details of application of 2D chromatography in screening of natural product bioactive components and to outline the research progress of different separation mechanisms and strategies. METHODOLOGY Three screening strategies based on 2D chromatography are reviewed, including traditional separation-based screening, bioactivity-guided screening and affinity chromatography-based screening. Meanwhile, in order to cover these aspects, selections of different separation mechanisms and modes are also presented. RESULTS Compared with traditional one-dimensional (1D) chromatography, 2D chromatography has unique advantages in terms of peak capacity and resolution, and it is more effective for screening and identifying bioactive components of complex natural products. CONCLUSION Screening of natural bioactive components using 2D chromatography helps separation and analysis of complex samples with greater targeting and relevance, which is very important for development of innovative drug leads.
Collapse
Affiliation(s)
- Haiping Xiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Huiyun Qiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Weiyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ailian Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
4
|
Cheng L, Wang F, Cao Y, Tong C, Wei Q, Shi S, Guo Y. Rapid profiling of potential antitumor polymethoxylated flavonoids in natural products by integrating cell biospecific extraction with neutral loss/diagnostic ion filtering-based high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:895-905. [PMID: 35668040 DOI: 10.1002/pca.3147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Citri Reticulatae Pericarpium Viride (CRPV, Qing Pi in Chinese) has been widely used in traditional Chinese medicine. Polymethoxylated flavonoids (PMFs), which are a special group of flavonoids with strong antitumor activity, are broadly distributed in citrus peels. However, systematic investigation of antitumor PMFs in CRPV has received little attention to date. OBJECTIVES An MCF-7 cell biospecific extraction method integrated with neutral loss/diagnostic ion filtering-based HPLC-QTOF-MS/MS strategy was developed for rapid and specific profiling of antitumor PMFs and systematic identification of PMFs in CRPV. METHODOLOGY By incubating MCF-7 cells with CRPV extract, potential antitumor PMFs specifically bound to cells and were isolated. Then, by systematic investigation of fragmentation pathways, neutral loss and diagnostic ion filtering strategies were proposed to comprehensively and accurately identify PMFs. RESULTS Sixteen antitumor PMFs were unambiguously or tentatively identified. Among them, minor compound 15 (5-hydroxy-6,7,8,3',4'-pentamethoxyflavone with a free hydroxyl group at C-5) exhibited excellent antitumor activity, with an IC50 value of 2.81 ± 0.76 μg/mL, which is lower than that of 5-fluorouracil (IC50 , 4.92 ± 0.83 μg/mL). Nobiletin (12) and tangeretin (16), two major PMFs, presented moderate antitumor activities with IC50 values of 13.06 ± 1.85 and 17.07 ± 1.18 μg/mL, respectively, and their contents were sensitively and precisely determined. CONCLUSIONS To the best of our knowledge, this is the first report on the systematic investigation of antitumor PMFs in CRPV. The study will lay a foundation for the quality control and clinical application of CRPV.
Collapse
Affiliation(s)
- Li Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, China
| | - Shuyun Shi
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine under Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise, China
| | - Ying Guo
- Department of Clinical Pharmacology, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Hunan, Changsha, China
| |
Collapse
|
5
|
Bao XF, Cao PH, Zeng J, Xiao LM, Luo ZH, Zou J, Wang CX, Zhao ZX, Zhou ZQ, Zhi H, Gao H. Bioactive pterocarpans from the root of Astragalus membranaceus var. mongholicus. PHYTOCHEMISTRY 2022; 200:113249. [PMID: 35609680 DOI: 10.1016/j.phytochem.2022.113249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Eleven undescribed and three known pterocarpans were isolated and identified from the traditional Chinese medicine "Huang-qi", Astragali Radix (the root of Astragalus membranaceus var. mongholicus (Bunge) P.K.Hsiao). The structures of these pterocarpans were determined using spectroscopic, X-ray crystallographic, quantum chemical calculation, and chemical methods. Pterocarpans, almost exclusively distributed in the family of Leguminosae, are the second largest subgroup of isoflavanoids. However, pterocarpan glycoside number is limited, most of which are glucosides, and only one pterocarpan apioside was isolated from nature. Notably, nine rare apiosyl-containing pterocarpan glycosides were isolated and identified. The hypoglycemic activities of all these compounds were evaluated using α-glucosidase and DPP-IV inhibitory assays respectively, and some isolates displayed the α-glucosidase inhibitory function. The antioxidant activities of all compounds were evaluated using the ORAC and DPPH radical scavenging assays, respectively. All compounds exhibited varying degrees of oxygen radical absorbance capacity, and some compounds displayed DPPH radical scavenging ability.
Collapse
Affiliation(s)
- Xue-Feng Bao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Pei-Hong Cao
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Jin Zeng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Luo-Min Xiao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zhi-Hui Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Jian Zou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Chuan-Xi Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Zhong-Xiang Zhao
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Hui Zhi
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, People's Republic of China; College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
6
|
Chemical comparison of Astragali Radix by UHPLC/Q-TOF-MS with different growing patterns. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Yang M, Yin M, Chu S, Zhao Y, Fang Q, Cheng M, Peng H, Huang L. Colour, chemical compounds, and antioxidant capacity of Astragali Radix based on untargeted metabolomics and targeted quantification. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:599-611. [PMID: 35132705 DOI: 10.1002/pca.3113] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/24/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Astragali Radix has been used for over 2000 years in traditional Chinese medicine. Its secondary xylem "Jinjing" and secondary phloem "Yulan" are important for evaluating the quality of the Daodi medicinal material in China. However, its systematic characterisation has not been conducted. OBJECTIVE This study aims to investigate the colour, chemical compounds, and antioxidant capacity of the secondary xylem and phloem of Astragali Radix on the basis of untargeted metabolomics, broadening the application scope of Astragali Radix in food and pharmaceutical industries. METHODS The L*, a*, and b* of the secondary xylem and phloem were measured by colorimetry, and the chemical compounds were identified and quantified by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and high-performance liquid chromatography-diode array detector-evaporative light scattering detection. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays were conducted to evaluate their antioxidant capacity. RESULTS Thirty-one compounds were identified by UPLC-Q-TOF-MS. The secondary xylem exhibited high parameter b*, flavonoid content, and antioxidant capacity, while the secondary phloem was rich in astragalosides. The colour parameters of well-defined type A significantly varied from those of the other types. Well-defined type A also exhibited the highest antioxidant activity and flavonoid content, followed by middle type A-like, middle type B-like, and yellow shading type B. CONCLUSION The colour parameters, chemical compounds, and antioxidant capacity among the different transverse sections of secondary xylem and phloem varied. The yellow colour of secondary xylem was correlated to high flavonoid content and antioxidant activity, and well-defined type A of Astragali Radix had better quality than other types.
Collapse
Affiliation(s)
- Mei Yang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Minzhen Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yujiao Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingying Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming'en Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Huasheng Peng
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Chi M, Wang H, Yan Z, Cao L, Gao X, Qin K. Magnetic Ligand Fishing Using Immobilized Cyclooxygenase-2 for Identification and Screening of Anticoronary Heart Disease Ligands From Choerospondias axillaris. Front Nutr 2022; 8:794193. [PMID: 35174196 PMCID: PMC8841743 DOI: 10.3389/fnut.2021.794193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Inhibition of cyclooxygenase-2 (COX-2) activity is an effective way for treatment of coronary heart disease. And as an important source of COX-2 inhibitors, bioactive compounds of Choerospondias axillaris and pharmacological mechanisms remained lacking in prospective researches. Therefore, for the purpose of accelerating the discovery of natural products targeting designed inhibitors, the COX-2 microreactor composed of functionalized microspheres and magnetic ligand fishing was developed and applied in Choerospondias axillaris, and the physicochemical properties of the COX-2 functionalized microspheres were characterized using Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, the bioactive compounds singled out from ethanol decoction without prepurification were dissociated and identified by ultraperformance liquid chromatography plus Q-Exactive Orbitrap tandem mass spectrometry (UPLC-Q-Exactive Orbitrap-MS/MS). Consequently, 21 bioactive compounds consisting of 6 organic acids, 8 flavonoids, and 7 others were separated and characterized from Choerospondias axillaris, which were reported to participate in the COX-2 inhibitory pathway to varying degrees. Therefore, this method could provide a prospective solution for the extraction and identification of active pharmaceutical ingredients and the rapid screening of some enzyme inhibitors in the complex mixtures.
Collapse
Affiliation(s)
- Miaomiao Chi
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Hongsen Wang
- Jiangsu Original Drug Research and Development Co., Ltd., Lianyungang, China
| | - Zhankuan Yan
- Jiangsu Original Drug Research and Development Co., Ltd., Lianyungang, China
| | - Lei Cao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
| | - Xun Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
- *Correspondence: Xun Gao
| | - Kunming Qin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, China
- Kunming Qin
| |
Collapse
|
9
|
Lie KR, Samuel AO, Hasanah AN. Molecularly imprinted mesoporous silica: potential of the materials, synthesis and application in the active compound separation from natural product. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02074-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Bu Y, Hu Q, Zhang X, Li T, Xie X, Wang S. A novel cell membrane-cloaked magnetic nanogripper with enhanced stability for drug discovery. Biomater Sci 2020; 8:673-681. [PMID: 31769454 DOI: 10.1039/c9bm01411j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell membrane-cloaked nanotechnology has attracted increasing attention owing to its unique bionic properties, such as specific recognition and biocompatibility conferred by the integrated membrane structure and receptors. However, this technology is limited by the dissociation of the cell membrane from its carrier. Here, we report a novel type of cell membrane-cloaked modified magnetic nanoparticle with good stability in drug discovery. High α1A-adrenergic receptor (α1A-AR) expressing HEK293 cell membrane-cloaked magnetic nanogrippers (α1A/MNGs) were used as a platform for the specific targeting and binding of α1A-AR antagonists as candidate bioactive compounds from traditional Chinese medicine (TCM). Furthermore, using a dynamic covalent bonding approach, α1A/MNGs showed great stability with positive control drug recoveries of α1A/MNGs showing almost no decline after use in five adsorption-desorption cycles. Moreover, the α1A/MNGs possessed a unilamellar membrane with magnetic features and exhibited good binding capacity and selectivity. Ultimately, TCM and pharmacological studies of the bioactivity of the screened compounds confirmed the considerable targeting and binding capability of α1A/MNGs. Application of aldehyde group modification in this drug-targeting concept further improved biomaterial stability and paves the way for the development of new drug discovery strategies. More importantly, the successful application of α1A/MNGs provides new insights into methodologies to improve the integration of cell membranes with the nanoparticle platform.
Collapse
Affiliation(s)
- Yusi Bu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | |
Collapse
|
11
|
Zhou W, Liu Y, Wang J, Guo Z, Shen A, Liu Y, Liang X. Application of two‐dimensional liquid chromatography in the separation of traditional Chinese medicine. J Sep Sci 2019; 43:87-104. [DOI: 10.1002/jssc.201900765] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/16/2019] [Accepted: 10/20/2019] [Indexed: 01/19/2023]
Affiliation(s)
- Weijia Zhou
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
- College of Fisheries and Life ScienceDalian Ocean University Dalian P. R. China
| | - Yanming Liu
- Shandong Institute of Food and Drug Control Jinan P. R. China
| | - Jixia Wang
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Zhimou Guo
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Aijin Shen
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Yanfang Liu
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| | - Xinmiao Liang
- Key Lab of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian P. R. China
| |
Collapse
|
12
|
Zhang H, Wu ZY, Yang YY, Yang FQ, Li SP. Recent applications of immobilized biomaterials in herbal analysis. J Chromatogr A 2019; 1603:216-230. [PMID: 31277949 DOI: 10.1016/j.chroma.2019.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022]
Abstract
Immobilization of biomaterials developed rapidly due to the great promise in improving their stability, activity and even selectivity. In this review, the immobilization strategies of biomaterials, including physical adsorption, encapsulation, covalent attachment, cross-linking and affinity linkage, were briefly introduced. Then, the major emphasis was focused on the reported various types of immobilized biomaterials, including proteins, enzymes, cell membrane and artificial membrane, living cells, carbohydrates and bacteria, used in the herbal analysis for bioactive compound screening, drug-target interaction evaluation and chiral separation. In addition, a series of carrier materials applied in biomaterials immobilization, such as magnetic nanoparticles, metal-organic frameworks, silica capillary column, cellulose filter paper, cell membrane chromatography, immobilized artificial membrane chromatography and hollow fiber, were also discussed. Perspectives on further applications of immobilized biomaterials in herbal analysis were finally presented.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zhao-Yu Wu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, PR China.
| |
Collapse
|
13
|
Fu Y, Luo J, Qin J, Yang M. Screening techniques for the identification of bioactive compounds in natural products. J Pharm Biomed Anal 2019; 168:189-200. [PMID: 30825802 DOI: 10.1016/j.jpba.2019.02.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 01/06/2023]
Abstract
Natural products (NPs) have a long history of clinical use and are rich source of bioactive compounds. The development of tools and techniques for identifying and analyzing NP bioactive compounds to ensure their quality and discover new drugs is thus very important and still in demand. Screening techniques have proven highly useful for screening and analyzing active components in complex mixtures, which rely on cell culture, dialysis, ultrafiltration, chromatographic methods and target molecule immobilization, using biological targets to identify the active compounds. The recent progress in biological screening techniques in the field of natural products is reviewed here. This includes a review on the strategy and application of the screening methods, their detailed description and discussion of their existing limitations of the different models along with prospective in future development of screening techniques.
Collapse
Affiliation(s)
- Yanwei Fu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
14
|
Xu J, Tong C, Fu Q, Guo K, Shi S, Xiao Y. Comprehensive Polyphenolic Profile of Plantago depressa using High-Speed Countercurrent Chromatography Off-line with High-Performance Liquid Chromatography–Diode Array Detector–Quadrupole Time-of-flight Tandem Mass Spectrometry. EFOOD 2019. [DOI: 10.2991/efood.k.191101.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
15
|
Santos KS, Barbosa AM, Freitas V, Muniz AVCS, Mendonça MC, Calhelha RC, Ferreira ICFR, Franceschi E, Padilha FF, Oliveira MBPP, Dariva C. Antiproliferative Activity of Neem Leaf Extracts Obtained by a Sequential Pressurized Liquid Extraction. Pharmaceuticals (Basel) 2018; 11:ph11030076. [PMID: 30061479 PMCID: PMC6160913 DOI: 10.3390/ph11030076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
Azadirachta indica A. Juss (neem) extracts have been used in pharmaceutical applications as antitumor agents, due to their terpenes and phenolic compounds. To obtain extracts from neem leaves with potential antiproliferative effect, a sequential process of pressurized liquid extraction was carried out in a fixed bed extractor at 25 °C and 100 bar, using hexane (SH), ethyl acetate (SEA), and ethanol (SE) as solvents. Extractions using only ethanol (EE) was also conducted to compare the characteristics of the fractionated extracts. The results obtained by liquid chromatography-electrospray ionization mass spectrometry suggested a higher concentration of terpenes in the SEA extract in comparison to SH, SE, and EE extracts. Therefore, antiproliferative activity showed that SEA extracts were the most efficient inhibitor to human tumor cells MCF-7, NCI-H460, HeLa, and HepG2. Hepatocellular cells were more resistant to SH, SEA, SE, and EE compared to breast, lung, hepatocellular, and cervical malignant cells. Neem fractioned extracts obtained in the present study seem to be more selective for malignant cells compared to the non-tumor cells.
Collapse
Affiliation(s)
- Klebson S Santos
- NUESC/ITP, Program in Industrial Biotechnology-Tiradentes University, Aracaju 49032-490, Brazil.
- REQUIMTE/LAQV, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Andriele M Barbosa
- NUESC/ITP, Program in Industrial Biotechnology-Tiradentes University, Aracaju 49032-490, Brazil.
| | - Victor Freitas
- Chemistry Investigation Centre (CIQ), Department of Chemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | | | - Marcelo C Mendonça
- NUESC/ITP, Program in Industrial Biotechnology-Tiradentes University, Aracaju 49032-490, Brazil.
| | - Ricardo C Calhelha
- Mountain Research Center (CIMO), School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Mountain Research Center (CIMO), School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Elton Franceschi
- NUESC/ITP, Program in Industrial Biotechnology-Tiradentes University, Aracaju 49032-490, Brazil.
| | - Francine F Padilha
- NUESC/ITP, Program in Industrial Biotechnology-Tiradentes University, Aracaju 49032-490, Brazil.
| | - Maria Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemistry Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Cláudio Dariva
- NUESC/ITP, Program in Industrial Biotechnology-Tiradentes University, Aracaju 49032-490, Brazil.
| |
Collapse
|
16
|
Wu M, Deng H, Fan Y, Hu Y, Guo Y, Xie L. Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements. Molecules 2018; 23:molecules23061443. [PMID: 29899218 PMCID: PMC6099834 DOI: 10.3390/molecules23061443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023] Open
Abstract
The overuse of cartap in tea tree leads to hazardous residues threatening human health. A colorimetric determination was established to detect cartap residues in tea beverages by silver nanoparticles (AgNP) sensor with magnetic molecularly imprinted polymeric microspheres (Fe3O4@mSiO2@MIPs) as recognition elements. Using Fe3O4 as supporting core, mesoporous SiO2 as intermediate shell, methylacrylic acid as functional monomer, and cartap as template, Fe3O4@mSiO2@MIPs were prepared to selectively and magnetically separate cartap from tea solution before colorimetric determination by AgNP sensors. The core-shell Fe3O4@mSiO2@MIPs were also characterized by FT-IR, TEM, VSM, and experimental adsorption. The Fe3O4@mSiO2@MIPs could be rapidly separated by an external magnet in 10 s with good reusability (maintained 95.2% through 10 cycles). The adsorption process of cartap on Fe3O4@mSiO2@MIPs conformed to Langmuir adsorption isotherm with maximum adsorption capacity at 0.257 mmol/g and short equilibrium time of 30 min at 298 K. The AgNP colorimetric method semi-quantified cartap ≥5 mg/L by naked eye and quantified cartap 0.1–5 mg/L with LOD 0.01 mg/L by UV-vis spectroscopy. The AgNP colorimetric detection after pretreatment with Fe3O4@mSiO2@MIPs could be successfully utilized to recognize and detect cartap residues in tea beverages.
Collapse
Affiliation(s)
- Mao Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Huiyun Deng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yajun Fan
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yunchu Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yaping Guo
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
17
|
Liu M, Huang X, Liu Q, Chen M, Liao S, Zhu F, Shi S, Yang H, Chen X. Rapid screening and identification of antioxidants in the leaves of Malus hupehensis
using off-line two-dimensional HPLC-UV-MS/MS coupled with a 1,1′-diphenyl-2-picrylhydrazyl assay. J Sep Sci 2018; 41:2536-2543. [DOI: 10.1002/jssc.201800007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/24/2018] [Accepted: 04/05/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Minzhuo Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Xueqian Huang
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Qi Liu
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Miao Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Sen Liao
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering; Central South University; Changsha P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources; Central South University; Changsha P. R. China
| |
Collapse
|
18
|
Zhao WR, Kang TF, Lu LP, Cheng SY. Magnetic surface molecularly imprinted poly(3-aminophenylboronic acid) for selective capture and determination of diethylstilbestrol. RSC Adv 2018; 8:13129-13141. [PMID: 35542503 PMCID: PMC9079755 DOI: 10.1039/c8ra01250d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/24/2018] [Indexed: 01/19/2023] Open
Abstract
Imprinted poly(APBA) nanoshell on Fe3O4@SiO2 surface was first synthesized and used for MSPE of diethylstilbestrol followed by HPLC determination.
Collapse
Affiliation(s)
- Wen-Rui Zhao
- Key Laboratory of Beijing on Regional Air Pollution Control
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Tian-Fang Kang
- Key Laboratory of Beijing on Regional Air Pollution Control
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Li-Ping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Shui-Yuan Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|
19
|
|
20
|
Wang J, Li F, Zeng K, Li Q, Zhao X, Zheng X. Bioactive compounds of Shuang-Huang-Lian prescription and an insight into its binding mechanism by β 2 -adrenoceptor chromatography coupled with site-directed molecular docking. J Sep Sci 2017; 40:4357-4365. [PMID: 28929588 DOI: 10.1002/jssc.201700522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 11/10/2022]
Abstract
Owing to the promising clinical efficacy and relatively simple composition, Shuang-Huang-Lian prescription is widely prescribed for the treatment of acute upper respiratory tract infection and acute bronchitis in practice. This necessitates the understanding of the bioactive compounds of the prescription and their binding mechanism to β2 -adrenoceptor, which mediates the aforementioned ailments. In this work, a column containing immobilized β2 -adrenoceptor was prepared using a diazonium salt reaction. The bioactive compound collected from the β2 -adrenoceptor column was identified as chlorogenic acid by using high-performance liquid chromatography coupled with ion trap mass spectrometry. Using an injection amount dependent method, chlorogenic acid proved the binding to β2 -adrenoceptor through two kinds of sites. The numbers of the sites were (1.42 ± 0.03) × 10-8 and (9.06 ± 0.49) × 10-8 M. The association constants were (2.72 ± 0.01) × 105 and (2.80 ± 0.01) × 104 M-1 , respectively. Molecular docking analysis of the interaction between chlorogenic acid and β2 -adrenoceptor indicated that the binding mainly occurred on Ser169 , Ser173 , and Phe287 of β2 -adrenoceptor. These results paved the way to screen bioactive compounds of other traditional medicines by receptor chromatography.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Fengwu Li
- Xi'an Institute for Food and Drug Control, Xi'an, China
| | - Kaizhu Zeng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
21
|
Sun Q, He J, Yang H, Li S, Zhao L, Li H. Analysis of binding properties and interaction of thiabendazole and its metabolite with human serum albumin via multiple spectroscopic methods. Food Chem 2017; 233:190-196. [PMID: 28530565 DOI: 10.1016/j.foodchem.2017.04.119] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 03/11/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
Thiabendazole (TBZ), which is oxidized into 5-hydroxythiabendazole (5-OH-TBZ) in vivo, is a commonly used food preservative. Interactions of TBZ and 5-OH-TBZ with human serum albumin (HSA) were comprehensively studied via multiple spectroscopic methods and molecular docking. This study focussed on the mechanistic and structural information on binding of TBZ and 5-OH-TBZ to HSA to evaluate the impact of the food additive on HSA. 1H NMR spectra of the two ligands showed the binding exists. ITC and fluorescence spectroscopy results revealed that TBZ was a stronger ligand, with a binding constant of 105l/mol and formed a more stable complex with HSA than did 5-OH-TBZ via electrostatic interaction. Spectroscopic results (UV-vis, FT-IR, and CD) showed that TBZ and 5-OH-TBZ caused conformational changes in HSA, in which α-helix and β-turn transformed into β-sheet, causing HSA structure to loosen. Docking programs showed that both TBZ and 5-OH-TBZ bound to HSA via IB.
Collapse
Affiliation(s)
- Qiaomei Sun
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiawei He
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongqin Yang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shanshan Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ludan Zhao
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
22
|
Yang XX, Gu W, Liang L, Yan HL, Wang YF, Bi Q, Zhang T, Yu J, Rao GX. Screening for the bioactive constituents of traditional Chinese medicines—progress and challenges. RSC Adv 2017. [DOI: 10.1039/c6ra25765h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The search for lead compounds from traditional Chinese medicines (TCMs) may be promising for new drug development.
Collapse
Affiliation(s)
- Xing-Xin Yang
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Wen Gu
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Li Liang
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Hong-Li Yan
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Yan-Fang Wang
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Qian Bi
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Ting Zhang
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
| | - Jie Yu
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province
| | - Gao-Xiong Rao
- College of Pharmaceutical Science
- Yunnan University of Traditional Chinese Medicine
- Kunming 650500
- P. R. China
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province
| |
Collapse
|
23
|
Shao L, Nie MK, Chen MY, Wang J, Wang CZ, Huang WH, Yuan CS, Zhou HH. Screening and identifying antioxidants from Oplopanax elatus using 2,2'-diphenyl-1-picrylhydrazyl with off-line two-dimensional HPLC coupled with diode array detection and tandem time-of-flight mass spectrometry. J Sep Sci 2016; 39:4269-4280. [PMID: 27624907 DOI: 10.1002/jssc.201600838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 11/09/2022]
Abstract
The root of Oplopanax elatus (Nakai) Nakai has a well-known history of use for the treatment of diseases such as neurasthenia, cardiovascular disorders, and cancer by the native people in northeast China. It is important to screen and identify the bioactive molecules from its root rapidly. Hereby, an off-line two-dimensional high performance liquid chromatography coupled with diode array detection and tandem time-of-flight mass spectrometry together with 2,2'-diphenyl-1-picrylhydrazyl was established to screen antioxidants from the root of O. elatus. A Waters cyanogen column (150 × 3.9 mm, id, 4 μm) was used for the first dimensional liquid chromatography, while a Hypersil BDS-C18 column (250 × 4.6 mm, id, 5 μm) was installed for the second dimension liquid chromatographic analysis. Twenty-eight compounds had been tentatively identified from the methanol extract of the air-dried root of O. elatus including six polyynes and eight phenolic derivatives were screened with antioxidant activity. The developed method could be expedient for screening and identifying antioxidants from O. elatus.
Collapse
Affiliation(s)
- Li Shao
- Department of Pharmacognosy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ming-Kun Nie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Jin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,Tang Center for Herbal Medicine Research, The Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China
| |
Collapse
|
24
|
Hu Y, Kong W, Luo H, Zhao L, Yang M. Dynamic variation of bioactive compounds and aflatoxins in contaminated Radix Astragali during extraction process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:1571-1579. [PMID: 25974204 DOI: 10.1002/jsfa.7257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Although increasing attention has been paid to the health threat caused by mycotoxins in commodities such as food or medicines, mycotoxin transfer processes from crude material to products have raised little concern so far. Radix Astragali is a commonly used edible and medicinal herbal plant that is susceptible to contamination with aflatoxins from Aspergillus flavus. There have been no studies on mycotoxin transfer into pharmaceutical preparations or derivative products. RESULTS To facilitate the aflatoxin reduction and bioactivity retention, the dynamic variations of aflatoxins as well as herbal compounds, namely calycosin-7-glucoside, astragaloside and formononetin, in Radix Astragali contaminated by A. flavus during water decoction and ethanol refluxing treatments were evaluated simultaneously by an ultra-fast liquid chromatography-triple quadrupole linear ion trap mass spectrometry method. After the extraction processes, although the amount of alfatoxins was reduced remarkably, aflatoxin residuals in preparation still exceed recommended limits, manifesting the great need to establish a limit for aflatoxins in herbal extractions or derivative products. Meanwhile, due to the hydrolysis of glucoside, water decoction period should be no longer than 4 h. CONCLUSIONS This investigation would benefit from the determination of the dynamic variation of aflatoxins in infected herbs in preparation treatments, in order to further develop aflatoxin limits in herbal preparations.
Collapse
Affiliation(s)
- Yichen Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Hongli Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lianhua Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
- Jilin Agricultural University, Changchun, 130118, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
25
|
Zhang SH, Hu X, Shi SY, Huang LQ, Chen W, Chen L, Cai P. Typical ultraviolet spectra in combination with diagnostic mass fragmentation analysis for the rapid and comprehensive profiling of chlorogenic acids in the buds of Lonicera macranthoides. Anal Bioanal Chem 2016; 408:3659-72. [DOI: 10.1007/s00216-016-9450-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/22/2016] [Accepted: 02/25/2016] [Indexed: 01/19/2023]
|
26
|
Li Z, Chen K, Guo MZ, Tang DQ. Two-dimensional liquid chromatography and its application in traditional Chinese medicine analysis and metabonomic investigation. J Sep Sci 2016; 39:21-37. [DOI: 10.1002/jssc.201500634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/10/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
| | - Kai Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
| | - Meng-zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
- Department of Pharmaceutical Analysis, School of Pharmacy; Xuzhou Medical College; Xuzhou China
| | - Dao-quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy; Xuzhou Medical College; Xuzhou China
- Department of Pharmaceutical Analysis, School of Pharmacy; Xuzhou Medical College; Xuzhou China
| |
Collapse
|
27
|
de Villiers A, Venter P, Pasch H. Recent advances and trends in the liquid-chromatography–mass spectrometry analysis of flavonoids. J Chromatogr A 2016; 1430:16-78. [DOI: 10.1016/j.chroma.2015.11.077] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/25/2015] [Indexed: 12/22/2022]
|
28
|
Sensitive characterization of polyphenolic antioxidants in Polygonatum odoratum by selective solid phase extraction and high performance liquid chromatography–diode array detector–quadrupole time-of-flight tandem mass spectrometry. J Pharm Biomed Anal 2015; 112:15-22. [DOI: 10.1016/j.jpba.2015.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 01/07/2023]
|
29
|
Hu X, Xie L, Guo J, Li H, Jiang X, Zhang Y, Shi S. Hydrophilic gallic acid–imprinted polymers over magnetic mesoporous silica microspheres with excellent molecular recognition ability in aqueous fruit juices. Food Chem 2015; 179:206-12. [DOI: 10.1016/j.foodchem.2015.02.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/21/2015] [Accepted: 02/02/2015] [Indexed: 11/29/2022]
|
30
|
Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum. Food Chem 2015; 178:18-25. [DOI: 10.1016/j.foodchem.2015.01.069] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/04/2014] [Accepted: 01/13/2015] [Indexed: 12/27/2022]
|
31
|
Analysis and improved characterization of minor antioxidants from leaves of Malus doumeri using a combination of major constituents’ knockout with high-performance liquid chromatography–diode array detector–quadrupole time-of-flight tandem mass spectrometry. J Chromatogr A 2015; 1398:57-65. [DOI: 10.1016/j.chroma.2015.04.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 12/30/2022]
|
32
|
Separation and purification of α-glucosidase inhibitors from Polygonatum odoratum by stepwise high-speed counter-current chromatography combined with Sephadex LH-20 chromatography target-guided by ultrafiltration–HPLC screening. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 985:149-54. [DOI: 10.1016/j.jchromb.2015.01.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/16/2015] [Accepted: 01/24/2015] [Indexed: 01/05/2023]
|
33
|
Liang X, Zhang Y, Chen W, Cai P, Zhang S, Chen X, Shi S. High-speed counter-current chromatography coupled online to high performance liquid chromatography-diode array detector-mass spectrometry for purification, analysis and identification of target compounds from natural products. J Chromatogr A 2015; 1385:69-76. [PMID: 25678319 DOI: 10.1016/j.chroma.2015.01.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/25/2015] [Indexed: 11/25/2022]
Abstract
A challenge in coupling high-speed counter-current chromatography (HSCCC) online with high performance liquid chromatography (HPLC) for purity analysis was their time incompatibility. Consequently, HSCCC-HPLC was conducted by either controlling HPLC analysis time and HSCCC flow rate or using stop-and-go scheme. For natural products containing compounds with a wide range of polarities, the former would optimize experimental conditions, while the latter required more time. Here, a novel HSCCC-HPLC-diode array detector-mass spectrometry (HSCCC-HPLC-DAD-MS) was developed for undisrupted purification, analysis and identification of multi-compounds from natural products. Two six-port injection valves and a six-port switching valve were used as interface for collecting key HSCCC effluents alternatively for HPLC-DAD-MS analysis and identification. The ethyl acetate extract of Malus doumeri was performed on the hyphenated system to verify its efficacy. Five main flavonoids, 3-hydroxyphloridzin (1), phloridzin (2), 4',6'-dihydroxyhydrochalcone-2'-O-β-D-glucopyranoside (3, first found in M. doumeri), phloretin (4), and chrysin (5), were purified with purities over 99% by extrusion elution and/or stepwise elution mode in two-step HSCCC, and 25mM ammonium acetate solution was selected instead of water to depress emulsification in the first HSCCC. The online system shortened manipulation time largely compared with off-line analysis procedure and stop-and-go scheme. The results indicated that the present method could serve as a simple, rapid and effective way to achieve target compounds with high purity from natural products.
Collapse
Affiliation(s)
- Xuejuan Liang
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Yuping Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Wei Chen
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Ping Cai
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Shuihan Zhang
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China.
| | - Xiaoqin Chen
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410013, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China.
| |
Collapse
|
34
|
Zhao H, Zhang Y, Guo Y, Shi S. Identification of major α-glucosidase inhibitors in Radix Astragali and its human microsomal metabolites using ultrafiltration HPLC–DAD–MSn. J Pharm Biomed Anal 2015; 104:31-7. [DOI: 10.1016/j.jpba.2014.09.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 11/15/2022]
|
35
|
Integrated analysis for identifying radix astragali and its adulterants based on DNA barcoding. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:843923. [PMID: 25246939 PMCID: PMC4160622 DOI: 10.1155/2014/843923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/22/2014] [Indexed: 11/17/2022]
Abstract
Radix Astragali is a popular herb used in traditional Chinese medicine for its proimmune and antidiabetic properties. However, methods are needed to help distinguish Radix Astragali from its varied adulterants. DNA barcoding is a widely applicable molecular method used to identify medicinal plants. Yet, its use has been hampered by genetic distance, base variation, and limitations of the bio-NJ tree. Herein, we report the validation of an integrated analysis method for plant species identification using DNA barcoding that focuses on genetic distance, identification efficiency, inter- and intraspecific variation, and barcoding gap. We collected 478 sequences from six candidate DNA barcodes (ITS2, ITS, psbA-trnH, rbcL, matK, and COI) from 29 species of Radix Astragali and adulterants. The internal transcribed spacer (ITS) sequence was demonstrated as the optimal barcode for identifying Radix Astragali and its adulterants. This new analysis method is helpful in identifying Radix Astragali and expedites the utilization and data mining of DNA barcoding.
Collapse
|
36
|
Xie L, Guo J, Zhang Y, Shi S. Efficient determination of protocatechuic acid in fruit juices by selective and rapid magnetic molecular imprinted solid phase extraction coupled with HPLC. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8221-8228. [PMID: 25075753 DOI: 10.1021/jf5021895] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Magnetic molecular imprinted polymers (MMIPs) have been prepared as solid phase material to selectively extract protocatechuic acid (PCA) from fruit juices with high capacity and fast binding kinetics. The resulting MMIPs were characterized by TEM, FT-IR, TGA, and VSM. The adsorption process between PCA and MMIPs followed Langumuir adsorption isotherm with maximum adsorption capacity at 7.5 mg/g and pseudo-second-order reaction kinetics with fast binding kinetics (equilibrium time at 40 min). In addition, the prepared MMIPs showed rapid magnetic separation (10 s) and reusability (retained 94.9% after six cycles). Subsequently, MMIPs were successfully applied for selective enrichment and determination of PCA from fruit juices (0.45 μg/mL in grape juice but not detected in apple juice, pineapple juice, orange juice, and peach juice) with satisfactory recoveries (92-107%). The results indicated that synthesized MMIPs can be used for efficient and selective extraction of PCA from complex matrices.
Collapse
Affiliation(s)
- Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology , Changsha 410004, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Zhang Y, Shi S, Chen X, Peng M. Functionalized magnetic nanoparticles coupled with mass spectrometry for screening and identification of cyclooxygenase-1 inhibitors from natural products. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960:126-32. [DOI: 10.1016/j.jchromb.2014.04.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/08/2014] [Accepted: 04/16/2014] [Indexed: 12/12/2022]
|
38
|
Li Y, Chen Y, Xiao C, Chen D, Xiao Y, Mei Z. Rapid screening and identification of α-amylase inhibitors from Garcinia xanthochymus using enzyme-immobilized magnetic nanoparticles coupled with HPLC and MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960:166-73. [PMID: 24814002 DOI: 10.1016/j.jchromb.2014.04.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022]
Abstract
α-Amylase inhibitors play an important role in management of diabetes and obesity. In order to rapidly discover potent α-amylase inhibitors from medicinal plants, a ligands-screening method based on enzyme-immobilized magnetic nanoparticles integrated with HPLC was developed. Amine-terminated magnetic nanoparticles were prepared for the immobilization of α-amylase. Based on the affinity theory, the α-amylase-coated magnetic nanoparticles were employed to fish out the ligands from the extracts of Garcinia xanthochymus, and the elutes were examined by HPLC. As a result, three ligands were screened out. Isolation and identification were carried out subsequently. By analyzing the UV, MS and NMR spectra, they were identified as three biflavonoids including GB2a glucoside (2), GB2a (3) and fukugetin (4). The IC50 values of the three compounds were also determined. The results suggest the proposed approach is efficient and accurate, and has great potential in rapid discovery of drug candidates from medical plants.
Collapse
Affiliation(s)
- Yunfang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China
| | - Yu Chen
- College of Chemistry and Material Sciences, South Central University for Nationalities, Wuhan 430074, China
| | - Chuying Xiao
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China
| | - Dan Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuxiu Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Zhinan Mei
- College of Pharmacy, South Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
39
|
Huang S, Zhu F, Xiao Q, Zhou Q, Su W, Qiu H, Hu B, Sheng J, Huang C. Combined spectroscopy and cyclic voltammetry investigates the interaction between [(η6-p-cymene)Ru(benzaldehyde-N(4)-phenylthiosemicarbazone)Cl]Cl anticancer drug and human serum albumin. RSC Adv 2014. [DOI: 10.1039/c4ra06083k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The interaction between Ru anticancer drug and HSA was investigated systematically under physiological conditions.
Collapse
Affiliation(s)
- Shan Huang
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization (Guangxi Teachers Education University)
- Ministry of Education
| | - Fawei Zhu
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Qi Xiao
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization (Guangxi Teachers Education University)
- Ministry of Education
| | - Quan Zhou
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Wei Su
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Hangna Qiu
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Baoqing Hu
- Key Laboratory of Beibu Gulf Environment Change and Resources Utilization (Guangxi Teachers Education University)
- Ministry of Education
- China
| | - Jiarong Sheng
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| | - Chusheng Huang
- College of Chemistry and Materials Science
- Guangxi Teachers Education University
- Nanning 530001, P. R. China
| |
Collapse
|