1
|
Vo QV, Hoa NT, Mechler A. Carboxymethylnaringenin: a promising antioxidant in the aqueous physiological environment. Free Radic Res 2025; 59:183-189. [PMID: 39936616 DOI: 10.1080/10715762.2025.2466685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/30/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
The synthetic naringenin derivative (2S)-8-carboxymethylnaringenin (CMN) was developed for the treatment of bacterial and viral respiratory infections. There are indications that CMN may act as an antioxidant, however, no studies have been conducted in this regard. This work is aimed at assessing the antiradical capacity of CMN against various physiologically relevant species in physiological environments by using thermodynamic and kinetic calculations. According to the results, CMN only exhibits modest HOO• antiradical activity in lipid medium, modeled here as pentyl ethanoate solvent, with an overall rate constant (koverall) of 2.01 × 102 M-1 s-1. However, significant antiradical activity is predicted for the aqueous medium (koverall = 2.60 × 105 M-1s-1) that is equivalent to the activity of the reference antioxidant Trolox. In a screen performed on a range of radicals, HO•, NO2, SO4•-, N3•, CH3O•, CCl3O•, CH3OO•, and CCl3OO• were also successfully scavenged by CMN in water at physiological pH. Therefore, other than a potent drug, CMN is also a good antioxidant in polar environments.
Collapse
Affiliation(s)
- Quan V Vo
- The University of Danang - University of Technology and Education, Danang, Vietnam
| | - Nguyen Thi Hoa
- The University of Danang - University of Technology and Education, Danang, Vietnam
| | - Adam Mechler
- Department of Biochemistry and Chemistry, La Trobe University, Victoria, Australia
| |
Collapse
|
2
|
Birsa ML, Sarbu LG. Novel Dithiocarbamic Flavanones with Antioxidant Properties-A Structure-Activity Relationship Study. Int J Mol Sci 2024; 25:13698. [PMID: 39769459 PMCID: PMC11728272 DOI: 10.3390/ijms252413698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
The antioxidant properties of some 3-dithiocarbamic flavanones were investigated. Based on a previous study, we selected three frameworks that proved to be the most active ones. By varying the nature of the substituent at the para-position of flavanone ring B, a structure-activity relationship study on radical scavenging activities was performed. The influence of these substituents (H, F, Cl, Br and I) was evaluated in relation to DPPH, ABTS and FRAP. The results indicated that the presence of the halogen substituent induced better antioxidant properties than ascorbic acid and BHT. The radical scavenging activities were found to decrease in the following order: F > Cl > Br > I > H. This is correlated with the decrease in electronegativity and withdrawing inductive effect of these substituents, which make the C(2)-H bond of the benzopyran ring prone to hydrogen radical transfer.
Collapse
Affiliation(s)
- Mihail Lucian Birsa
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| | - Laura Gabriela Sarbu
- Department of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania
| |
Collapse
|
3
|
Lu L, Luan Y, Wang H, Gao Y, Wu S, Zhao X. Flavonoid as a Potent Antioxidant: Quantitative Structure-Activity Relationship Analysis, Mechanism Study, and Molecular Design by Synergizing Molecular Simulation and Machine Learning. J Phys Chem A 2024; 128:6216-6228. [PMID: 39023240 DOI: 10.1021/acs.jpca.4c03241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In this work, a quantitative structure-antioxidant activity relationship of flavonoids was performed using a machine learning (ML) method. To achieve lipid-soluble, highly antioxidant flavonoids, 398 molecular structures with various substitute groups were designed based on the flavonoid skeleton. The hydrogen dissociation energies (ΔG1, ΔG2, and ΔG3) related to multiple hydrogen atom transfer processes and the solubility parameter (δ) of flavonoids were calculated using molecular simulation. The group decomposition results and the calculated antioxidant parameters constituted the ML data set. The artificial neural network and random forest models were constructed to predict and analyze the contribution of the substitute groups and positions to the antioxidant activity. The results showed the hydroxyl group at positions B4', B5', and B6' and the branched alkyl group at position C3 in the flavonoid skeleton were the optimal choice for improving antioxidant activity and compatibility with apolar organic materials. Compared to the pyrogallol group-grafted flavonoid, the designed potent flavonoid decreased ΔG1 and δ by 2.2 and 15.1%, respectively, while ΔG2 and ΔG3 kept the favorable lower values. These findings suggest that an efficient flavonoid prefers multiple ortho-phenolic hydroxyl groups and suitable sites with hydrophobic groups. The combination of molecular simulation and the ML method may offer a new research approach for the molecular design of novel antioxidants.
Collapse
Affiliation(s)
- Ling Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, P. R. China
| | - Yajie Luan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huaqi Wang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yangyang Gao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiuying Zhao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Wang Y, Li C, Li Z, Moalin M, den Hartog GJM, Zhang M. Computational Chemistry Strategies to Investigate the Antioxidant Activity of Flavonoids-An Overview. Molecules 2024; 29:2627. [PMID: 38893503 PMCID: PMC11173571 DOI: 10.3390/molecules29112627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Despite several decades of research, the beneficial effect of flavonoids on health is still enigmatic. Here, we focus on the antioxidant effect of flavonoids, which is elementary to their biological activity. A relatively new strategy for obtaining a more accurate understanding of this effect is to leverage computational chemistry. This review systematically presents various computational chemistry indicators employed over the past five years to investigate the antioxidant activity of flavonoids. We categorize these strategies into five aspects: electronic structure analysis, thermodynamic analysis, kinetic analysis, interaction analysis, and bioavailability analysis. The principles, characteristics, and limitations of these methods are discussed, along with current trends.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| | - Gertjan J. M. den Hartog
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.J.M.d.H.)
| | - Ming Zhang
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
5
|
Huang Z, Wang Q, Cao J, Zhou D, Li C. Mechanisms of polyphenols on quality control of aquatic products in storage: A review. Crit Rev Food Sci Nutr 2024; 64:6298-6317. [PMID: 36655433 DOI: 10.1080/10408398.2023.2167803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Aquatic products are easily spoiled during storage due to oxidation, endogenous enzymes, and bacteria. At the same time, compared with synthetic antioxidants, based on the antibacterial and antioxidant mechanism of biological agents, the development of natural, nontoxic, low-temperature, better-effect green biological preservatives is more acceptable to consumers. The type and molecular structure of polyphenols affect their antioxidant and antibacterial effectiveness. This review will describe how they achieve their antioxidant and antibacterial effects. And the recent literature on the mechanism and application of polyphenols in the preservation of aquatic products was updated and summarized. The conclusion is that in aquatic products, polyphenols alleviate lipid oxidation, protein degradation and inhibit the growth and reproduction of microorganisms, so as to achieve the effect of storage quality control. And put forward suggestions on the application of the research results in aquatic products. We hope to provide theoretical support for better exploration of the application of polyphenols and aquatic product storage.
Collapse
Affiliation(s)
- Zhiliang Huang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qi Wang
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Jun Cao
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Dayong Zhou
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Chuan Li
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, School of Food Science and Engineering, Hainan University, Haikou, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
6
|
Miličević A. Flavonoid Oxidation Potentials and Antioxidant Activities-Theoretical Models Based on Oxidation Mechanisms and Related Changes in Electronic Structure. Int J Mol Sci 2024; 25:5011. [PMID: 38732228 PMCID: PMC11084570 DOI: 10.3390/ijms25095011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Herein, I will review our efforts to develop a comprehensive and robust model for the estimation of the first oxidation potential, Ep1, and antioxidant activity, AA, of flavonoids that would, besides enabling fast and cheap prediction of Ep1 and AA for a flavonoid of interest, help us explain the relationship between Ep1, AA and electronic structure. The model development went forward with enlarging the set of flavonoids and, that way, we had to learn how to deal with the structural peculiarities of some of the 35 flavonoids from the final calibration set, for which the Ep1 measurements were all made in our laboratory. The developed models were simple quadratic models based either on atomic spin densities or differences in the atomic charges of the species involved in any of the three main oxidation mechanisms. The best model takes into account all three mechanisms of oxidation, single electron transfer-proton transfer (SET-PT), sequential proton loss electron transfer (SPLET) and hydrogen atom transfer (HAT), yielding excellent statistics (R2 = 0.970, S.E. = 0.043).
Collapse
Affiliation(s)
- Ante Miličević
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, HR-10000 Zagreb, Croatia
| |
Collapse
|
7
|
Han H, Wang C, Yang X, Wang L, Ye J, Xu F, Liao Y, Zhang W. Role of bZIP transcription factors in the regulation of plant secondary metabolism. PLANTA 2023; 258:13. [PMID: 37300575 DOI: 10.1007/s00425-023-04174-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
MAIN CONCLUSION This study provides an overview of the structure, classification, regulatory mechanisms, and biological functions of the basic (region) leucine zipper transcription factors and their molecular mechanisms in flavonoid, terpenoid, alkaloid, phenolic acid, and lignin biosynthesis. Basic (region) leucine zippers (bZIPs) are evolutionarily conserved transcription factors (TFs) in eukaryotic organisms. The bZIP TFs are widely distributed in plants and play important roles in plant growth and development, photomorphogenesis, signal transduction, resistance to pathogenic microbes, biotic and abiotic stress, and secondary metabolism. Moreover, the expression of bZIP TFs not only promotes or inhibits the accumulation of secondary metabolites in medicinal plants, but also affects the stress response of plants to the external adverse environment. This paper describes the structure, classification, biological function, and regulatory mechanisms of bZIP TFs. In addition, the molecular mechanism of bZIP TFs regulating the biosynthesis of flavonoids, terpenoids, alkaloids, phenolic acids, and lignin are also elaborated. This review provides a summary for in-depth study of the molecular mechanism of bZIP TFs regulating the synthesis pathway of secondary metabolites and plant molecular breeding, which is of significance for the generation of beneficial secondary metabolites and the improvement of plant varieties.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Caini Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| |
Collapse
|
8
|
Ma G, Wang Y, Li Y, Zhang L, Gao Y, Li Q, Yu X. Antioxidant properties of lipid concomitants in edible oils: A review. Food Chem 2023; 422:136219. [PMID: 37148851 DOI: 10.1016/j.foodchem.2023.136219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
Edible oils are indispensable for human life, providing energy and necessary fatty acids. Nevertheless, they are vulnerable to oxidation via a number of different mechanisms. Essential nutrients deteriorate as well as toxic substances are produced when edible oils are oxidized; thus, they should be retarded wherever possible. Lipid concomitants have a strong antioxidant capacity and are a large class of biologically active chemical substances in edible oils. They have shown remarkable antioxidant properties and were documented to improve the quality of edible oils in varied ways. An overview of the antioxidant properties of the polar, non-polar, and amphiphilic lipid concomitants present in edible oils is provided in this review. Interactions among various lipid concomitants and the probable mechanisms are also elucidated. This review may provide a theoretical basis and practical reference for food industry practitioners and researchers to understand the underlying cause of variations in the quality of edible oils.
Collapse
Affiliation(s)
- Gaiqin Ma
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuanyuan Wang
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuefan Li
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Lingyan Zhang
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Yuan Gao
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Qi Li
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China
| | - Xiuzhu Yu
- Shaanxi Union Research Center of University and Enterprise for Functional Oil Engineering Technology, College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100 Shaanxi, PR China.
| |
Collapse
|
9
|
Štellerová D, Michalík M, Lukeš V. Methoxylated flavones with potential therapeutic and photo-protective attributes: Theoretical investigation of substitution effect. PHYTOCHEMISTRY 2022; 203:113387. [PMID: 36055427 DOI: 10.1016/j.phytochem.2022.113387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The molecular and electronic structure of parent flavone and 49 (poly)methoxylated flavones (P)MFs were studied theoretically. Selected group of flavonoids consists of compounds naturally occurring in citrus plants or synthetic derivatives of flavone. These compounds exhibit several bioactivities in vitro and in vivo and can protect plants from solar ultraviolet (UV) radiation. Substitution induced structural changes in (P)MFs were correlated with published experimental values of P-glycoprotein inhibition effect. We have demonstrated that the C5-C10 bond length of 1-benzopyran-4-one moiety represents a suitable structural descriptor for this bioactivity. Obtained linear equations for the compounds with substituted and non-substituted C3 position enable the prediction of the potential anti-cancer chemo-preventive effect of the rest of studied (P)MFs. Consequently, potentially more effective substances were suggested. Optical properties of (P)MFs and their relationship with the molecular structure was examined in detail for methanol environment, as well. The multiple linear regression model was applied to assess the correlation between experimental absorption and fluorescence wavelengths with the theoretically predicted ones. The UV photo-protective potential of studied derivatives was estimated from the calculated optical properties.
Collapse
Affiliation(s)
- Dagmar Štellerová
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Martin Michalík
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia
| | - Vladimír Lukeš
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37, Bratislava, Slovakia.
| |
Collapse
|
10
|
Parcheta M, Świsłocka R, Świderski G, Matejczyk M, Lewandowski W. Spectroscopic Characterization and Antioxidant Properties of Mandelic Acid and Its Derivatives in a Theoretical and Experimental Approach. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5413. [PMID: 35955349 PMCID: PMC9369768 DOI: 10.3390/ma15155413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The following article discusses the antioxidant properties of mandelic acid and its hydroxy and methoxy derivatives. The antioxidant capacity of these compounds is determined by DPPH, FRAP, CUPRAC and ABTS. The mechanisms underlying the antioxidant properties are described by BDE, IP, PDE, ETE and PA calculation method values and referenced to experimental data. Thermochemistry, HOMO/LUMO energies, dipole moments, charge distribution, IR, RAMAN, NMR frequencies, binding lengths and angles were calculated using the B3LYP method and the 6-311++G(d,p) basis set. The structure of mandelic acid and its derivatives was determined experimentally using IR and RAMAN spectroscopy.
Collapse
|
11
|
Platzer M, Kiese S, Tybussek T, Herfellner T, Schneider F, Schweiggert-Weisz U, Eisner P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front Nutr 2022; 9:882458. [PMID: 35445057 PMCID: PMC9013829 DOI: 10.3389/fnut.2022.882458] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Due to their antioxidant properties, secondary plant metabolites can scavenge free radicals such as reactive oxygen species and protect foods from oxidation processes. Our aim was to study structural influences, like basic structure, number of hydroxyl groups and number of Bors criteria on the outcome of the oxygen radical absorbance capacity (ORAC) assay. Furthermore, similarities and differences to other in vitro antioxidant assays were analyzed by principal component analysis. Our studies confirmed that the antioxidant behavior in the ORAC assay is dominated by the number and types of substituents and not by the Bors criteria, as long as no steric hindrance occurs. For example, morin (MOR) with five hydroxyl groups and two Bors criteria reached an area under the curve of (3.64 ± 0.08) × 105, which was significantly higher than quercetin-7-D-glucoside (QGU7) (P < 0.001), and thus the highest result. Principal component analysis showed different dependencies regarding structural properties of Folin-Ciocalteu (FC)- and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-assays or 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS)- and ORAC-assays, respectively. Therefore, we conclude that they are based on different reaction mechanisms. The number of hydroxyl groups showed a stronger influence on the antioxidant activity than the Bors criteria. Due to these differences, the correlation of these rapid tests to specific applications should be validated.
Collapse
Affiliation(s)
- Melanie Platzer
- TUM School of Life Sciences Weihenstephan, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- *Correspondence: Melanie Platzer
| | - Sandra Kiese
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Thorsten Tybussek
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Thomas Herfellner
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Franziska Schneider
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - Ute Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Chair of Food Science, Institute for Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| | - Peter Eisner
- TUM School of Life Sciences Weihenstephan, ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
- Faculty of Technology and Engineering, Steinbeis-Hochschule, Dresden, Germany
| |
Collapse
|
12
|
Cheng C, Yu X, Geng F, Wang L, Yang J, Huang F, Deng Q. Review on the Regulation of Plant Polyphenols on the Stability of Polyunsaturated-Fatty-Acid-Enriched Emulsions: Partitioning Kinetic and Interfacial Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3569-3584. [PMID: 35306817 DOI: 10.1021/acs.jafc.1c05335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant polyphenols are normally presented as natural functional antioxidants, which also possess the potential ability to improve the physicochemical stability of polyunsaturated fatty acid (PUFA)-enriched emulsions by interface engineering. This review discussed the potential effects of polyphenols on the stability of PUFA-enriched emulsions from the perspective of the molecular thermodynamic antioxidative analysis, the kinetic of interfacial partitioning, and the covalent and non-covalent interactions with emulsifiers. Recently, research studies have proven that the interfacial structure of emulsions can be concurrently optimized via promoting interfacial partitioning of polyphenols and further increasing interfacial thickness and strength. Moreover, the applied limitations of polyphenols in PUFA-enriched emulsions were summarized, and then some valuable and constructive viewpoints were put forward in this review to provide guidance for the use of polyphenols in constructing PUFA-enriched emulsions.
Collapse
Affiliation(s)
- Chen Cheng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xiao Yu
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, Sichuan 610106, People's Republic of China
| | - Lei Wang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Jing Yang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
13
|
Beladhadi RV, Shankar K, Jayalakshmi SK, Sreeramulu K. Valorization of rice biomass by a green approach to release phenolic compounds and their antioxidant activities. Prep Biochem Biotechnol 2022; 53:93-100. [PMID: 35262459 DOI: 10.1080/10826068.2022.2042821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the present context, we have assessed the green approach for the extraction of phenolics from agro-residues of rice viz., rice bran, and rice straw using water as an extracting solvent. The extraction was optimized with respect to time, temperature, pH, and solid (agro-residues) to liquid (water) ratio. The hydrolysates obtained were determined for phenolics and their antioxidant activities. The maximum total phenolic content (61.32 mg/100 g GAE), flavonoid content (13.19 mg/100 g QE), and tannin content (58.33 mg/100 g TAE) were obtained for rice bran followed by rice straw at pH 5, 1:20 (solid: liquid) for 10 min of extraction. Also, higher antioxidant properties (78.03% for DPPH, 86.45% for ABTS, and 0.85 absorbance at 700 nm for FRAP) were observed for the extracts of rice bran. Caffeic acid, gallic acid, p-coumaric acid, syringic acid, ferulic acid, 2,5-dihydroxy benzoic acid, kaemferol, quercetin, and epicatechin were analyzed by HPLC in both the rice biomass used. This study significantly converts rice biomass to antioxidative phenolic compounds under simple extraction conditions favoring the waste management process and also adding value to the waste biomass.
Collapse
Affiliation(s)
- R V Beladhadi
- Department of Biochemistry, Gulbarga University, Kalaburagi, India.,University of Agriculture Sciences, Raichur, India
| | - Kumar Shankar
- Department of Biochemistry, Gulbarga University, Kalaburagi, India
| | - S K Jayalakshmi
- College of Agriculture, University of Agricultural Sciences-Raichur, Kalaburagi, India
| | | |
Collapse
|
14
|
Speisky H, Shahidi F, Costa de Camargo A, Fuentes J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants (Basel) 2022; 11:antiox11010133. [PMID: 35052636 PMCID: PMC8772813 DOI: 10.3390/antiox11010133] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids display a broad range of health-promoting bioactivities. Among these, their capacity to act as antioxidants has remained most prominent. The canonical reactive oxygen species (ROS)-scavenging mode of the antioxidant action of flavonoids relies on the high susceptibility of their phenolic moieties to undergo oxidation. As a consequence, upon reaction with ROS, the antioxidant capacity of flavonoids is severely compromised. Other phenol-compromising reactions, such as those involved in the biotransformation of flavonoids, can also markedly affect their antioxidant properties. In recent years, however, increasing evidence has indicated that, at least for some flavonoids, the oxidation of such residues can in fact markedly enhance their original antioxidant properties. In such apparent paradoxical cases, the antioxidant activity arises from the pro-oxidant and/or electrophilic character of some of their oxidation-derived metabolites and is exerted by activating the Nrf2–Keap1 pathway, which upregulates the cell’s endogenous antioxidant capacity, and/or, by preventing the activation of the pro-oxidant and pro-inflammatory NF-κB pathway. This review focuses on the effects that the oxidative and/or non-oxidative modification of the phenolic groups of flavonoids may have on the ability of the resulting metabolites to promote direct and/or indirect antioxidant actions. Considering the case of a metabolite resulting from the oxidation of quercetin, we offer a comprehensive description of the evidence that increasingly supports the concept that, in the case of certain flavonoids, the oxidation of phenolics emerges as a mechanism that markedly amplifies their original antioxidant properties. An overlooked topic of great phytomedicine potential is thus unraveled.
Collapse
Affiliation(s)
- Hernan Speisky
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
- Correspondence: (H.S.); (J.F.); Tel.: +56-(2)-2978-1519 (H.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Adriano Costa de Camargo
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
| | - Jocelyn Fuentes
- Laboratory of Antioxidants, Nutrition and Food Technology Institute, University of Chile, Santiago 7810000, Chile;
- Faculty of Medicine, School of Kinesiology, Universidad Finis Terrae, Santiago 7501015, Chile
- Correspondence: (H.S.); (J.F.); Tel.: +56-(2)-2978-1519 (H.S.)
| |
Collapse
|
15
|
Development of antioxidant active PVA films with plant extract of Caesalpinia ferrea Martius. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Synthesis, Antiproliferative Activity and Radical Scavenging Ability of 5- O-Acyl Derivatives of Quercetin. Molecules 2021; 26:molecules26061608. [PMID: 33799363 PMCID: PMC7999741 DOI: 10.3390/molecules26061608] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022] Open
Abstract
Quercetin is a flavonoid that is found in many plant materials, including commonly eaten fruits and vegetables. The compound is well known for its wide range of biological activities. In this study, 5-O-acyl derivatives of quercetin were synthesised and assessed for their antiproliferative activity against the HCT116 colon cancer and MDA-MB-231 breast cancer cell lines; and their radical scavenging activity against the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical species. Four derivatives were found to have improved the antiproliferative activity compared to quercetin whilst retaining radical scavenging activity.
Collapse
|
17
|
Mansouri H, Mekelleche SM. Radical scavenging activity of hydroxycinnamic acids in polar and nonpolar solvents: A computational investigation. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620500327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this work is to perform a computational study of the radical scavenging activity of a series of common hydroxycinnamic acids (HCAs) in polar and nonpolar solvents in order to rationalize the experimental order obtained in ethanol and to analyze the solvent effect on mechanism and radical scavenging capacity. The thermodynamics of the main mechanisms, namely, hydrogen atom transfer (HAT), sequential proton loss followed by electron transfer (SPLET), and single electron transfer followed by proton transfer (SET-PT) were investigated at the M05-2X/6-31[Formula: see text]G([Formula: see text]) level of theory using the SMD solvation model. This study shows that the SET-PT mechanism is disfavored in all media, whereas HAT is the most thermodynamically favored mechanism in gas phase and SPLET is the preferred reaction pathway in pentyl ethanoate, ethanol and water. The thermodynamically preferred site of antioxidant action and the radical scavenging order are predicted using the BDE[Formula: see text] and (PA[Formula: see text]ETE)[Formula: see text] descriptors corresponding to the HAT and SPLET mechanisms, respectively. The obtained results point out that the mechanism and the radical scavenging potency are influenced by solvent polarity and our predictions are in agreement with the experimental measurements performed in ethanol giving the following descending order: caffeic [Formula: see text] [Formula: see text] [Formula: see text]-coumaric acid. Our results also show that the ortho substitution of caffeic acid by strong electron donating groups leads to a notable increase of their radical scavenging activity and new potent HCA derivatives are designed.
Collapse
Affiliation(s)
- Hadjer Mansouri
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| | - Sidi Mohamed Mekelleche
- Laboratory of Applied Thermodynamics and Molecular Modelling, Department of Chemistry, Faculty of Science, University of Tlemcen, BP 119, Tlemcen 13000, Algeria
| |
Collapse
|
18
|
Li Z, Moalin M, Zhang M, Vervoort L, Hursel E, Mommers A, Haenen GRMM. The Flow of the Redox Energy in Quercetin during Its Antioxidant Activity in Water. Int J Mol Sci 2020; 21:E6015. [PMID: 32825576 PMCID: PMC7504380 DOI: 10.3390/ijms21176015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022] Open
Abstract
Most studies on the antioxidant activity of flavonoids like Quercetin (Q) do not consider that it comprises a series of sequential reactions. Therefore, the present study examines how the redox energy flows through the molecule during Q's antioxidant activity, by combining experimental data with quantum calculations. It appears that several main pathways are possible. Pivotal are subsequently: deprotonation of the 7-OH group; intramolecular hydrogen transfer from the 3-OH group to the 4-Oxygen atom; electron transfer leading to two conformers of the Q radical; deprotonation of the OH groups in the B-ring, leading to three different deprotonated Q radicals; and finally electron transfer of each deprotonated Q radical to form the corresponding quercetin quinones. The quinone in which the carbonyl groups are the most separated has the lowest energy content, and is the most abundant quinone. The pathways are also intertwined. The calculations show that Q can pick up redox energy at various sites of the molecule which explains Q's ability to scavenge all sorts of reactive oxidizing species. In the described pathways, Q picked up, e.g., two hydroxyl radicals, which can be processed and softened by forming quercetin quinone.
Collapse
Affiliation(s)
- Zhengwen Li
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Mohamed Moalin
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
- Research Centre Material Sciences, Zuyd University of Applied Sciences, 6419 DJ Heerlen, The Netherlands
| | - Ming Zhang
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Lily Vervoort
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Erik Hursel
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Alex Mommers
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; (M.M.); (M.Z.); (L.V.); (E.H.); (A.M.)
| |
Collapse
|
19
|
Lipid peroxidation inhibition study: A promising case of 1,3-di([1,1'-biphenyl]-3-yl)urea. Chem Biol Interact 2020; 326:109137. [PMID: 32442417 DOI: 10.1016/j.cbi.2020.109137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
In the present study eighteen inhibitors of the hydrolytic enzymes of the endocannabinoid system were investigated for antioxidant activity using lipid peroxidation (LP) method. Among the assayed compounds ten belong to carbamates with phenyl [1,1'-biphenyl]-3-ylcarbamate (6), reported for the first time, and eight are retro-amide derivatives of palmitamine. Interestingly, results indicated that most of the tested compounds have good antioxidant properties. In particular, 1,3-di([1,1'-biphenyl]-3-yl)urea (3) shows IC50 = 26 ± 6 μM comparable to ones obtained for standard antioxidants trolox and quercetin (IC50 = 22 ± 6 μM and 23 ± 6 μM, respectively). Compound 3 was investigated further by means of DFT calculations, to clarify a possible mechanism of the antioxidant action. In order to estimate the capability of 3 to act as radical scavenger the structure was optimized at B3LYP/6-311++G** level and the respective bond dissociation enthalpies were calculated. The calculations in non-polar medium predicted as favorable mechanism a donation of a hydrogen atom to the free radical and formation of N-centered radical, while in polar solvents the mechanism of free radical scavenging by SPLET dominates over HAT H-abstraction. The possible radical scavenging mechanisms of another compound with potent antioxidant properties (IC50 = 53 ± 12 μM), the retro-amide derivative of palmitamine (compound 18), was estimated computationally based on the reaction enthalpies of a model compound (structural analogue to 18). The computations indicated that the most favorable mechanisms are hydrogen atom transfer from the hydroxyl group in meta-position of the benzamide fragment in nonpolar medium, and proton transfer from the hydroxyl group in ortho-position of the benzamide fragment in polar medium.
Collapse
|
20
|
Flavones' and Flavonols' Antiradical Structure-Activity Relationship-A Quantum Chemical Study. Antioxidants (Basel) 2020; 9:antiox9060461. [PMID: 32471289 PMCID: PMC7346117 DOI: 10.3390/antiox9060461] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 01/07/2023] Open
Abstract
Flavonoids are known for their antiradical capacity, and this ability is strongly structure-dependent. In this research, the activity of flavones and flavonols in a water solvent was studied with the density functional theory methods. These included examination of flavonoids’ molecular and radical structures with natural bonding orbitals analysis, spin density analysis and frontier molecular orbitals theory. Calculations of determinants were performed: specific, for the three possible mechanisms of action—hydrogen atom transfer (HAT), electron transfer–proton transfer (ETPT) and sequential proton loss electron transfer (SPLET); and the unspecific—reorganization enthalpy (RE) and hydrogen abstraction enthalpy (HAE). Intramolecular hydrogen bonding, catechol moiety activity and the probability of electron density swap between rings were all established. Hydrogen bonding seems to be much more important than the conjugation effect, because some structures tends to form more intramolecular hydrogen bonds instead of being completely planar. The very first hydrogen abstraction mechanism in a water solvent is SPLET, and the most privileged abstraction site, indicated by HAE, can be associated with the C3 hydroxyl group of flavonols and C4’ hydroxyl group of flavones. For the catechol moiety, an intramolecular reorganization to an o-benzoquinone-like structure occurs, and the ETPT is favored as the second abstraction mechanism.
Collapse
|
21
|
Miličević A, Miletić G, Novak Jovanović I. Electrochemical oxidation of flavonoids: PM6 and DFT for elucidating electronic changes and modelling oxidation potential (part II). J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Cheng C, Yu X, McClements DJ, Huang Q, Tang H, Yu K, Xiang X, Chen P, Wang X, Deng Q. Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions. Food Chem 2019; 301:125207. [PMID: 31377621 DOI: 10.1016/j.foodchem.2019.125207] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Abstract
Recent studies have shown that the high susceptibility of flaxseed oil nanoemulsions to lipid oxidation limits their incorporation into functional foods and beverages. For this reason, the impact of various flaxseed phenolic extracts on the physical and oxidative stability of flaxseed oil nanoemulsions was investigated. Flaxseed lignan extract (FLE) and secoisolariciresinol (SECO) exhibited antioxidant activity whereas secoisolariciresinol diglucoside (SDG) and p-coumaric acid (CouA) exhibited prooxidant activity in the flaxseed oil nanoemulsions. The antioxidant potential of flaxseed phenolics in the nanoemulsions was as follows: SECO < CouA < SDG ≈ FLE. Moreover, the antioxidant/prooxidant activity of the phenolics was also related to their free radical scavenging activity and partitioning in the nanoemulsions. Our results suggested that both SECO and FLE were good plant-based antioxidants for improving the stability of flaxseed oil nanoemulsions.
Collapse
Affiliation(s)
- Chen Cheng
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiao Yu
- College of Food and Biological Engineering, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | | | - Qingde Huang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hu Tang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kun Yu
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Peng Chen
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xintian Wang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
23
|
Miličević A, Miletić G, Novak Jovanović I. Electrochemical oxidation of flavonoids: PM6 and DFT for elucidating electronic changes and modelling oxidation potential. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
The relationship between antioxidant activity, first electrochemical oxidation potential, and spin population of flavonoid radicals. Arh Hig Rada Toksikol 2019; 70:134-139. [PMID: 31246570 DOI: 10.2478/aiht-2019-70-3290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 11/20/2022] Open
Abstract
I have shown that by averaging antioxidant activity (AA) values measured by different methods it is possible to obtain an excellent correlation (R2=0.960) between the first electrochemical oxidation potential, Ep1, and AA. Separate correlations using the AA values obtained with each of the four methods [R2 were 0.561 for diphenyl-1-picrylhydrazyl (DPPH), 0.849 for Folin Ciocalteu reagent (FCR), 0.848 for the ferric-reducing ability of plasma (FRAP), and 0.668 for the Trolox equivalent antioxidant capacity (TEAC)] were all worse, and in some cases not useful at all, such as the one for DPPH. Also, the sum of atomic orbital spin populations on the carbon atoms in the skeleton of radicals ( s(C) Σ AOSPRad), calculated with the semi-empirical parameterisation method 6 (PM6) in water, was used to correlate both Ep1 and AA, yielding R2=0.926 and 0.950, respectively. This showed to be a much better variable for the estimation of Ep1 and AA than the bond dissociation energy (BDE), R2=0.854 and 0.901 for Ep1 and AA, respectively, and especially the ionisation potential (IP), R2=0.445 and 0.435 for Ep1 and AA, respectively.
Collapse
|
25
|
Lahmidi S, Anouar EH, El Hafi M, Boulhaoua M, Ejjoummany A, El Jemli M, Essassi EM, Mague JT. Synthesis, X-ray, spectroscopic characterization, DFT and antioxidant activity of 1,2,4-triazolo[1,5-a]pyrimidine derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Xiao Z, Wang Y, Wang J, Li P, Ma F. Structure-antioxidant capacity relationship of dihydrochalcone compounds in Malus. Food Chem 2018; 275:354-360. [PMID: 30724207 DOI: 10.1016/j.foodchem.2018.09.135] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/04/2023]
Abstract
The antioxidant capacity (AC) of six dihydrochalcone compounds was evaluated using DPPH and ABTS assays. In water-based solution 3-hydroxyphlorizin exhibited the highest AC among all dihydrochalcones. In acetone and acidic solutions (pH = 2.5 or 2.0), presence of an o-dihydroxyl at the B-ring increased AC, whereas glycosylation at the A-ring decreased AC of dihydrochalcones. By comparing the AC of dihydrochalcones with similar structures, it was found that the o-dihydroxyl at the B-ring and 2'-hydroxyl group at the A-ring were critical for maintaining the AC of dihydrochalcones by promoting hydrogen atom transfer or single electron transfer mechanism. Sequential proton-loss electron transfer commonly occurred during free radical scavenging in water-based solution. Moreover, we report a unique phenomenon in which glycosylation at the 2'-position enhanced the dissociation ability of the 4'-hydroxyl group and increased the AC of dihydrochalcones containing o-dihydroxyl. We speculate that this increase in AC might occur through intramolecular electron transfer.
Collapse
Affiliation(s)
- Zhengcao Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yule Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinxiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
27
|
QSAR of the free radical scavenging potency of selected hydroxyanthraquinones. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0534-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
Li X, Xie Y, Li K, Wu A, Xie H, Guo Q, Xue P, Maleshibek Y, Zhao W, Guo J, Chen D. Antioxidation and Cytoprotection of Acteoside and Its Derivatives: Comparison and Mechanistic Chemistry. Molecules 2018; 23:molecules23020498. [PMID: 29473886 PMCID: PMC6017589 DOI: 10.3390/molecules23020498] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022] Open
Abstract
The study tried to explore the role of sugar-residues and mechanisms of phenolic phenylpropanoid antioxidants. Acteoside, along with its apioside forsythoside B and rhamnoside poliumoside, were comparatively investigated using various antioxidant assays. In three electron-transfer (ET)-based assays (FRAP, CUPRAC, PTIO•-scavenging at pH 4.5), the relative antioxidant levels roughly ruled as: acteoside >forsythoside B > poliumoside. Such order was also observed in H⁺-transfer-involved PTIO•-scavenging assay at pH 7.4, and in three multiple-pathway-involved radical-scavenging assays, i.e., ABTS⁺•-scavenging, DPPH•-scavenging, and •O₂--scavenging. In UV-vis spectra, each of them displayed a red-shift at 335→364 nm and two weak peaks (480 and 719 nm), when mixed with Fe2+; however, acteoside gave the weakest absorption. In Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis, no radical-adduct-formation (RAF) peak was found. MTT assay revealed that poliumoside exhibited the highest viability of oxidative-stressed bone marrow-derived mesenchymal stem cells. In conclusion, acteoside, forsythoside B, and poliumoside may be involved in multiple-pathways to exert the antioxidant action, including ET, H⁺-transfer, or Fe2+-chelating, but not RAF. The ET and H⁺-transfer may be hindered by rhamnosyl and apiosyl moieties; however, the Fe2+-chelating potential can be enhanced by two sugar-residues (especially rhamnosyl moiety). The general effect of rhamnosyl and apiosyl moieties is to improve the antioxidant or cytoprotective effects.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yulu Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ke Li
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Aizhi Wu
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hong Xie
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- Innovative Research & Development Laboratory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qian Guo
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- School of Basic Medical Science, Guangdong Pharmaceutical University, Guangzhou 510007, China.
| | - Penghui Xue
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yerkingul Maleshibek
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Wei Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road. 2, Guangzhou 510080, China.
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China.
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
29
|
El Bakri Y, Anouar EH, Ramli Y, Essassi EM, Mague JT. Synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis, and DFT calculations of 1,4-dimethyl-2-oxo-pyrimido[1,2-a]benzimidazole hydrate. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Bjørklund G, Dadar M, Chirumbolo S, Lysiuk R. Flavonoids as detoxifying and pro-survival agents: What's new? Food Chem Toxicol 2017; 110:240-250. [PMID: 29079495 DOI: 10.1016/j.fct.2017.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/22/2017] [Indexed: 02/06/2023]
Abstract
The role of flavonoids in the survival machinery of cells has come in the spotlight due to the recent evidence of their effect on the relationship mitochondria-ER stress-proteasome, including the intracellular mechanisms of autophagy and apoptosis. Numerous experimental animal investigations and even human clinical studies have highlighted the major role of these natural compounds in the economy of life and their deep relationship with autotrophic organisms in the evolutionary space. Their role as anti-oxidant and oxidative stress preventive molecules has to date been investigated extensively in the literature. Despite this great amount of promising evidence, many concerns, however, remain, most of which dealing with biochemistry, bioavailability, pharmacokinetics, and interaction of flavonoids with gut microbiome, issues that make difficult any good attempt to introduce these molecules in the human healthcare systems as possible, encouraging therapeutic substances. This review tries to address and elucidate these items.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
31
|
Li X. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-Oxide (PTIO •) Radical Scavenging: A New and Simple Antioxidant Assay In Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6288-6297. [PMID: 28689421 DOI: 10.1021/acs.jafc.7b02247] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Current in vitro antioxidant assays have several limitations, which frequently cause inconsistent results. The study develops a new antioxidant assay using the 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•). After the investigation of various factors, the experimental protocol was briefly recommended as follows: PTIO• and the sample solution were added to phosphate buffer (pH 7.4, 50 mM), incubated at 37 °C for 2 h, and then spectrophotometrically measured at 557 nm. The validation test based on 20 pure compounds and 30 lyophilized aqueous extracts suggested that PTIO• scavenging had a good linear relationship, stability, and reproducibility. In the ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry analysis, PTIO• was observed to give m/z 234 when encountering l-ascorbic acid. As an antioxidant assay, PTIO• scavenging possesses four advantages, i.e., oxygen-centered radical, physiological aqueous solution, simple and direct measurement, and less interference from the tested sample. It can also satisfactorily analyze the antioxidant structure-activity relationship. PTIO• scavenging has no stereospecificity and is at least involved in H+ transfer.
Collapse
Affiliation(s)
- Xican Li
- School of Chinese Herbal Medicine and Innovative Research and Development Laboratory of TCM, Guangzhou University of Chinese Medicine , 232 Waihuan East Road, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
32
|
Sokolová R, Kocábová J, Marhol P, Fiedler J, Biedermann D, Vacek J, Křen V. Oxidation of Natural Bioactive Flavonolignan 2,3-Dehydrosilybin: An Electrochemical and Spectral Study. J Phys Chem B 2017; 121:6841-6846. [DOI: 10.1021/acs.jpcb.7b04651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romana Sokolová
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jana Kocábová
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Petr Marhol
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jan Fiedler
- J.
Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - David Biedermann
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jan Vacek
- Faculty
of Medicine and Dentistry, Palacký University, Hněvotínská
3, 77515 Olomouc, Czech Republic
| | - Vladimír Křen
- Institute
of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
33
|
Antimicrobial and antioxidant activities of Flammulina velutipes polysacchrides and polysacchride-iron(III) complex. Carbohydr Polym 2017; 161:26-32. [DOI: 10.1016/j.carbpol.2016.12.069] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 11/22/2022]
|
34
|
Importance of hydrogen bonding and aromaticity indices in QSAR modeling of the antioxidative capacity of selected (poly)phenolic antioxidants. J Mol Graph Model 2017; 72:240-245. [DOI: 10.1016/j.jmgm.2017.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/30/2022]
|
35
|
Free radical scavenging potency of quercetin catecholic colonic metabolites: Thermodynamics of 2H+/2e− processes. Food Chem 2017; 218:144-151. [DOI: 10.1016/j.foodchem.2016.09.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/11/2016] [Accepted: 09/05/2016] [Indexed: 01/05/2023]
|
36
|
Jabeen E, Janjua NK, Ahmed S, Murtaza I, Ali T, Hameed S. Radical scavenging propensity of Cu 2+, Fe 3+ complexes of flavonoids and in-vivo radical scavenging by Fe 3+-primuletin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:432-438. [PMID: 27572737 DOI: 10.1016/j.saa.2016.08.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Cu2+ and Fe3+ complexes of three flavonoids (morin or mo, quercetin or quer and primuletin or prim) were synthesized with the objective of improving antioxidant capacities of flavonoids. The radical scavenging activities of pure flavonoids and their metal complexes were assayed to monitor their tendencies towards sequestering of radicals at physiological conditions. The scavenger potencies of metal-flavonoid complexes were significantly higher than those of the parent flavonoids. Further, influence of the solvent polarity on the radical capturing by flavonoids and their metal complexes was in favor for the polar solvent. Fe3+-prim displayed its radical scavenging ability via up gradation of CAT and SOD activities in in-vivo antioxidant assays.
Collapse
Affiliation(s)
- Erum Jabeen
- Department of Chemistry, Quaid-i-Azam University, Islamabad -45320, Pakistan
| | | | - Safeer Ahmed
- Department of Chemistry, Quaid-i-Azam University, Islamabad -45320, Pakistan
| | - Iram Murtaza
- Department of Biochemistry, Quaid-i-Azam University, Islamabad -45320, Pakistan
| | - Tahir Ali
- Department of Biochemistry, Quaid-i-Azam University, Islamabad -45320, Pakistan
| | - Shahid Hameed
- Department of Chemistry, Quaid-i-Azam University, Islamabad -45320, Pakistan
| |
Collapse
|
37
|
Arriagada F, Correa O, Günther G, Nonell S, Mura F, Olea-Azar C, Morales J. Morin Flavonoid Adsorbed on Mesoporous Silica, a Novel Antioxidant Nanomaterial. PLoS One 2016; 11:e0164507. [PMID: 27812111 PMCID: PMC5094702 DOI: 10.1371/journal.pone.0164507] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
Morin (2´,3, 4´,5,7-pentahydroxyflavone) is a flavonoid with several beneficial health effects. However, its poor water solubility and it sensitivity to several environmental factors avoid its use in applications like pharmaceutical and cosmetic. In this work, we synthetized morin-modified mesoporous silica nanoparticles (AMSNPs-MOR) as useful material to be used as potential nanoantioxidant. To achieve this, we characterized its adsorption kinetics, isotherm and the antioxidant capacity as hydroxyl radical (HO•) scavenger and singlet oxygen (1O2) quencher. The experimental data could be well fitted with Langmuir, Freundlich and Temkin isotherm models, besides the pseudo-second order kinetics model. The total quenching rate constant obtained for singlet oxygen deactivation by AMSNPs-MOR was one order of magnitude lower than the morin rate constant reported previously in neat solvents and lipid membranes. The AMSNPs-MOR have good antioxidant properties by itself and exhibit a synergic effect with morin on the antioxidant property against hydroxyl radical. This effect, in the range of concentrations studied, was increased when the amount of morin adsorbed increased.
Collapse
Affiliation(s)
- Francisco Arriagada
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Olosmira Correa
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Santi Nonell
- Institut Químic de Sarriá (IQS), University Ramón Llull, Via Augusta, 390, 08017, Barcelona, Spain
| | - Francisco Mura
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Claudio Olea-Azar
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone, 1007, Independencia, Santiago, Chile
| |
Collapse
|
38
|
La Rocca MV, Rutkowski M, Ringeissen S, Gomar J, Frantz MC, Ngom S, Adamo C. Benchmarking the DFT methodology for assessing antioxidant-related properties: quercetin and edaravone as case studies. J Mol Model 2016; 22:250. [PMID: 27686561 DOI: 10.1007/s00894-016-3118-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
The overall objective was to identify an accurate computational electronic method to virtually screen phenolic compounds through their antioxidant and free-radical scavenging activity. The impact of a key parameter of the density functional theory (DFT) approach was studied. Performances of the 21 most commonly used exchange-correlation functionals are thus detailed in the evaluation of the main energetic parameters related to the activities of two prototype antioxidants, namely quercetin and edaravone, is reported. These functionals have been chosen among those belonging to three different families of hybrid functionals, namely global, range separated, and double hybrids. Other computational parameters have also been considered, such as basis set and solvent effects. The selected parameters, namely bond dissociation enthalpy (BDE), ionization potential (IP), and proton dissociation enthalpy (PDE) allow a mechanistic evaluation of the antioxidant activities of free radical scavengers. Our results show that all the selected functionals provide a coherent picture of these properties, predicting the same order of BDEs and PDEs. However, with respect to the reference values, the errors found at CBS-Q3 level significantly vary with the functional. Although it is difficult to evidence a global trend from the reported data, it clearly appears that LC-ωPBE, M05-2X, and M06-2X are the most suitable approaches for the considered properties, giving the lowest cumulative mean absolute errors. These methods are therefore suggested for an accurate and fast evaluation of energetic parameters related to an antioxidant activity via free radical scavenging.
Collapse
Affiliation(s)
- Mario Vincenzo La Rocca
- Chimie ParisTech CNRS, Institut de Recherche de Chimie, PSL Research University, 75005, Paris, France.,Dipartimento di Scienza ed Alta Tecnologia, Università dell'Insubria, via Valleggio 11, 22100, Como, Italy
| | - Malvina Rutkowski
- Chimie ParisTech CNRS, Institut de Recherche de Chimie, PSL Research University, 75005, Paris, France
| | - Stéphanie Ringeissen
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay-sous-Bois, France
| | - Jérôme Gomar
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay-sous-Bois, France
| | - Marie-Céline Frantz
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay-sous-Bois, France
| | - Saliou Ngom
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93601, Aulnay-sous-Bois, France
| | - Carlo Adamo
- Chimie ParisTech CNRS, Institut de Recherche de Chimie, PSL Research University, 75005, Paris, France. .,Institut Universitaire de France, 103 Boulevard Saint Michel, 75005, Paris, France.
| |
Collapse
|
39
|
Uranga JG, Podio NS, Wunderlin DA, Santiago AN. Theoretical and Experimental Study of the Antioxidant Behaviors of 5-O-Caffeoylquinic, Quinic and Caffeic Acids Based on Electronic and Structural Properties. ChemistrySelect 2016. [DOI: 10.1002/slct.201600582] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jorge G. Uranga
- INFIQC- Instituto de Investigación en Físico-Química de Córdoba, CONICET and Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende s/n; Ciudad Universitaria; 5000- Córdoba Argentina
| | - Natalia S. Podio
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos de Córdoba, CONICET and Departamento de Química Orgánica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Av. Filloy s/n, Ciudad Universitaria; 5000- Córdoba Argentina
| | - Daniel A. Wunderlin
- ICYTAC, Instituto de Ciencia y Tecnología de Alimentos de Córdoba, CONICET and Departamento de Química Orgánica, Facultad de Ciencias Químicas; Universidad Nacional de Córdoba, Av. Filloy s/n, Ciudad Universitaria; 5000- Córdoba Argentina
| | - Ana N. Santiago
- INFIQC- Instituto de Investigación en Físico-Química de Córdoba, CONICET and Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de La Torre y Medina Allende s/n; Ciudad Universitaria; 5000- Córdoba Argentina
| |
Collapse
|
40
|
On the difference in decomposition of taxifolin and luteolin vs. fisetin and quercetin in aqueous media. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1737-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Galano A, Mazzone G, Alvarez-Diduk R, Marino T, Alvarez-Idaboy JR, Russo N. Food Antioxidants: Chemical Insights at the Molecular Level. Annu Rev Food Sci Technol 2016; 7:335-52. [DOI: 10.1146/annurev-food-041715-033206] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Gloria Mazzone
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - Ruslán Alvarez-Diduk
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, C. P. 09340, Ciudad de México, D. F., México
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| | - J. Raúl Alvarez-Idaboy
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, D. F., Mexico
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87036 Arcavacata di Rende, Italy;
| |
Collapse
|
42
|
Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:997-1027. [PMID: 26728425 DOI: 10.1021/acs.jafc.5b04739] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because there is no widely adopted "total antioxidant parameter" as a nutritional index for labeling food and biological fluids, it is desirable to establish and standardize methods that can measure the total antioxidant capacity (TAC) level directly from plant-based food extracts and biological fluids. In this review, we (i) present and classify the widely used analytical approaches (e.g., in vitro and in vivo, enzymatic and nonenzymatic, electron transfer (ET)- and hydrogen atom transfer (HAT)-based, direct and indirect assays) for evaluating antioxidant capacity/activity; (ii) discuss total antioxidant capacity/activity assays in terms of chemical kinetics and thermodynamics, reaction mechanisms, and analytical performance characteristics, together with advantages and drawbacks; and (iii) critically evaluate ET-based methods for analytical, food chemical, biomedical/clinical, and environmental scientific communities so that they can effectively use these assays in the correct places to meet their needs.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Mustafa Özyürek
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Kubilay Güçlü
- Department of Chemistry, Faculty of Engineering, Istanbul University , Avcilar, 34320 Istanbul, Turkey
| | - Esra Çapanoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University , Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
43
|
Amić A, Marković Z, Dimitrić Marković JM, Lučić B, Stepanić V, Amić D. The 2H+/2e− free radical scavenging mechanisms of uric acid: thermodynamics of NH bond cleavage. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
44
|
Abosadiya HM, Anouar EH, Hasbullah SA, Yamin BM. Synthesis, X-ray, NMR, FT-IR, UV/vis, DFT and TD-DFT studies of N-(4-chlorobutanoyl)-N'-(2-, 3- and 4-methylphenyl)thiourea derivatives. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 144:115-124. [PMID: 25748989 DOI: 10.1016/j.saa.2015.01.092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/18/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
A new isomers of thiourea derivatives, namely N-(4-chlorobutanoyl)-N'-(2-methylphenyl)-thiourea (1a), N-(4-chlorobutanoyl)-N'-(3-methylphenyl)thiourea (1b) and N-(4-chlorobutanoyl)-N'-(4-methylphenyl)thiourea (1c) have been synthesized by refluxing mixture of equimolar amounts of 4-chlorobutanoylisothiocyanate with 2, 3 or 4-toluidine, respectively. The three isomers were characterized by spectroscopic (UV/vis, FT-IR and NMR) and X-ray crystallography techniques. To investigate the isomerization effect on spectroscopic data, DFT and TD-DFT calculations have been carried out using five hybrid functionals (B3LYP, B3P86, CAM-B3LYP, M06-2X and PBE0) to predict UV/vis absorption bands (n→π∗ and π→π∗), (1)H and (13)C NMR chemical shifts, FT-IR vibration modes and X-ray parameters (bonds, bond angles and torsion angles) for 1a, 1b and 1c isomers. The results showed that the isomerization effect is significant on λ(MAX) absorption bands, while for IR and NMR the effect is negligible. In accordance with previous studies, B3LYP, B3P86 and PBE0 gave the most reliable to predict the excitation energies of thiourea derivatives.
Collapse
Affiliation(s)
- Hamza M Abosadiya
- School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor, Malaysia
| | - El Hassane Anouar
- Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D.E., Malaysia; Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Siti Aishah Hasbullah
- School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor, Malaysia
| | - Bohari M Yamin
- School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor, Malaysia.
| |
Collapse
|
45
|
QSAR of the free radical scavenging potency of selected hydroxybenzoic acids and simple phenolics. CR CHIM 2015. [DOI: 10.1016/j.crci.2014.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Chen Y, Xiao H, Zheng J, Liang G. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: an experimental and theoretical evaluation. PLoS One 2015; 10:e0121276. [PMID: 25803685 PMCID: PMC4372407 DOI: 10.1371/journal.pone.0121276] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/29/2015] [Indexed: 11/18/2022] Open
Abstract
Phenolic acids and derivatives have potential biological functions, however, little is known about the structure-activity relationships and the underlying action mechanisms of these phenolic acids to date. Herein we investigate the structure-thermodynamics-antioxidant relationships of 20 natural phenolic acids and derivatives using DPPH• scavenging assay, density functional theory calculations at the B3LYP/6-311++G(d,p) levels of theory, and quantitative structure-activity relationship (QSAR) modeling. Three main working mechanisms (HAT, SETPT and SPLET) are explored in four micro-environments (gas-phase, benzene, water and ethanol). Computed thermodynamics parameters (BDE, IP, PDE, PA and ETE) are compared with the experimental radical scavenging activities against DPPH•. Available theoretical and experimental investigations have demonstrated that the extended delocalization and intra-molecular hydrogen bonds are the two main contributions to the stability of the radicals. The C = O or C = C in COOH, COOR, C = CCOOH and C = CCOOR groups, and orthodiphenolic functionalities are shown to favorably stabilize the specific radical species to enhance the radical scavenging activities, while the presence of the single OH in the ortho position of the COOH group disfavors the activities. HAT is the thermodynamically preferred mechanism in the gas phase and benzene, whereas SPLET in water and ethanol. Furthermore, our QSAR models robustly represent the structure-activity relationships of these explored compounds in polar media.
Collapse
Affiliation(s)
- Yuzhen Chen
- School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang 453003, P. R. China
| | - Huizhi Xiao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States of America
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, School of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
- * E-mail:
| |
Collapse
|
47
|
Reaction enthalpies of OH bonds splitting-off in flavonoids: The role of non-polar and polar solvent. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.10.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Li C, Huang C, Lu T, Wu L, Deng S, Yang R, Li J. Tandem mass spectrometric fragmentation behavior of lignans, flavonoids and triterpenoids in Streblus asper. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2363-2370. [PMID: 25279750 DOI: 10.1002/rcm.7035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE An unambiguous identification of compounds can be achieved by comparison of known fragmentation patterns. While the literature about fragmentation mechanisms of lignans, flavonoids and triterpenoids is few. So the present study analyses the fragmentation mechanisms of these compounds isolated from Streblus asper. METHODS Electrospray ionization ion trap mass spectrometry (ESI-ITMS) and atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-ITMS) were used to obtain the MS(n) spectra of the compounds. By analyzing the differences between the ions, the fragmentation mechanisms of these compounds were explored. RESULTS Of the 29 compounds detected, 17, 7, and 5 were lignans, flavonoids and triterpenoids, respectively. The majority of lignans were found to give [M - H](-) ions of sufficient abundance for MS(n) analyses. The flavonoids were prone to the loss of CO and H2O. The triterpenoids always lost one formic acid molecule and two hydrogens, or one H2O from [M - H](-) to form the most abundant product ion in the MS(n) spectrum. CONCLUSIONS ESI/APCI-ITMS were demonstrated to be fast, effective and practical tools to characterize the structures of flavonoids, triterpenoids and lignans. Results of the present study can help identify the analogous constituents by analyzing their MS(n) spectra.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Environment and Resource of Guangxi Normal University, Guilin, 541004, P.R. China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education of China), Guilin, 541004, P.R. China
| | | | | | | | | | | | | |
Collapse
|
49
|
Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chem 2014; 171:89-97. [PMID: 25308647 DOI: 10.1016/j.foodchem.2014.08.106] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/27/2014] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
Abstract
The free radical scavenging activity of a series of 2,4,5-trimethoxy chalcones has been computationally explored using the density functional theory (DFT) method. Three potential working mechanisms, hydrogen atom transfer (HAT), stepwise electron transfer proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) have been investigated. The physiochemical parameters including O-H bond dissociation enthalpy (BDE), ionisation potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE) have been calculated in gas phase and solvents. The order of antioxidant efficiencies predicted theoretically in this work is in good agreement with that reported by experimental results. The results obtained demonstrate that HAT would be the most favourable mechanism in the gas and benzene phases, whereas the SPLET mechanism is the thermodynamically preferred pathway in polar media. In addition, the importance of the A-ring on the radical scavenging capabilities of chalcones was also confirmed.
Collapse
|
50
|
Lin CZ, Zhu CC, Hu M, Wu AZ, Bairu ZD, Kangsa SQ. Structure-activity relationships of antioxidant activity in vitro about flavonoids isolated from Pyrethrum tatsienense. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2014; 3:123-7. [PMID: 26401360 PMCID: PMC4566668 DOI: 10.5455/jice.20140619030232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/19/2014] [Indexed: 11/03/2022]
Abstract
AIM Antioxidant activity is one of the important indexes for estimating medicinal value for the traditional Chinese medicine. The aim of this study is to investigate the antioxidant activity of 11 flavonoids mainly revealing luteolin as mother nucleus isolated from Pyrethrum tatsienense. MATERIALS AND METHODS The antioxidant activity of 11 flavonoids was measured in vitro using the classical 1,1-diphenyl-2-picrylhydrazyl removal method. The percentages of scavenging activity of 11 flavonoids were analyzed by taking the choice of a-tocopherol as positive drugs, and the scavenging activity was plotted against the sample concentration to obtain the IC50 values. RESULTS Ten flavonoids containing phenolic hydroxyl groups have different levels of antioxidant activity. Antioxidant activity mainly depends on the numbers and the substitutional positions of phenolic hydroxyls in B ring. When C-3', 4' positions in B ring of flavonoids are replaced by hydroxyl groups, the antioxidant activity improved remarkably. Phenolic hydroxyl groups in A ring contribute some to antioxidant activity because of the electrophilic effect of C ring, and the numbers and substitutional positions of methoxyl and glycosyl have a little effect on the antioxidant activity. CONCLUSION Structure-activity relationships of antioxidant activity about flavonoids isolated from P. tatsienense are concluded, which will be beneficial to deep understanding the pharmacological functions of this Tibetan medicine in vivo from the point of antioxidation.
Collapse
Affiliation(s)
- Chao-Zhan Lin
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Chen-Chen Zhu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Min Hu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, P.R. China
| | - Ai-Zhi Wu
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Zeren-Dawa Bairu
- Institute of Tibetan Medical Science and Technology, Tibet College of Tibetan Medicines, Lasa, 850000, P.R. China
| | - Suolang-Qimei Kangsa
- Institute of Tibetan Medical Science and Technology, Tibet College of Tibetan Medicines, Lasa, 850000, P.R. China
| |
Collapse
|