1
|
B N, K G V, V Chavannavar S, Chavan M. Antioxidant, antidiabetic, and antimicrobial efficacy of germinated Ocimum gratissimum and Ocimum basilicum seed. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3843-3856. [PMID: 39873157 DOI: 10.1002/jsfa.14141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND The edible seeds of Ocimum gratissimum and Ocimum basilicum were found to be a potent source of phytochemicals with noteworthy antioxidant, antidiabetic, and antimicrobial properties. This study aimed to investigate the impact of germination and extraction solvents (ethanol (EtOH), distilled water) on the therapeutic properties exhibited and the ability of seed extracts to act as natural food preservatives. RESULTS The EtOH extracts of germinated O. gratissimum and O. basilicum seeds exhibited more phytoconstituents content with significantly higher phenols (21.03 ± 0.01 mg gallic acid equivalent (GAE)/g and 21.46 ± 0.01 mg GAE/g respectively) and flavonoids (11.92 ± 0.03 mg quercetin equivalent (QE)/g and 14.45 ± 0.04 mg QE/g respectively) than other extracts did. Thus, they exhibited superior antioxidant potential with substantially lower half-maximal inhibitory concentration (IC50) values for scavenging 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (0.013 ± 0.00 mg mL-1 and 0.007 ± 0.00 mg mL-1 respectively) and superoxide anion radical (4.33 ± 0.01 mg mL-1 and 4.14 ± 0.00 mg mL-1 respectively) and for inhibiting lipid oxidation (2.57 ± 0.00 mg mL-1 and 2.33 ± 0.00 mg mL-1 respectively) compared with other extracts. Further, they exhibited better antidiabetic potential with substantially lower IC50 values for inhibiting α-amylase activity (0.93 ± 0.01 mg mL-1 and 1.01 ± 0.01 mg mL-1 respectively) and α-glucosidase activity (0.60 ± 0.01 mg mL-1 and 0.51 ± 0.01 mg mL-1 respectively). Also, they showed superior antimicrobial potential with higher inhibition zones for Bacillus subtilis (13.98 ± 0.18 mm, 17.02 ± 0.18 mm respectively), Vibrio parahaemolyticus (19.00 ± 0.20 mm, 22.58 ± 0.45 mm respectively), Salmonella enterica (24.98 ± 0.18 mm, 22.17 ± 0.15 mm respectively), and Escherichia coli (23.50 ± 0.50 mm, 27.00 ± 0.20 mm respectively) and better inhibition of Aspergillus flavus growth (93.28% and 81.77% respectively) compared with other extracts. CONCLUSION Both the O. gratissimum and O. basilicum seed extracts can be utilized efficiently as therapeutic agents to manage inflammation-driven diseases and diabetes, or as natural preservatives in foods and in edible films or coatings. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Neeharika B
- ICAR-NIRCA-Krishi Vigyan Kendra, Kandukur, India
| | | | | | - Mohan Chavan
- University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|
2
|
Paucar-Menacho LM, Salvador-Reyes R, Castillo-Martinez WE, Lavado-Cruz A, Verona-Ruiz A, Campos-Rodriguez J, Acosta-Coral K, Simpalo-Lopez WD, López-Rodriguez W, Quezada-Berrú S. Optimization of a craft ale-type beer enriched with cañihua malt ( Chenopodium pallidicaule) and banana passionfruit juice ( Passiflora tripartita var. mollisima). Heliyon 2025; 11:e42610. [PMID: 40083986 PMCID: PMC11904552 DOI: 10.1016/j.heliyon.2025.e42610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
The global expansion of the craft beer market has driven the incorporation of native ingredients to enhance the sensory and nutritional profiles of beer. This study focused on optimizing a craft Ale-type beer enriched with Cañihua Malt (CM) and Banana Passionfruit Juice (BPJ) using a D-optimal experimental design. The aim was to evaluate how varying concentrations of these ingredients (CM: 15-25 %, BPJ: 5-15 %) influence the physicochemical, technological, and sensory attributes of beer. Results demonstrated that the malting process significantly improved the nutritional composition of cañihua, increasing fiber content (23.32 g/100 g), phenolic compounds (141.13 mg GAE/100 g), GABA (229.48 mg/100 g), and antioxidant capacity (1975.41 μmol TE/g dw). These enhancements positively affected the physicochemical properties of beer, especially foam stability and body. The addition of BPJ significantly modified the physicochemical characteristics of beer, particularly by reducing the pH and increasing the acidity. Sensory analysis showed high consumer acceptance, with positive evaluations for aroma, appearance, and body, particularly in samples containing moderate levels of CM (15-16 %) and BPJ (5-10 %). Optimization using the desirability function identified ideal concentrations of 24%-25 % CM and 5 % BPJ, achieving a balance in critical parameters such as foam stability, density, pH, and bitterness. These findings underscore the potential to combine CM and BPJ to develop a distinctive craft beer with enhanced sensory attributes and nutritional benefits.
Collapse
Affiliation(s)
- Luz Maria Paucar-Menacho
- Departamento de Agroindustria y Agrónoma, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, 02711, Peru
| | | | | | - Alicia Lavado-Cruz
- Departamento de Agroindustria y Agrónoma, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, 02711, Peru
| | - Anggie Verona-Ruiz
- Departamento de Agroindustria y Agrónoma, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, 02711, Peru
| | - Jordy Campos-Rodriguez
- Departamento de Agroindustria y Agrónoma, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, 02711, Peru
| | - Katherine Acosta-Coral
- Departamento de Agroindustria y Agrónoma, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, 02711, Peru
| | - Wilson Daniel Simpalo-Lopez
- Departamento de Agroindustria y Agrónoma, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, 02711, Peru
| | - William López-Rodriguez
- Departamento de Agroindustria y Agrónoma, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, 02711, Peru
| | - Soledad Quezada-Berrú
- Departamento de Agroindustria y Agrónoma, Facultad de Ingeniería, Universidad Nacional del Santa, Chimbote, 02711, Peru
| |
Collapse
|
3
|
Li X, Ma C, Bian X, Fu Y, Zhang G, Liu X, Zhang N. Effect of Germination on Mineral Content Changes in Brown Rice (Oryza sativa L.). Biol Trace Elem Res 2025; 203:535-543. [PMID: 38472512 DOI: 10.1007/s12011-024-04147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Minerals are the essential micronutrients for human health. Brown rice is a whole-grain food rich in minerals, with its bran portion limiting the application of minerals. In the present study, the changes in the contents of 23 different minerals (Na, Mg, K, Ca, B, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Sb, Ba, Li, Al, As, Cd, Sn, Hg, and Pb) in brown rice were evaluated during 17, 24, 30, 35, and 48 h of germination. The results showed that germination was associated with the decreased contents of Pb, Cd, As, Al, Li, Ba, Fe, Cr, Co, V, and Hg, and the increased content of Na in brown rice (p < 0.05). In contrast, this process was not significantly influential on the contents of Mg, K, Ca, B, Ni, Cu, Zn, Se, Sn, Sb, and Mn (p > 0.05). In addition, significant correlations were found among most of the mineral contents. Furthermore, according to the principal component analysis, three principal components of the different mineral contents were extracted to explain 96.60% of the cumulative variances. In summary, these findings demonstrated that germination represented a feasible approach to regulating and controlling the distribution of the mineral elements in brown rice, optimizing the levels of the mineral contents, and thus reducing the potential health risks.
Collapse
Affiliation(s)
- Xiang Li
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin, 150028, China.
| |
Collapse
|
4
|
Chen R, Zhang H, Cai J, Cai M, Dai T, Liu Y, Wu J. Germination-Induced Enhancement of Brown Rice Noodle Nutritional Profile and Gut Microbiota Modulation. Foods 2024; 13:2279. [PMID: 39063363 PMCID: PMC11275603 DOI: 10.3390/foods13142279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored how germination influences the starch digestion and intestinal fermentation characteristics of brown rice noodle. The study began with in vitro starch digestion tests to assess how germination affects starch digestibility in brown rice noodles, revealing an increase in rapidly digestible starch content and a decrease in resistant starch content. Subsequently, an in vitro human fecal fermentation model was used to simulate the human intestinal environment, showing that germination altered pH levels and the production of short-chain fatty acids, particularly by increasing propionate while decreasing acetate and butyrate. Additionally, the study noted a decrease in gut microbiota diversity following fermentation, accompanied by an increase in Megamonas growth and a decrease in Bacteroides and Bifidobacterium. In conclusion, these findings suggest that germination could enhance the nutritional value and intestinal probiotic properties of brown rice noodles. This research contributes valuable insights into the role of germination in improving the nutritional properties of rice-based products and provides a foundation for further exploration into the development of health-promoting rice noodles.
Collapse
Affiliation(s)
- Ruiyun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi General Institute of Testing and Certification, Nanchang 330052, China
| | - Huibin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiamei Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingxi Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunfei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
5
|
Chen R, Yan X, Cai M, Cai J, Dai T, Liu Y, Wu J. Impact of Germination on the Edible Quality and Nutritional Properties of Brown Rice Noodles. Foods 2024; 13:2152. [PMID: 38998657 PMCID: PMC11241835 DOI: 10.3390/foods13132152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Brown rice noodles are increasingly favored by consumers for their health benefits; however, their development is hindered by their poor edible qualities. The effect of germination on the cooking, textural, organoleptic and nutritional qualities of brown rice pasta was investigated. In comparison to ungerminated brown rice noodles, germination resulted in a shorter cooking time, reduced cooking losses, and decreased hardness and adhesion of noodles as well as reduced bitter taste. These changes can be attributed to germination altering the basic composition of brown rice. Meanwhile, the contents of γ-aminobutyric acid, free phenolic acid, and bound phenolic acid increased by 53.43%, 21.71%, and 7.14%, respectively, while the content of resistant starch de-creased by 21.55%. Sprouting is a promising strategy for improving the edible quality and nutritional properties of brown rice noodles.
Collapse
Affiliation(s)
- Ruiyun Chen
- Jiangxi General Institute of Testing and Certification, Nanchang 330052, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xudong Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingxi Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiamei Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunfei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Lan Y, Wang X, Wang L, Zhang W, Song Y, Zhao S, Yang X, Liu X. Change of physiochemical characteristics, nutritional quality, and volatile compounds of Chenopodium quinoa Willd. during germination. Food Chem 2024; 445:138693. [PMID: 38350197 DOI: 10.1016/j.foodchem.2024.138693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
The impacts of varying germination periods (0-72 h) on morphological properties, proximate composition, amino acid profile, GABA levels, antioxidant attributes, polyphenol content (both free and bound), and volatile compounds of quinoa were evaluated. Germination significantly increased the content of fiber, amino acids, GABA, polyphenols, and in-vitro antioxidant activities in quinoa. The optimal nutritional quality and antioxidant capacity of quinoa were observed during the 36-72 h germination period. We examined the dynamics of 47 phenolic compounds in quinoa during germination and noted a substantial rise in free phenolic acids and bound flavonoids post-germination. A total of 53 and 84 volatile compounds were respectively identified in ungerminated quinoa and germinated quinoa. It was found that the germination period of 24-48 h contributed to reducing the presence of undesirable flavors. TEM analysis revealed significant structural damage to the ultrastructure and relaxation of the cell wall in germinated quinoa grains.
Collapse
Affiliation(s)
- Yongli Lan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xinze Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lei Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wengang Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China; Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Shiyang Zhao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xijuan Yang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai University, Xining 810016, China; Key Laboratory of Qinghai Province Tibetan Plateau Agric-Product Processing, Qinghai University, Xining 810016, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Mudgal S, Singh N. Effect of parboiling treatment times on the physicochemical, cooking, textural, and pasting properties and amino acid, phenolic, and sugar profiles of germinated paddy rice from different rice varieties. J Food Sci 2024; 89:3208-3229. [PMID: 38638063 DOI: 10.1111/1750-3841.17048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 03/10/2024] [Indexed: 04/20/2024]
Abstract
In this research, parboiling was carried out at different times (5 and 15 min) on germinated paddy rice (GPR) from various basmati and non-basmati varieties. The results showed that as the parboiling time increased from 5 to 15 min, Δ $\Delta $ E, ash content, total dietary fiber, mineral content, cooking time, and textural properties increased while L*, lipid content, total starch, gruel solid loss, water absorption, oil absorption, foaming capacity, sugar profile, and total phenolic and flavonoid content decreased as compared to GPR. All pasting properties of GPR increased except breakdown as the parboiling time increased from 5 to 15 min. Parboiling altered the properties of GPR due to starch gelatinization. Total essential amino acid and gamma-aminobutyric acid decreased as the parboiling time (5 to 15 min) increased. The germinated parboiled brown rice could create a highly nutritious alternative to regular brown rice as it offers improved texture and cooking qualities.
Collapse
Affiliation(s)
- Swasti Mudgal
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| |
Collapse
|
8
|
Jabeen R, Jan N, Naseer B, Sarangi PK, Sridhar K, Dikkala PK, Bhaswant M, Hussain SZ, Inbaraj BS. Development of Germinated-Brown-Rice-Based Novel Functional Beverage Enriched with γ-Aminobutyric Acid: Nutritional and Bio-Functional Characterization. Foods 2024; 13:1282. [PMID: 38672954 PMCID: PMC11048985 DOI: 10.3390/foods13081282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
γ-aminobutyric acid (GABA), recognized as a primary inhibitory neurotransmitter within the brain, serves a crucial role in the aging process and in neurodegenerative conditions such as Alzheimer's disease. Research has demonstrated the beneficial effects of GABA, particularly for elderly individuals. Given that elderly individuals often encounter challenges with swallowing food, beverages designed to address dysphagia represent a preferable option for this demographic. Among the different processing techniques, the germination process triggers biochemical changes, leading to an increase in certain nutrients and bioactive compounds (e.g., GABA). Therefore, we attempted to develop a novel functional beverage utilizing germinated brown rice enriched with GABA and studied its nutritional and bio-functional characterization. The optimal conditions (X1, X2, X3 and X4.) were determined: powdered sugar (40 g), chocolate powder (20 g), sodium carboxymethyl cellulose (0.5 g), GBR (220 g), and water (440 mL). The results of storage studies indicated that the germinated-brown-rice-based beverage exhibited favorable nutritional attributes, including increased γ-oryzanol (52.73 ± 1.56%), total phenolic content (26.68 ± 1.56 mg GAE/100 g), niacin (5.17 ± 0.14%), and GABA (42.12 ± 0.63 mg/100 g) levels. Additionally, the beverage demonstrated notable antioxidant activity (74.23 ± 2.37 µmol TE/100 g), suggesting potential health-promoting effects. Sensory evaluation revealed satisfactory acceptability among consumers, highlighting its palatability. Overall, this study elucidates the development of a novel functional beverage utilizing germinated brown rice enriched with GABA, offering promising nutritional and bio-functional characteristics for health-conscious consumers.
Collapse
Affiliation(s)
- Rifat Jabeen
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190025, India
| | - Nusrat Jan
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190025, India
| | - Bazila Naseer
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190025, India
| | | | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education Deemed to be University, Coimbatore 641021, India
| | - Praveen Kumar Dikkala
- Department of Food Technology, Koneru Lakshmaiah Education Foundation Deemed to be University, Vaddeswaram 522502, India;
| | - Maharshi Bhaswant
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India;
- New Industry Creation Hatchery Center, Tohoku University, Sendai 9808579, Japan
| | - Syed Zameer Hussain
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar 190025, India
| | | |
Collapse
|
9
|
Kayisoglu C, Altikardes E, Guzel N, Uzel S. Germination: A Powerful Way to Improve the Nutritional, Functional, and Molecular Properties of White- and Red-Colored Sorghum Grains. Foods 2024; 13:662. [PMID: 38472774 DOI: 10.3390/foods13050662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
This study explored the effects of the germination of red and white sorghum grains (Sorghum bicolor [Moench (L.)]) for up to seven days on various properties of the grain. Germination enriched sorghum's nutritional and sensory qualities while mitigating existing anti-nutritional factors. The study employed Fourier-transformed infrared spectroscopy (FT-IR) and scanning electron microscopy techniques to support its findings. Germination increased protein and lipid content but decreased starch content. White sorghum grains showed elevated calcium and magnesium but decreased iron, potassium, and zinc. Red sorghum grains showed a consistent decrease in mineral content during germination. Germination also increased fiber and lignin values in both sorghum varieties. The results of the FT-IR analysis demonstrate that germination induced significant changes in the molecular structure of white sorghum samples after 24 h, whereas this transformation was observed in red sorghum samples at four days. Total phenolic content (TPC) in red sorghum ranged from 136.64 ± 3.76 mg GAE/100 g to 379.5 ± 6.92 mg GAE/100 g. After 72 h of germination, the germinated seeds showed a threefold increase in TPC when compared to ungerminated seeds. Similarly, the TPC of white sorghum significantly increased (p < 0.05) from 52.84 ± 3.31 mg GAE/100 g to 151.76 mg GAE/100 g. Overall, during the 7-day germination period, all parameters showed an increase, and the germination process positively impacted the functional properties that contributed to the health benefits of white and red sorghum samples.
Collapse
Affiliation(s)
- Cagla Kayisoglu
- Scientific Technical Application and Research Center, Hitit University, 19030 Çorum, Türkiye
| | - Ebrar Altikardes
- Department of Food Engineering, Hitit University, 19030 Çorum, Türkiye
| | - Nihal Guzel
- Department of Food Engineering, Hitit University, 19030 Çorum, Türkiye
| | - Secil Uzel
- Department of Food Engineering, Hitit University, 19030 Çorum, Türkiye
| |
Collapse
|
10
|
Salvati D, Paschoalinotto BH, Mandim F, Ferreira ICFR, Steinmacher NC, Pereira C, Dias MI. Exploring the Impacts of Sorghum ( Sorghum bicolor L. Moench) Germination on the Flour's Nutritional, Chemical, Bioactive, and Technological Properties. Foods 2024; 13:491. [PMID: 38338626 PMCID: PMC10855074 DOI: 10.3390/foods13030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Germination is a natural, simple, and economical process used to improve the quality of nutritional and technological grains. In this study, native and sprouted sorghum flours were characterized regarding their technological properties (particle size distribution, water, and oil absorption capacity, swelling power and solubility, microscopy of starch granules, and pasting and thermal properties). Nutritional and phytochemical characterization profiles, including free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds, were explored through chromatographic methods. The antioxidant, anti-inflammatory, and cytotoxic activities of the respective hydroethanolic extracts were also evaluated. The results showed that the germination process caused significant changes in the flour composition and properties, causing reduced gelatinization temperature and retarded starch retrogradation; an increased content of free sugars and total organic acids; and a decreased content of tocopherols and phenolic compounds. In terms of bioactivity, the sprouted sorghum flour extract showed better lipid-peroxidation-inhibition capacity and none of the extracts revealed hepatotoxicity or nephrotoxicity, which are important results for the validation of the use of the flours for food purposes. Germination is an efficient and alternative method for grain modification that gives improved technological properties without chemical modification or genetic engineering.
Collapse
Affiliation(s)
- Diogo Salvati
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Departamento Acadêmico de Alimentos (DAALM), Campus Medianeira, Universidade Tecnológica Federal do Paraná, Medianeira 85884-000, Brazil;
| | - Beatriz Helena Paschoalinotto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nádia Cristiane Steinmacher
- Departamento Acadêmico de Alimentos (DAALM), Campus Medianeira, Universidade Tecnológica Federal do Paraná, Medianeira 85884-000, Brazil;
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (D.S.); (B.H.P.); (F.M.); (I.C.F.R.F.); (C.P.)
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
11
|
Chinma CE, Adedeji OE, Jolayemi OS, Ezeocha VC, Ilowefah MA, Rosell CM, Adebo JA, Wilkin JD, Adebo OA. Impact of germination on the techno-functional properties, nutritional composition, and health-promoting compounds of brown rice and its products: A review. J Food Sci 2024; 89:8-32. [PMID: 37997506 DOI: 10.1111/1750-3841.16832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Rice is a popular grain and forms part of the daily diet of people throughout the world. However, the consumption of rice and its products is sometimes limited by its high glycemic index due to its high starch content, low protein content and quality, and low bioavailability of minerals due to the presence of anti-nutritional factors. This has partly stimulated research interest in recent times toward the use of bioprocessing techniques such as germination as cheap and natural means to improve the nutritional quality, digestibility, and health properties of cereals, including rice, to partially achieve nutrition and food security in the developing regions of the world. This review highlights the impact of germination on the nutritional quality, health-promoting properties, and techno-functional characteristics of germinated brown rice grains and their products. The review demonstrated that germinated rice grains and their products have improved nutritional quality and digestibility, modified functional properties, and showed antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, anti-cancer, and anti-cardiovascular activities. Germination appears to be a suitable bioprocessing method to improve the nutritional quality and bioactive constituents and modify the techno-functional properties of rice grains for diverse food applications and improved global nutrition and food safety.
Collapse
Affiliation(s)
- Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria
- Food Innovation Research Group, Department of Biotechnology and Food Technology, University of Johannesburg, Gauteng, South Africa
| | | | - Olusola Samuel Jolayemi
- Department of Food Science and Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Vanessa Chinelo Ezeocha
- Department of Food Science and Technology, Michael Okpara University of Agriculture Umudike, Umudike, Nigeria
| | - Muna Abdulsalam Ilowefah
- Department of Food Technology, Faculty of Engineering and Technology, Sabha University, Sabha, Libya
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Spain
- Department of Food and Human Nutritional Science, University of Manitoba, Winnipeg, Canada
| | - Janet Adeyinka Adebo
- Food Evolution Research Laboratory, School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Johannesburg, South Africa
| | - Jonathan D Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, University of Johannesburg, Gauteng, South Africa
| |
Collapse
|
12
|
Beaulieu JC, Boue SM, Goufo P. Health-promoting germinated rice and value-added foods: a comprehensive and systematic review of germination effects on brown rice. Crit Rev Food Sci Nutr 2023; 63:11570-11603. [PMID: 35816149 DOI: 10.1080/10408398.2022.2094887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Over the last 30 years, thousands of articles have appeared examining the effects of soaking and germinating brown rice (BR). Variable germination conditions and methods have been employed to measure different health-beneficial parameters in a diverse germplasm of BR. Research results may therefore appear inconsistent with occasional anomalies, and it may be difficult to reach consensus concerning expected trends. Herein, we amassed a comprehensive review on germinated brown rice (GBR), attempting to codify 133 peer-reviewed articles regarding the effects on 164 chemical parameters related to health and nutrition in BR and in value-added food products. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-2020) approach was used to direct the flow of the literature search. A pair-wise comparison t-test was performed to deliver an overall approach indicating when a given compound has been found to significantly increase or decrease through germination, which was grouped into GABA and polyamines, γ-Oryzanol and phytosterols, phenolic compounds, vitamins, proteins and amino acids, starchy carbohydrates, free sugars, lipids, minerals and phytic acid. This resource will stimulate interest in germinating rice and optimistically help increase both production and consumption of highly nutritious, health-beneficial rice with pigmented bran.
Collapse
Affiliation(s)
- John C Beaulieu
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Stephen M Boue
- Food Processing & Sensory Quality Research Unit, United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, Louisiana, USA
| | - Piebiep Goufo
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
13
|
Jin Z, Peng S, Nie L. Active compounds: A new direction for rice value addition. Food Chem X 2023; 19:100781. [PMID: 37780340 PMCID: PMC10534106 DOI: 10.1016/j.fochx.2023.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 10/03/2023] Open
Abstract
The development of rice active compounds is conducive to improving the added value of rice. This paper focused on the types and effects of active compounds in rice. Furthermore, it summarized the effect of rice storage and processing technology on rice active compounds. We conclude the following: Rice contains a large number of active compounds that are beneficial to humans. At present, the research on the action mechanism of rice active compounds on the human body is not deep enough, and the ability to deeply process rice is insufficient, greatly limiting the development of the rice active compound industry. To maximize the added value of rice, it is necessary to establish a dedicated preservation and processing technology system based on the physicochemical properties of the required active compounds. Additionally, attention should be paid to the development and application of composite technologies during the development of the rice active compound industry.
Collapse
Affiliation(s)
- Zhaoqiang Jin
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Shaobing Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lixiao Nie
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| |
Collapse
|
14
|
Chinma CE, Ezeocha VC, Adedeji OE, Ayo-Omogie HN, Oganah-Ikujenyo BC, Anumba NL, Enimola GE, Adegoke DO, Alhassan R, Adebo OA. Germinated Bambara groundnut (Vigna subterranea) flour as an ingredient in wheat bread: Physicochemical, nutritional, and sensory properties of bread. J Food Sci 2023; 88:2368-2384. [PMID: 37092658 DOI: 10.1111/1750-3841.16585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
Wheat flour (WF) was substituted with germinated Bambara groundnut (Vigna subterranea) flour (GBF) at different proportions (5%, 10%, 15%, 20%, 25%, and 30%) and used in the preparation of bread. The dough mixing, pasting, and gelatinization properties of the blends were evaluated as well as the nutritional quality, in vitro starch digestibility, phytochemical constituents, antioxidant potential, color, texture, and sensory properties of breads. All the wheat dough containing GBF had higher water absorption capacity, gelatinization temperatures, dough development time, low peak, and setback viscosities. The composite breads had significantly higher dietary fiber, minerals, protein digestibility, corrected amino acid scores, resistant starch, slowly digestible starch, total phenolics, total flavonoids, and antioxidant activities and caused significant reduction in rapidly digestible starch content. The addition of up to 15% GBF had no significant impact on the specific volume of wheat bread. Substitution of WF with GBF influenced color and texture properties of bread. Wheat bread supplemented with 20% GBF had significantly higher scores in taste, aroma, and overall acceptability. This study demonstrated the potential of GBF as a functional ingredient in bread making. PRACTICAL APPLICATION: This study provides a suitable possibility of partial substitution of wheat flour with germinated Bambara groundnut, to develop functional and acceptable bread. The dough mixing and pasting results in this study would add to knowledge on the dough handling characteristics as there is limited information regarding the mixing properties of wheat dough with germinated Bambara groundnut.
Collapse
Affiliation(s)
- Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Vanessa Chinelo Ezeocha
- Department of Food Science and Technology, Michael Okpara University of Agriculture, Umudike, Nigeria
| | | | - Helen Nwakego Ayo-Omogie
- Department of Food Science and Technology, Federal University of Technology, Akure, Akure, Nigeria
| | | | - Nonyelum Laurentia Anumba
- Department of Food Science and Technology, Rivers State University of Science and Technology, Port Harcourt, Nigeria
| | - Gloria Emiola Enimola
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria
| | | | - Ramatu Alhassan
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, Gauteng, South Africa
| |
Collapse
|
15
|
Wei S, Wang N, Huang X, Xu G, Xu X, Xu D, Jin Y, Yang N, Wu F. Effect of germination on the quality characteristics and volatile compounds of fermented brown rice cake. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
The Effect of Stabilized Rice Bran Addition on Physicochemical, Sensory, and Techno-Functional Properties of Bread. Foods 2022; 11:foods11213328. [PMID: 36359940 PMCID: PMC9656163 DOI: 10.3390/foods11213328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/24/2022] Open
Abstract
Rice bran (RB) is a valuable byproduct derived from rice milling that represents an excellent opportunity for dietary inclusion. Bioactive components with antioxidant potential have been reported in RB, gaining the considerable attention of researchers. However, RB requires a stabilization process after milling to prevent it from becoming rancid and promote its commercial consumption. The aim of this study was to evaluate the effects of substituting stabilized rice bran (SRB) for wheat flour at levels of 10, 15, 20 and 25% on the proximate composition, dietary fiber, dough rheology, antioxidant properties, content of bioactive compounds, and sensory attributes of white wheat-based bread. Results indicated that the incorporation of SRB increased the bread’s insoluble dietary fiber, phytic acid, total polyphenol content, γ-oryzanol, γ-aminobutyric acid, and antioxidant properties, while decreased its water absorption capacity, elasticity, volume, β-glucans, and soluble dietary fiber content. Moreover, substituting wheat flour for SRB at levels higher than 15% affected sensory attributes, such as color, odor, flavor, and softness. This study highlights the potential application of SRB flour in bread-making to increase nutritional, and functional properties of white wheat bread.
Collapse
|
17
|
Zhang B, Wang RM, Chen P, He TS, Bai B. Study on zinc accumulation, bioavailability, physicochemical and structural characteristics of brown rice combined with germination and zinc fortification. Food Res Int 2022; 158:111450. [DOI: 10.1016/j.foodres.2022.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/24/2022]
|
18
|
Formulation of germinated brown rice fermented products functionalized by probiotics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Liang L, Chen L, Liu G, Zhang F, Linhardt RJ, Sun B, Li Q, Zhang Y. Optimization of germination and ultrasonic-assisted extraction for the enhancement of γ-aminobutyric acid in pumpkin seed. Food Sci Nutr 2022; 10:2101-2110. [PMID: 35702278 PMCID: PMC9179130 DOI: 10.1002/fsn3.2826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022] Open
Abstract
Germination and ultrasonic-assisted extraction (UAE) are economical and effective methods to enhance bioactive compounds in plant seeds. We optimized the germination parameters and UAE parameters by using response surface methodology to maximize the recovery of γ-aminobutyric acid (GABA) in pumpkin seeds. The optimal germination conditions were as follows: soaking the seeds at 28°C for 6 h with 0.2% CaCl2, 3.8 mg/ml monosodium glutamate, and 4.0 mg/ml vitamin B6, then germination at 30°C for 61.6 h. The optimal conditions for UAE were as follows: 1:75 (w/v) material-to-solvent ratio, 220 W ultrasonic power, and ultrasonic treatment at 50°C for 14.4 min, which afforded an extraction yield of 2679 ± 10 mg/100 g. Moreover, the GABA-enhanced extract showed the potential of hypolipidemic effect in type 2 diabetes rats. These results confirmed that a combination of germination and UAE increased the GABA yield from pumpkin seeds and provided a basis for GABA-enhanced production to improve lifestyle-associated diseases.
Collapse
Affiliation(s)
- Li Liang
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business University (BTBU)BeijingChina
- National Engineering Research Center for fruit and vegetable ProcessingCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Lin Chen
- National Engineering Research Center for fruit and vegetable ProcessingCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Guimei Liu
- School of Food Sciences and EngineeringQilu University of TechnologyJinanChina
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, Chemistry and Chemical BiologyBiomedical Engineering and Biological ScienceCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Robert J. Linhardt
- Departments of Chemical and Biological Engineering, Chemistry and Chemical BiologyBiomedical Engineering and Biological ScienceCenter for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyNew YorkUSA
| | - Baoguo Sun
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business University (BTBU)BeijingChina
| | - Quanhong Li
- National Engineering Research Center for fruit and vegetable ProcessingCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor ChemistryBeijing Technology and Business University (BTBU)BeijingChina
| |
Collapse
|
20
|
Influence of Seed Quality Stimulation in “Khao Dawk Mali 105” Rough Rice during the Deterioration Period Using an Automatic Soaking and Germination Accelerator Unit and Infrared Radiation Treatment. AGRIENGINEERING 2022. [DOI: 10.3390/agriengineering4020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study aimed to improve the seed quality during the deterioration period of rough rice (Oryza sativa L.), cultivar ‘Khoa Dawk Mali 105’ (KDML 105), using an automatic soaking and germination accelerator unit (ASGA) together with stimulation via infrared radiation treatment (IRT) to stimulate seed quality (germination rate and γ-aminobutyric acid (GABA) content). This study used a general full factorial design, and the independent variables were the storage period (10, 11 and 12 months), methods of germinated rough rice preparation (conventional method (CM) and an automatic soaking and germination accelerator unit (ASGA)), and stimulation with IRT. The initial grain moisture content did not exceed 14% (wet basis (wb)). The germination rate of the rough rice by CM and ASGA with stimulation with IRT was significantly higher than non-stimulated rice, by 6.56 and 8.11%, respectively, in each storage period. The GABA contents of the germinated rough rice using CM and ASGA stimulated with IRT were significantly higher than ungerminated rough rice, by 19.52 and 21.24% (10 months), respectively; 16.36 and 23.58% (11 months), respectively; and 69.88 and 67.69% (12 months), respectively.
Collapse
|
21
|
Evaluation of the Nutritive Value and Digestibility of Sprouted Barley as Feed for Growing Lambs: In Vivo and In Vitro Studies. Animals (Basel) 2022; 12:ani12091206. [PMID: 35565632 PMCID: PMC9099672 DOI: 10.3390/ani12091206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
The main objective of this study was to investigate the effects of freshly sprouted barley on the growth of lambs, in addition to its nutritional value and digestibility. In addition, sprouted barley digestibility and rumen fermentation were studied in vitro on a dry matter (DM) basis. A total of 45 three-month-old Awassi lambs were randomly assigned to five treatments of sprouted barley (0, 25, 50, 75, 100%) diets. Bodyweight, weight gain, feed intake and feed efficiency were recorded every two weeks. Nutrient analyses were performed on feed, faecal, and urine samples. DM and non-fibrous carbohydrates were measured. Digestibility of DM, organic matter (OM), and neutral detergent fiber (NDF), as well as gas production, pH value, ammonia-N, and volatile fatty acids (VFAs), were determined in vitro using continuous culture. The results showed that final bodyweight was lower (p < 0.05), while feed intake and the feed-to-gain ratio were increased (p < 0.05) in sprouted barley treatments. Nutrient analysis indicators of sprouted barley treatments (25 to100%) were lower (p < 0.05) for DM, crude protein, acid detergent fiber, lignin and ash, and higher for total digestible nutrients, NDF, fat, phosphorus, zinc, copper, and net energy than the traditional diet. In the in vivo study, the digestibility of nutrients in sprouted barley treatments was improved (p < 0.05), while the diet (sprouted barley 100%) had the lowest digestibility of DM, OM, and NDF compared with the other treatments in the in vitro study. In conclusion, the addition of sprouted barley improved digestibility, and fermentation characteristics, while having a negative effect on growth. Further studies are recommended for optimal growth performance.
Collapse
|
22
|
Uddin N, Muhammad N, Nisar M, Aisha, Ali N, Ullah R, Ali EA, Khan AA, Rahman IU, Khan A, Zeb A. Distribution of polyphenolic compounds, antioxidant potential, and free amino acids in Ziziphus fruits extract; a study for determining the influence of wider geography. Food Sci Nutr 2022; 10:1414-1430. [PMID: 35592302 PMCID: PMC9094459 DOI: 10.1002/fsn3.2726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/04/2021] [Accepted: 12/08/2021] [Indexed: 01/20/2023] Open
Abstract
Ziziphus fruits have attracted much attention within the field of medicine due to their high potential against central nervous system disorders. Abundance of secondary metabolites and their composition is key to the pharmaceutical potential and commercial qualities of plants. The in vitro antioxidant activities of Ziziphus nummularia (Burm. f.) and Ziziphus oxyphylla Edgew fruit extract were analyzed using 2,2‐diphenil‐1‐pycrilhydrazyl (DPPH) and 2,2′‐azino‐bis (3‐ethylbenzothiazoline)‐6‐sulfonic acid (ABTS) free radical scavenging assay methods. Phenolic profiles were explored using high‐performance liquid chromatography‐diode array detector (HPLC‐DAD). The result revealed high concentration of polyphenols and their antioxidant potential. In Z. nummularia, the total phenolic content (TPC) (80.270 ± 0.422 μg/ml), DPPH (62.03 ± 0.98 μg/ml), ABTS (66.32 ± 0.73 μg/ml), and TFC (90.683 ± 0.274 μg/ml) were recorded. However, in Z. oxyphylla, DPPH and ABTS values were 60.66 ± 0.56 μg/ml and 61.55 ± 0.77 μg/ml, respectively, indicative of the impacts of climate and soil nutrients. The overall screening of phytochemicals revealed that both the Ziziphus species contain diverse bioactive compounds, including spinacetine‐3‐O‐(2 feruloyl glucopyranosyl)‐glucopyranoside, kaempferol‐3‐O‐glucoside‐7‐O‐glucoside, and caffeic acid; p‐hydroxybenzoyl hexose, p‐coumaric acid, salicylic acid, and ellagic acid pentoxide. Additionally, the highest concentrated amino acid noted was of Lue 0.19 g/100 g with 596.00 retention time (RT), followed by Thr>Ale>Isl>Phya>Val in Z. nummularia. Similarly, the highest concentration of Lue amino acid was recorded as 0.18/100 g with 564.52 RT followed by Pr>Thr>Ale>Lue>Isl>Phya>Val in all genotypes of Z. oxyphylla. Reporting of polyphenols rich and stable species along with identification of favorable regions of cultivation for amino acid, polyphenols, and higher antioxidant potential may lead the way for the identification of elite clones of the species as well as may result in new drug discovery.
Collapse
Affiliation(s)
- Nisar Uddin
- Department of Botany Hazara University Mansehra Mansehra Pakistan
| | - Noor Muhammad
- Department of Pomology College of Horticulture Hebei Agricultural University Baoding China
| | - Mohammad Nisar
- Department of Botany University of Malakand Checkdara Pakistan
| | - Aisha
- Department of Chemistry University of Gujrat Gujrat Pakistan
| | - Niaz Ali
- Department of Botany Hazara University Mansehra Mansehra Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry College of Pharmacy King Saud University Riyadh Saudi Arabia
| | - Azhar Abbas Khan
- Department of Biochemistry Hazara University Mansehra Mansehra Pakistan
| | - Inayat Ur Rahman
- Department of Botany Hazara University Mansehra Mansehra Pakistan
| | - Anwar Khan
- Institute of Molecular Plant Science University of Edinburgh Edinburgh UK.,Department of Microbiology BUITEMS Quetta Pakistan
| | - Alam Zeb
- Department of Biochemistry University of Malakand KP Pakistan
| |
Collapse
|
23
|
Tian C, Wang Y, Yang T, Sun Q, Ma M, Li M. Evolution of Physicochemical Properties, Phenolic Acid Accumulation, and Dough-Making Quality of Whole Wheat Flour During Germination Under UV-B Radiation. Front Nutr 2022; 9:877324. [PMID: 35571921 PMCID: PMC9097864 DOI: 10.3389/fnut.2022.877324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The effects of ultraviolet-B (UV-B) radiation on the physiological properties, phenolic acid accumulation, and dough-making quality of wheat during germination were investigated. UV-B radiation inhibited the wheat sprout length and reduced the dry matter loss. As phenolic acids were principally present in the kernels' bran, UV-B radiation could promote their accumulation in the interior of germinated wheat (GW). The total phenolic compounds, ascorbic acid, and antioxidant activity were also enhanced significantly during germination with UV-B. UV-B improved the development time, stability time, rheological properties, and viscosity of GW, and inhibited the α-amylase activity, the destruction of the amorphous region of starch particles, and the proteins degradation process during germination, and thus the deterioration of dough-making quality caused by germination was inhibited. Therefore, UV-B radiation could be a potential approach to enhance the nutritional and dough-making quality of germinated whole wheat flour.
Collapse
Affiliation(s)
- Chao Tian
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue Wang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Tianbao Yang
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Services, Beltsville, MD, United States
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Meng Ma
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Services, Beltsville, MD, United States
- Meng Ma
| | - Man Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Man Li
| |
Collapse
|
24
|
He L, Yang Y, Ren L, Bian X, Liu X, Chen F, Tan B, Fu Y, Zhang X, Zhang N. Effects of germination time on the structural, physicochemical and functional properties of brown rice. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lin‐yang He
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Yang Yang
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Li‐kun Ren
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Xin Bian
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Xiao‐fei Liu
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Feng‐lian Chen
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Bin Tan
- Academy of Science National Food and Strategic Reserves Administration Beijing 100037 China
| | - Yu Fu
- College of Food Science Southwest University Chongqing 400715 China
| | - Xiu‐min Zhang
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Na Zhang
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| |
Collapse
|
25
|
Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Velasco P, Peñas E. Manufacture of healthy snack bars supplemented with moringa sprout powder. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
MUNARKO H, SITANGGANG AB, KUSNANDAR F, BUDIJANTO S. Germination of five Indonesian brown rice: evaluation of antioxidant, bioactive compounds, fatty acids and pasting properties. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.19721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Hadi MUNARKO
- IPB University, Indonesia; Faculty of Engineering, Indonesia
| | | | | | | |
Collapse
|
27
|
Toro MT, Ortiz J, Becerra J, Zapata N, Fierro P, Illanes M, López MD. Strategies of Elicitation to Enhance Bioactive Compound Content in Edible Plant Sprouts: A Bibliometric Study. PLANTS (BASEL, SWITZERLAND) 2021; 10:2759. [PMID: 34961237 PMCID: PMC8709354 DOI: 10.3390/plants10122759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 05/13/2023]
Abstract
Vegetable sprouts are a food source that presents high content of bioactive compounds which can also be enhanced through elicitation mechanisms. To better understand the scientific production and research trends on this topic, a bibliometric analysis by means of the Web of Science database was carried out. The results showed significant growth in research on the elicitation of edible plants sprouts. The three most productive journals were the Journal of Agricultural and Food Chemistry, followed by Food Chemistry and LWT-Food Science and Technology. The co-occurrence of keyword analysis of the different authors showed that the main research topics in this domain were 'germination', 'antioxidant activity', 'sprouts', 'glucosinolates' and 'phenolics'. The countries with the highest number of scientific publications were China, followed by India and USA. The productivity patterns of the authors conformed to Lotka's law. This study provides an overview of research on elicitation to enrich bioactive compounds in sprouts, and the need to review and update the trends on this subject.
Collapse
Affiliation(s)
- María Trinidad Toro
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - Jaime Ortiz
- Department of Food Science and Chemical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santos Dumont 964, Santiago 8320000, Chile;
| | - José Becerra
- Natural Products Chemistry Laboratory, Department of Botany, Faculty of Natural and Oceanographic Sciences, University of Concepción, Víctor Lamas 1290, Concepción 4070386, Chile;
| | - Nelson Zapata
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - Paulo Fierro
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - Marcelo Illanes
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| | - María Dolores López
- Department of Plant Production, Faculty of Agronomy, University of Concepcion, Avenida Vicente Mendez 595, Chillán 3812120, Chile; (M.T.T.); (N.Z.); (P.F.); (M.I.)
| |
Collapse
|
28
|
Rico D, Peñas E, del Carmen García M, Rai DK, Martínez-Villaluenga C, Frias J, Martín-Diana AB. Development of Antioxidant and Nutritious Lentil ( Lens culinaris) Flour Using Controlled Optimized Germination as a Bioprocess. Foods 2021; 10:2924. [PMID: 34945474 PMCID: PMC8700479 DOI: 10.3390/foods10122924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Germination is an efficient and natural strategy that allows the modification of the nutritional value and the nutraceutical properties of seeds, enabling one to tailor the process according to its final use. This study aimed at optimization of germination conditions to produce novel lentil flours with improved nutritional and functional features. Response Surface Methodology (RSM) was applied to model the effect of temperature (15-27 °C) and time (1-5 days) on different nutritional and quality parameters of lentil flours including proximate composition, content and profile of fatty acids, content of phytic acid, ascorbic acid and γ-aminobutyric acid (GABA), content and profile of phenolic compounds, antioxidant activity, expected glycemic index (GI) and color during germination. As shown by RSM polynomial models, sprouting promoted the reduction of phytic acid content and enhanced the levels of ascorbic acid, GABA, insoluble phenolic compounds, antioxidant activity and expected GI, and modified the color of the resultant lentil flours. RSM optimization of germination temperature and time using desirability function revealed that the optimal process conditions to maximize the nutritional, bioactive and quality properties of sprouted lentil flours were 21 °C for 3.5 days.
Collapse
Affiliation(s)
- Daniel Rico
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (E.P.); (C.M.-V.); (J.F.)
| | - María del Carmen García
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.)
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, 15 Dublin, Ireland;
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (E.P.); (C.M.-V.); (J.F.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (E.P.); (C.M.-V.); (J.F.)
| | - Ana B. Martín-Diana
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.)
| |
Collapse
|
29
|
Tiozon RJN, Sartagoda KJD, Fernie AR, Sreenivasulu N. The nutritional profile and human health benefit of pigmented rice and the impact of post-harvest processes and product development on the nutritional components: A review. Crit Rev Food Sci Nutr 2021:1-28. [PMID: 34709089 DOI: 10.1080/10408398.2021.1995697] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pigmented rice has attracted considerable attention due to its nutritional value, which is in large conferred by its abundant content of phenolic compounds, considerable micronutrient concentrations, as well as its higher resistant starch and thereby slower digestibility properties. A wide range of phenolic compounds identified in pigmented rice exhibit biological activities such as antioxidant activity, anti-inflammatory, anticancer, and antidiabetic properties. Post-harvest processes significantly reduce the levels of these phytochemicals, but recent developments in processing methods have allowed greater retention of their contents. Pigmented rice has also been converted to different products for food preservation and to derive functional foods. Profiling a large set of pigmented rice cultivars will thus not only provide new insights into the phytochemical diversity of rice and the genes underlying the vast array of secondary metabolites present in this species but also provide information concerning their nutritional benefits, which will be instrumental in breeding healthier rice. The present review mainly focuses on the nutritional composition of pigmented rice and how it can impact human health alongside the effects of post-harvest processes and product development methods to retain the ambient level of phytochemicals in the final processed form in which it is consumed.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines.,Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Kristel June D Sartagoda
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
30
|
Sitanggang AB, Joshua M, Munarko H, Kusnandar F, Budijanto S. Increased γ-Aminobutyric Acid Content of Germinated Brown Rice Produced in Membrane Reactor. Food Technol Biotechnol 2021; 59:295-305. [PMID: 34759761 PMCID: PMC8542178 DOI: 10.17113/ftb.59.03.21.6846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
RESEARCH BACKGROUND Rice germination is a natural approach to enhance the physical and functional properties of brown rice. Thus, the aim of this study is to investigate the influence of different germination methods on functional properties of germinated brown rice and evaluate the process feasibility. EXPERIMENTAL APPROACH Brown rice of IPB 3S variety was germinated with three different methods: (i) complete soaking without water replacement, (ii) complete soaking with water replacement every six hours, and (iii) complete soaking with continuous washing in the developed membrane-facilitated soaking reactor. RESULTS AND CONCLUSIONS The application of the membrane reactor for producing germinated brown rice maintained the pH of the soaking solution relatively constant (i.e. 6.8-7.0). This indicated the circumvention of natural fermentation during brown rice germination. Moreover, the mass fraction of γ-aminobutyric acid in germinated brown rice produced in the membrane reactor was about 4.5-fold higher (169.2 mg/100 mg) than in ungerminated brown rice (36.82 mg/100 mg), and also higher than that of the other two soaking methods. The γ-oryzanol mass fractions and the antioxidant capacity expressed as ascorbic acid equivalents of germinated brown rice obtained with the three soaking methods varied from 32 to 38 mg/100 mg and 18 to 28 mg/100 g, respectively. Within this study, germination could also slightly reduce the transition temperatures of germinated brown rice starch gelatinization (t o=73-74 °C, t p=76-77 °C and t c=~80 °C, where t o, t p and t c are onset, peak and conclusion (final) temperatures). In conclusion, the production of germinated brown rice in the membrane reactor could enhance its γ-aminobutyric acid mass fraction and reduce wastewater production and is therefore considered more feasible. NOVELTY AND SCIENTIFIC CONTRIBUTION This study demonstrates the feasibility of germinated brown rice production using a membrane-facilitated soaking reactor with enhancement of bioactive compound content, especially γ-aminobutyric acid, and minimised wastewater production.
Collapse
Affiliation(s)
- Azis Boing Sitanggang
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| | - Michael Joshua
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| | - Hadi Munarko
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| | - Feri Kusnandar
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| | - Slamet Budijanto
- Department of Food Science and Technology, IPB University, Campus IPB Darmaga, 16680 Bogor, Indonesia
| |
Collapse
|
31
|
Chatchavanthatri N, Junyusen T, Arjharn W, Treeamnuk T, Junyusen P, Pakawanit P. Effects of parboiling and infrared radiation drying on the quality of germinated brown rice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Natthaporn Chatchavanthatri
- School of Agricultural Engineering Institute of Engineering Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Tiraporn Junyusen
- School of Agricultural Engineering Institute of Engineering Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Weerachai Arjharn
- School of Agricultural Engineering Institute of Engineering Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Tawarat Treeamnuk
- School of Agricultural Engineering Institute of Engineering Suranaree University of Technology Nakhon Ratchasima Thailand
| | - Payungsak Junyusen
- School of Agricultural Engineering Institute of Engineering Suranaree University of Technology Nakhon Ratchasima Thailand
| | | |
Collapse
|
32
|
Demeekul K, Suthammarak W, Petchdee S. Bioactive Compounds from Germinated Brown Rice Protect Cardiomyocytes Against Simulated Ischemic/Reperfusion Injury by Ameliorating Mitochondrial Dysfunction. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1055-1066. [PMID: 33727794 PMCID: PMC7955705 DOI: 10.2147/dddt.s294779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/04/2021] [Indexed: 01/11/2023]
Abstract
Purpose Ischemic/reperfusion (I/R) injury is the principal mechanism during Ischemic Heart Disease (IHD). The key modulator of I/R injury is dysregulation of mitochondria function. Germinated Brown Rice (GBR) has been recommended as a bio-functional food and has clarified the potential properties in several effects. However, the effect of GBR mediated cardioprotective properties, focusing on mitochondrial function’s role, remains unexplored. Thus, this study aims to investigate the cardioprotective effects of GBR pretreatment against simulated I/R injury. Methods H9c2 cardiomyocytes were incubated with GBR at a five ƞg/mL concentration for 24 hours and simulated I/R (sI/R) for 40 minutes. Cell viability and cell apoptosis were assessed by 7-AAD staining and Annexin V/PI staining, respectively. The mitochondrial membrane potential was determined by JC-1 staining and mitochondrial respiration represented by oxygen consumption rate (OCR) using Seahorse Flux analyzer. Results The results revealed that the administration of GBR before sI/R significantly decreased the percentage of cell death and total cell apoptosis in H9c2 during stimulation of ischemic/reperfusion. Besides, pretreatment of cardiomyocytes with GBR remarkably stabilized mitochondrial membrane potential and improved impaired mitochondrial respiration in simulated-H9c2 injury. Conclusion The present research is the first study to report the effective cardioprotection of GBR. Pretreatment of GBR potentially protects H9c2 cardiomyocytes against sI/R injury through mitochondrial function. The underlying therapeutic activities are possibly associated with its bio-functional compounds. However, the underlying mechanism on the cardioprotective effects of GBR needs further studies.
Collapse
Affiliation(s)
- Kanokwan Demeekul
- Graduate School, Program of Bio-Veterinary Science, Kasetsart University, Kamphaeng Saen, Nakorn Pathom, Thailand
| | - Wichit Suthammarak
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Soontaree Petchdee
- Department of Large Animal and Wildlife Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakorn Pathom, Thailand
| |
Collapse
|
33
|
Sukegawa H, Kokawa M, Kitamura Y. Establishment of a cultivation method for sprouted brown rice and elucidation of its functional food characteristics. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hiroko Sukegawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Mito Kokawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yutaka Kitamura
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| |
Collapse
|
34
|
Li Y, Zheng Y, Zheng D, Zhang Y, Song S, Su W, Liu H. Effects of Supplementary Blue and UV-A LED Lights on Morphology and Phytochemicals of Brassicaceae Baby-Leaves. Molecules 2020; 25:E5678. [PMID: 33276420 PMCID: PMC7729980 DOI: 10.3390/molecules25235678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
Brassicaceae baby-leaves are good source of functional phytochemicals. To investigate how Chinese kale and pak-choi baby-leaves in response to different wavebands of blue (430 nm and 465 nm) and UV-A (380 nm and 400 nm) LED, the plant growth, glucosinolates, antioxidants, and minerals were determined. Both agronomy traits and phytochemical contents were significantly affected. Blue and UV-A light played a predominant role in increasing the plant biomass and morphology, as well as the contents of antioxidant compounds (vitamin C, vitamin E, phenolics, and individual flavonols), the antioxidant activity (DPPH and FRAP), and the total glucosinolates accumulation. In particular, four light wavebands significantly decreased the content of progoitrin, while 400 nm UV-A light and 430 nm blue light were efficient in elevating the contents of sinigrin and glucobrassicin in Chinese kale. Meanwhile, 400 nm UV-A light was able to increase the contents of glucoraphanin, sinigrin, and glucobrassicin in pak-choi. From the global view of heatmap, blue lights were more efficient in increasing the yield and phytochemical levels of two baby-leaves.
Collapse
Affiliation(s)
- Yamin Li
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.Z.); (Y.Z.); (S.S.); (W.S.)
| | - Yinjian Zheng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610299, China;
| | - Dongqiang Zheng
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.Z.); (Y.Z.); (S.S.); (W.S.)
| | - Yiting Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.Z.); (Y.Z.); (S.S.); (W.S.)
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.Z.); (Y.Z.); (S.S.); (W.S.)
| | - Wei Su
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.Z.); (Y.Z.); (S.S.); (W.S.)
| | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (D.Z.); (Y.Z.); (S.S.); (W.S.)
| |
Collapse
|
35
|
Improving Polyphenolic Compounds: Antioxidant Activity in Chickpea Sprouts through Elicitation with Hydrogen Peroxide. Foods 2020; 9:foods9121791. [PMID: 33276547 PMCID: PMC7761555 DOI: 10.3390/foods9121791] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Elicitation appears to be a promising alternative to enhance the bioactive compound content and biological activities of legume sprouts. Multi-response optimization by response surface methodology (RSM) with desirability function (DF) was used to optimize the elicitor concentration (hydrogen peroxide (H2O2)) and germination time in order to maximize total phenolic content (TPC), total flavonoids content (TFC), and antioxidant activity (AOX) of chickpea sprouts. Chemical, antinutritional, and nutraceutical properties of optimized chickpea sprouts (OCS) were also determined. The predicted regression models developed were efficiently fitted to the experimental data. The results of the desirability function revealed that optimum attributes in chickpea sprouts can be achieved by the application of 30 mM H2O2 and 72 h of germination time, with global desirability value D = 0.893. These OCS had higher (p < 0.05) TPC (7.4%), total iso-flavonoids (16.5%), AOX (14.8%), and lower phytic acid (16.1%) and saponins (21.8%) compared to H2O2 non-treated chickpea sprouts. Optimized germination conditions slightly modified the flavonoid profile in chickpea; eight iso-flavonoids were identified in OCS, including formononetin and biochanin A, which were identified as the major compounds. Results from this study support elicitation with H2O2 as an effective approach to improve phytochemical content and antioxidant activity in chickpea sprouts.
Collapse
|
36
|
Changes in protein profile, bioactive potential and enzymatic activities of gluten-free flours obtained from hulled and dehulled oat varieties as affected by germination conditions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Coello KE, Frias J, Martínez-Villaluenga C, Cartea ME, Abilleira R, Peñas E. Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa ( Moringa oleifera L.). Foods 2020; 9:E1639. [PMID: 33182814 PMCID: PMC7696275 DOI: 10.3390/foods9111639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Moringa oleifera L. is greatly appreciated for its high content of phytochemicals. Although most parts of moringa tree have been widely studied, seeds remained scarcely explored. The first goal of this study was to investigate the effectiveness of germination to improve the nutritional composition (proximate composition and levels of vitamins B1 and B2), content of bioactive compounds (glucosinolates, phenolics and γ-aminobutyric acid, GABA) and antioxidant activity of moringa seed. Germination improved protein, fat, fiber, riboflavin, phenolics, some individual glucosinolates (GLS) and GABA contents, as well as the antioxidant potential in moringa sprouts, but the extent of the improvement depended on germination conditions. The second objective of this work was to identify the optimal germination conditions to maximize nutritional and bioactive quality of moringa by applying multi-response optimization (response surface methodology, RSM). RSM models indicated that 28 °C and 24 h were the optimal conditions to enhance the accumulation of riboflavin, phenolics and antioxidant activity of sprouts, while the highest GABA and total GLS contents were observed at 36 °C for 96 h and thiamine achieved the maximum content at 36 °C for 24 h. These results show that moringa sprouts are promising functional foods that might be also used as ingredients for the elaboration of novel foodstuffs.
Collapse
Affiliation(s)
- Karín E. Coello
- Escuela Superior Politécnica del Litoral, ESPOL Polytechnic University, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863 Guayaquil, Ecuador;
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| | - María Elena Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Rosaura Abilleira
- Group of Genetics, Breeding and Biochemistry of Brassicas, Biological Mission of Galicia (CSIC), P.O. Box 28, E-36080 Pontevedra, Spain; (M.E.C.); (R.A.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (J.F.); (C.M.-V.)
| |
Collapse
|
38
|
Aparicio-García N, Martínez-Villaluenga C, Frias J, Peñas E. Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chem 2020; 338:127972. [PMID: 32932082 DOI: 10.1016/j.foodchem.2020.127972] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022]
Abstract
This study is aimed to produce and characterize a novel gluten-free ingredient from oat through sprouting at 18 °C for 96 h. The nutritional and bioactive properties as well as key enzymatic activities were studied in sprouted oat powder and compared with those of oat grain powder (control). Sprouted oat powder was an excellent source of protein (10.7%), β-glucan (2.1%), thiamine (687.1 μg/100 g), riboflavin (218.4 μg/100 g), and minerals (P, K, Mg and Ca), and presented better amino acid and fatty acid compositions and levels of γ-aminobutyric acid (54.9 mg/100 g), free phenolics (507.4 mg GA/100 g) and antioxidant capacity (1744.3 mg TE/100 g) than control. Enhanced protease and α-amylase and reduced lipase activities were observed in sprouted oat powder, which are promising features to improve its nutritional, sensorial and health-promoting properties. These results support the use of sprouted oat powder as a promising gluten-free functional ingredient.
Collapse
Affiliation(s)
- Natalia Aparicio-García
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
39
|
Park H, Puligundla P, Mok C. Cold plasma decontamination of brown rice grains: Impact on biochemical and sensory qualities of their corresponding seedlings and aqueous tea infusions. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109508] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Changes in physicochemical, nutritional characteristics and ATR-FTIR molecular interactions of cereal grains during germination. Journal of Food Science and Technology 2020; 58:2313-2324. [PMID: 33967328 DOI: 10.1007/s13197-020-04742-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
The cereal grains such as wheat, barley, sorghum, millets were evaluated before and after germination (24 h, 48 h and 72 h) and compared for their proximate composition, antioxidant activity, total phenolic content, total flavonoid content, pasting properties, in vitro starch digestibility and FTIR spectroscopy. Germination inversely affected the protein, fat, and ash content of different cereal grains. The germinated flours have less water content and higher oil absorption capacities along with reduced starch content. The contents of rapidly digestible starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) in the ungerminated cereal flours ranged from 20.7 to 32.1%, 26.9 to 38.0% and 6.2 to 17.6% respectively but after germination of 72 h, the RDS content increased from 26.5 to 36.2% while SDS and RS content decreased from 26.1% (sorghum) to 16% (barley) and 14.7% (barley) to 4.6% (wheat) respectively. The drought-tolerant crops (sorghum, millets and barley) are potential sources of antioxidants and phenolic content and yielded lower hydrolysis index and estimated glycaemic index upon germination. The highest section of antiparallal β-sheet, α-helix and β-turns were found in wheat flour followed by sorghum flour and their proportion decreased with continuous germination. The continuous reduction of viscosity was evaluated with the progress in germination. Overall, germination is a way to get health-promoting compounds from less utilizing cereal such as millets, sorghum and barley and enhance their uses to nourish the huge population with the aim to fulfill their nutritional requirements.
Collapse
|
41
|
Beaulieu JC, Reed SS, Obando-Ulloa JM, Boue SM, Cole MR. Green Processing, Germinating and Wet Milling Brown Rice ( Oryza sativa) for Beverages: Physicochemical Effects. Foods 2020; 9:foods9081016. [PMID: 32751212 PMCID: PMC7466225 DOI: 10.3390/foods9081016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
Plant-based beverage consumption is increasing markedly. Value-added dehulled rice (Oryza sativa) germination was investigated to improve beverage qualities. Germinating brown rice has been shown to increase health-promoting compounds. Utilizing green processing, wholesome constituents, including bran, vitamins, minerals, oils, fiber and proteins should should convey forward into germinated brown rice beverages. Rapid visco-analyzer (RVA) data and trends established that brown rice, preheated brown rice and germinated brown rice had higher pasting temperatures than white rice. As pasting temperature in similar samples may be related to gelatinization, RVA helped guide the free-flowing processing protocol using temperatures slightly above those previously reported for Rondo gelatinization. Particle size analysis and viscometric evaluations indicate that the developed sprouted brown rice beverage is on track to have properties close to commercial samples, even though the sprouted brown rice beverage developed has no additives, fortifications, added oils or salts. Phenolics and γ-aminobutyric acid increased slightly in germinated brown rice, however, increases were not maintained throughout most stages of processing. Significantly lower inorganic arsenic levels (113 ng/g) were found in germinated (sprouted) brown rice, compared to Rondo white and brown rice, which is far below the USA threshold level of 200 ng/g.
Collapse
Affiliation(s)
- John C. Beaulieu
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (S.S.R.); (S.M.B.)
- Correspondence:
| | - Shawndrika S. Reed
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (S.S.R.); (S.M.B.)
| | - Javier M. Obando-Ulloa
- Doctorate Program in Natural Science for Development (DOCINADE) and Agronomy Engineering School, Costa Rica Institute of Technology (ITCR), San Carlos Technology Local Campus, PO Box 223-21001, Ciudad Quesada, San Carlos, Alajuela 30101, Costa Rica;
| | - Stephen M. Boue
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; (S.S.R.); (S.M.B.)
| | - Marsha R. Cole
- Department of Chemistry, College of Engineering and Science, Louisiana Tech University, Carson-Taylor Hall, 343, PO Box 10348, Ruston, LA 71272, USA;
| |
Collapse
|
42
|
Ampofo J, Ngadi M, Ramaswamy HS. The Impact of Temperature Treatments on Elicitation of the Phenylpropanoid Pathway, Phenolic Accumulations and Antioxidative Capacities of Common Bean (Phaseolus vulgaris) Sprouts. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02496-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Kongkachuichai R, Charoensiri R, Meekhruerod A, Kettawan A. Effect of processing conditions on bioactive compounds and glycemic index of the selected landrace rice variety in pre-diabetes. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Khosravi A, Razavi SH. The role of bioconversion processes to enhance bioaccessibility of polyphenols in rice. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Tomé-Sánchez I, Martín-Diana AB, Peñas E, Bautista-Expósito S, Frias J, Rico D, González-Maillo L, Martinez-Villaluenga C. Soluble Phenolic Composition Tailored by Germination Conditions Accompany Antioxidant and Anti-inflammatory Properties of Wheat. Antioxidants (Basel) 2020; 9:E426. [PMID: 32423164 PMCID: PMC7278661 DOI: 10.3390/antiox9050426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Knowledge on the specific variation in the phenolic composition of wheat defined by germination conditions and its relationship with antioxidant and anti-inflammatory properties of sprouts would be useful to improve the functional value of wheat-derived products. Variation in soluble phenolic composition, antioxidant and anti-inflammatory potential of wheat was examined in a range of germination temperature (12-21 °C) and time (1-7 d). Response surface methodology was applied for building lineal and quadratic models to find optimal germination conditions to improve nutraceutical value of wheat sprouts using the desirability (D) function. Phenolics were determined by HPLC-DAD-ESI-MS. In vitro biochemical methods and lipopolysaccharide stimulated RAW264.7 macrophages were used to determine antiradical and anti-inflammatory activities of wheat sprouts. Accumulation of soluble phenolic acids, flavone C-glycosides and lignans in sprouts was positively influenced by germination temperature and time. Increased concentration of individual polyphenols was directly associated with improved ability of sprouts for radical scavenging and reduction of tumor necrosis factor α and interleukin 6 in macrophages. Optimal desirability (D = 0.89) for improved nutraceutical value of wheat sprouts was achieved at 21 °C for 7 d. This information would be useful for food industry aiming at producing wheat-based products with better nutritional and healthy properties.
Collapse
Affiliation(s)
- Irene Tomé-Sánchez
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| | - Ana Belén Martín-Diana
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon. Ctra. de Burgos Km.119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.); (L.G.-M.)
| | - Elena Peñas
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| | - Sara Bautista-Expósito
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| | - Juana Frias
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| | - Daniel Rico
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon. Ctra. de Burgos Km.119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.); (L.G.-M.)
| | - Lorena González-Maillo
- Agricultural Technological Institute of Castile and Leon (ITACyL), Government of Castile and Leon. Ctra. de Burgos Km.119, Finca Zamadueñas, 47071 Valladolid, Spain; (A.B.M.-D.); (D.R.); (L.G.-M.)
| | - Cristina Martinez-Villaluenga
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais, 10, 28040 Madrid, Spain; (I.T.-S.); (E.P.); (S.B.-E.); (J.F.)
| |
Collapse
|
46
|
Zhao M, Lin Y, Chen H. Improving nutritional quality of rice for human health. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1397-1413. [PMID: 31915876 DOI: 10.1007/s00122-019-03530-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/30/2019] [Indexed: 05/27/2023]
Abstract
This review surveys rice nutritional value, mainly focusing on breeding achievements via adoption of both genetic engineering and non-transgenic strategies to improve key nutrients associated with human health. Rice (Oryza sativa) is an essential component of the diets and livelihoods of over 3.5 billion people. Polished rice is mostly consumed as staple food, fulfilling daily energy demands and part of the protein requirement. Brown rice is comparatively more nutritious, containing more lipids, minerals, vitamins, dietary fiber, micronutrients, and bioactive compounds. In this article, we review the nutritional facts about rice including the level of γ-aminobutyric acid, resistant starch, lysine, iron, zinc, β-carotene, folate, anthocyanin, various carotenoids, and flavonoids, focusing on their synthesis and metabolism and the advances in their biofortification via adoption of both conventional and genetic engineering strategies. We conclude that besides representing a staple food, rice has the potential to become a source of various essential nutrients or bioactive compounds through appropriate genetic improvements to benefit human health and prevent certain chronic diseases. Finally, we discuss the available, non-genetically engineering strategies for the nutritional improvement of rice, including their main strengths and constraints.
Collapse
Affiliation(s)
- Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
47
|
Nguyen BCQ, Shahinozzaman M, Tien NTK, Thach TN, Tawata S. Effect of sucrose on antioxidant activities and other health-related micronutrients in gamma-aminobutyric acid (GABA)-enriched sprouting Southern Vietnam brown rice. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Deng B, Tian S, Li S, Guo M, Liu H, Li Y, Wang Q, Zhao X. A simple, rapid and efficient method for essential element supplementation based on seed germination. Food Chem 2020; 325:126827. [PMID: 32387939 DOI: 10.1016/j.foodchem.2020.126827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/03/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Fertilizer application is typically used to increase the availability of essential elements. In this study, an improved method for essential element supplementation based on seed germination was established. Solutions of essential elements (Fe2+, Zn2+, Cu2+, Mn2+, SeO32+, or I- or their combination) were applied to germinating soybean seeds, and the contents of the essential elements in the soybean sprouts were analyzed by atomic absorption spectroscopy. Compared with the control (seeds treated with water), the contents of iron, zinc, copper, manganese, selenium, and iodine in soybean sprouts produced by germinating seeds treated with solutions containing 10 mM essential elements were approximately 10-2000 times higher. Moreover, treatment with essential element solution increased the total antioxidant capacity and content of total thiols in the soybean sprouts. This rapid and simple technique can be used to improve nutrition for humans and livestock in regions deficient in essential elements.
Collapse
Affiliation(s)
- Benliang Deng
- Life Science College, Luoyang Normal University, 471934 Luoyang, Henan, China.
| | - Shan Tian
- Life Science College, Luoyang Normal University, 471934 Luoyang, Henan, China
| | - Shipeng Li
- Life Science College, Luoyang Normal University, 471934 Luoyang, Henan, China
| | - Mingxin Guo
- Life Science College, Luoyang Normal University, 471934 Luoyang, Henan, China
| | - Hongxia Liu
- Life Science College, Luoyang Normal University, 471934 Luoyang, Henan, China
| | - Yueyue Li
- Life Science College, Luoyang Normal University, 471934 Luoyang, Henan, China
| | - Qianjin Wang
- Life Science College, Luoyang Normal University, 471934 Luoyang, Henan, China
| | - Xusheng Zhao
- Jujube Research and Applied Center, 471934 Luoyang, Henan, China.
| |
Collapse
|
49
|
Rico D, Peñas E, García MDC, Martínez-Villaluenga C, Rai DK, Birsan RI, Frias J, Martín-Diana AB. Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods 2020; 9:E296. [PMID: 32150936 PMCID: PMC7142429 DOI: 10.3390/foods9030296] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
The increasing demand for healthy food products has promoted the use of germinated seeds to produce functional flours. In this study, germination conditions were optimized in barley grains with the aim to produce flours with high nutritional and biofunctional potential using response surface methodology (RSM). The impact of germination time (0.8-6 days) and temperature (12-20 °C) on barley quality was studied. Non-germinated barley was used as the control. The content of vitamins B1, B2 and C, and proteins increased notably after germination, especially at longer times, while levels of fat, carbohydrates, fibre, and b-glucan were reduced. Total phenolic compounds, g-aminobutyric acid and antioxidant activity determined by Oxygen Radical Absorbance Capacity increased between 2-fold and 4-fold during sprouting, depending on germination conditions and this increase was more pronounced at higher temperatures (16-20 °C) and longer times (5-6 days). Procyanidin B and ferulic acid were the main phenolics in the soluble and insoluble fraction, respectively. Procyanidin B levels decreased while bound ferulic acid content increased during germination. Germinated barley flours exhibited lower brightness and a higher glycemic index than the control ones. This study shows that germination at 16 °C for 3.5 days was the optimum process to obtain nutritious and functional barley flours. Under these conditions, sprouts retained 87% of the initial b-glucan content, and exhibited levels of ascorbic acid, riboflavin, phenolic compounds and GABA between 1.4-fold and 2.5-fold higher than the non-sprouted grain.
Collapse
Affiliation(s)
- Daniel Rico
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.); (A.B.M.-D.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (C.M.-V.); (J.F.)
| | - María del Carmen García
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.); (A.B.M.-D.)
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (C.M.-V.); (J.F.)
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, 15 Dublin, Ireland; (D.K.R.); (R.I.B.)
| | - Rares I. Birsan
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, 15 Dublin, Ireland; (D.K.R.); (R.I.B.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (C.M.-V.); (J.F.)
| | - Ana B. Martín-Diana
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.); (A.B.M.-D.)
| |
Collapse
|
50
|
Wang H, Xiao N, Ding J, Zhang Y, Liu X, Zhang H. Effect of germination temperature on hierarchical structures of starch from brown rice and their relation to pasting properties. Int J Biol Macromol 2020; 147:965-972. [DOI: 10.1016/j.ijbiomac.2019.10.063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 01/05/2023]
|