1
|
Zhao Y, Zhang W, Yang H, Xu Z, Wang X, Zhang Z, Deng J. Effects of drying methods on phytochemicals and antioxidant activity of broccoli by-products. Food Res Int 2025; 208:116284. [PMID: 40263865 DOI: 10.1016/j.foodres.2025.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/12/2025] [Indexed: 04/24/2025]
Abstract
The application of drying technology can rationally utilize fruit and vegetable resources and improve their economic benefits. To expand the application range of broccoli stems and leaves and enrich product varieties, drying them is a feasible high-value utilization method. This study aimed to identify the influences of freeze drying, microwave drying, and hot air drying on the metabolite and antioxidant activity of by-products. Phytochemical analysis revealed freeze-dried samples closely resembled fresh samples, while microwave and hot air drying increased phenolic acids, glucosinolates, and alkaloids. Random forest analysis identified the key differential compounds: the top three contributing compounds in leaves were alkaloids, phenolic acids, and glucosinolates, while the top three contributing compounds in stems were phenolic acids, alkaloids, and amino acids. Differences in antioxidant enzyme activities and free radical scavenging rates were linked to changes in flavonoid and glucosinolate content. These results offer novel insights into metabolite profiles of broccoli by-products under various drying methods, highlighting their potential in food applications.
Collapse
Affiliation(s)
- Yaqi Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenyuan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhanquan Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Xia Y, Li MY, Wadood SA, Hong HJ, Liu Y, Luo YX, Wang YY, Liu HY, Gan RY. Identification of volatile and flavor metabolites in three varieties of broccoli sprouts. Food Chem X 2024; 24:101862. [PMID: 39498256 PMCID: PMC11532752 DOI: 10.1016/j.fochx.2024.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 11/07/2024] Open
Abstract
Broccoli sprouts are promising functional food sources and their taste and flavor play a pivotal role in the acceptance of consumers. In this study, the flavor profiles of three varieties of broccoli sprouts, namely Bi Lv, You Xiu, and Lv Hua, were comprehensively characterized using HS-SPME-GC/MS analysis. A total of 364 volatile and flavor components across 15 chemical classes were successfully identified. The results revealed a majority of volatile metabolites exhibiting upregulation during the germination process, leading to an enhancement in taste intensity after germination, particularly for umami and sweet tastes, which was associated with an increase in associated amino acids and sugar content. Although the total glucosinolate content in broccoli sprouts has decreased compared to seeds, it remains the primary contributor to the bitterness of broccoli sprouts. The present study elaborated on the flavor contribution of broccoli sprouts, supporting the cultivation and consumption of them as a nutritious food.
Collapse
Affiliation(s)
- Yu Xia
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Ming-Yue Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Syed Abdul Wadood
- Department of Food Science, University of Home Economics, Lahore, Pakistan
| | - Han-Jun Hong
- Chengdu Sanherb Bioscience Co. Ltd, Chengdu 610213, China
| | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yu-Xuan Luo
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Yi-Yan Wang
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu 610213, China
| | - Ren-You Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Renz M, Rohn S, Hanschen FS. Thermal degradation and oxidation of glucosinolates in model systems and Brassica vegetable broth is mediated by redox-active compounds. Food Chem 2024; 431:137108. [PMID: 37595380 DOI: 10.1016/j.foodchem.2023.137108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Glucosinolates (GLSs) are secondary plant metabolites with health-promoting effects found in Brassica vegetables. Recently, next to non-enzymatic degradation yielding nitriles, 4-(methylthio)butyl GLS (4MTB-GLS) was shown to undergo side chain oxidation during thermal treatment, forming 4-(methylsulfinyl)butyl GLS (4MSOB-GLS). Here, we investigated natural plant components and artificial analogs on their capability of altering the thermal reactivity of 4MTB-GLS in vegetable broths and model systems using buffers. Addition of ascorbic acid and dehydroascorbic acid caused varying effects: in broth samples, it increased nitrile formation, while in buffer, 4MSOB-GLS was formed. In further experiments, the antioxidant compounds quercetin and Trolox triggered the side chain oxidation of 4MTB-GLS, while H2S terminated its degradation. A synergistic effect of ascorbic acid and Fe2+ was observed, degrading 98% of 4MTB-GLS to the nitrile after 60 min of boiling. Deepening the understanding of factors that influence the non-enzymatic degradation of GLSs will help to preserve their health-promoting effects.
Collapse
Affiliation(s)
- Matthias Renz
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany; Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Sascha Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Franziska S Hanschen
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ) e. V., Plant Quality and Food Security, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| |
Collapse
|
4
|
Abdel-Massih RM, Debs E, Othman L, Attieh J, Cabrerizo FM. Glucosinolates, a natural chemical arsenal: More to tell than the myrosinase story. Front Microbiol 2023; 14:1130208. [PMID: 37089539 PMCID: PMC10114928 DOI: 10.3389/fmicb.2023.1130208] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Glucosinolates are a group of thioglucosides that belong to the class of plant nitrogen-containing natural products. So far, very little biological activity has been associated with intact glucosinolates. The hydrolysis of glucosinolates has, for long, attracted attention because of the potent biological activity of the hydrolysis products. From allelopathic to antiparasitic, antimicrobial and antineoplastic effects, the activity spectrum of the degradation products of typical glucosinolates has been the subject of much research. The present review seeks to address the various means of glucosinolate degradation (thermal, enzymatic, or chemical degradation) and the ensuing products. It also aims to draw a comparative profile of the various antimicrobial effects of these degradation products to provide a further understanding of the biological function of these important compounds.
Collapse
Affiliation(s)
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura, Lebanon
| | - Leen Othman
- Faculty of Medicine and Medical Sciences, University of Balamand, El-Koura, Lebanon
| | - Jihad Attieh
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, El-Koura, Lebanon
| | - Franco M. Cabrerizo
- Instituto Tecnológico de Chascomús, National Scientific and Technical Research Council – National University of General San Martín, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías, National University of General San Martín, Buenos Aires, Argentina
| |
Collapse
|
5
|
Qing S, Long Y, Wu Y, Shu S, Zhang F, Zhang Y, Yue J. Hot-air-assisted radio frequency blanching of broccoli: heating uniformity, physicochemical parameters, bioactive compounds, and microstructure. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2664-2674. [PMID: 36647340 DOI: 10.1002/jsfa.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Vegetables are often blanched before drying. The hot-water blanching (HWB) of broccoli reduces quality and is environmentally harmful. In this work, hot-air-assisted radio frequency heating blanching (HA-RFB) of broccoli was developed for use before further drying processes. Blanching sufficiency, heating uniformity, and heating rate during HA-RFB were investigated to improve the product's physicochemical properties and texture. Suitable heating conditions were achieved when HA-RFB was applied with hot air at 70 °C, with an electrode gap of 10.7 cm, using a cylindrical container for the broccoli. RESULTS Under these conditions, the relative peroxidase activity in broccoli decreased to 3.26% within 117 s, with 13.45% of weight loss. In comparison with HWB broccoli, the products blanched by HA-RFB preserved their texture, bioactive compounds, and microstructure better. The ascorbic acid, sulforaphane, and total glucosinolate content in HA-RFB products were 251.1%, 131.9% and 36.7% higher than those in HWB broccoli, and HA-RFB treatment led to a greater weight loss (13.45 ± 0.50%) than HWB (8.70 ± 1.70%), which is very helpful for the subsequent drying process. CONCLUSION This study demonstrated that HA-RFB could be a promising substitute for HWB to blanch broccoli and other flower vegetables, especially as a pretreatment in the drying process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuting Qing
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Yangyang Long
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwen Wu
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
| | - Shumin Shu
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Fei Zhang
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Yan Zhang
- Kangshi (Shanghai) Food Science and Technology Co., Ltd, Shanghai, China
| | - Jin Yue
- Bor S. Luh Food Safety Research Center, College of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, SJTU-OSU Innovation Center for Food Control and Environmental Sustainability, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University Sichuan Research Institute, Chengdu, China
| |
Collapse
|
6
|
Vaishnav J, Srivastava AK, Mishra BB, Suprasanna P, Variyar PS. Glucosinolates breakdown and enhanced nitrile formation in gamma irradiated minimally processed cauliflower (Brassica oleracia). Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Delbaere SM, Bernaerts T, Vangrunderbeek M, Vancoillie F, Hendrickx ME, Grauwet T, Van Loey AM. The Volatile Profile of Brussels Sprouts ( Brassica oleracea Var. gemmifera) as Affected by Pulsed Electric Fields in Comparison to Other Pretreatments, Selected to Steer (Bio)Chemical Reactions. Foods 2022; 11:foods11182892. [PMID: 36141018 PMCID: PMC9498443 DOI: 10.3390/foods11182892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pulsed electric fields (PEF) at low field strength is considered a non-thermal technique allowing membrane permeabilization in plant-based tissue, hence possibly impacting biochemical conversions and the concomitant volatile profile. Detailed studies on the impact of PEF at low field strength on biochemical conversions in plant-based matrices are scarce but urgently needed to provide the necessary scientific basis allowing to open a potential promising field of applications. As a first objective, the effect of PEF and other treatments that aim to steer biochemical conversions on the volatile profile of Brussels sprouts was compared in this study. As a second objective, the effect of varying PEF conditions on the volatile profile of Brussels sprouts was elucidated. Volatile fingerprinting was used to deduce whether and which (bio)chemical reactions had occurred. Surprisingly, PEF at 1.01 kV/cm and 2.7 kJ/kg prior to heating was assumed not to have caused significant membrane permeabilization since similar volatiles were observed in the case of only heating, as opposed to mixing. A PEF treatment with an electrical field strength of 3.00 kV/cm led to a significantly higher formation of certain enzymatic reaction products, being more pronounced when combined with an energy input of 27.7 kJ/kg, implying that these PEF conditions could induce substantial membrane permeabilization. The results of this study can be utilized to steer enzymatic conversions towards an intended volatile profile of Brussels sprouts by applying PEF.
Collapse
|
8
|
Sun J, Liu PF, Liu JN, Lu C, Tong LT, Wang YQ, Liu JM, Fan B, Wang FZ. Combined metabolomics and proteomics to reveal beneficial mechanisms of Dendrobium fimbriatum against gastric mucosal injury. Front Pharmacol 2022; 13:948987. [PMID: 36110550 PMCID: PMC9468276 DOI: 10.3389/fphar.2022.948987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
As a dietary and medicinal plant, Dendrobium fimbriatum (DF) is widely utilized in China for improving stomach disease for centuries. However, the underlying mechanisms against gastric mucosal injury have not been fully disclosed. Here, metabolomics and proteomics were integrated to clarify the in-depth molecular mechanisms using cyclophosphamide-induced gastric mucosal injury model in mice. As a result, three metabolic pathways, such as creatine metabolism, arginine and proline metabolism, and pyrimidine metabolism were hit contributing to DF protective benefits. Additionally, γ-L-glutamyl-putrescine, cytosine, and thymine might be the eligible biomarkers to reflect gastric mucosal injury tatus, and DF anti-gastric mucosal injury effects were mediated by the so-called target proteins such as Ckm, Arg1, Ctps2, Pycr3, and Cmpk2. This finding provided meaningful information for the molecular mechanisms of DF and also offered a promising strategy to clarify the therapeutic mechanisms of functional foods.
Collapse
Affiliation(s)
- Jing Sun
- Risk Assessment Laboratory of Agricultural Products Processing Quality and Safety, Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences, Beijing, China
- Agricultural Product Storage and Processing Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Peng-Fei Liu
- Risk Assessment Laboratory of Agricultural Products Processing Quality and Safety, Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jia-Ni Liu
- Risk Assessment Laboratory of Agricultural Products Processing Quality and Safety, Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cong Lu
- Risk Assessment Laboratory of Agricultural Products Processing Quality and Safety, Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Tao Tong
- Risk Assessment Laboratory of Agricultural Products Processing Quality and Safety, Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong-Quan Wang
- Risk Assessment Laboratory of Agricultural Products Processing Quality and Safety, Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jia-Meng Liu
- Risk Assessment Laboratory of Agricultural Products Processing Quality and Safety, Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bei Fan
- Risk Assessment Laboratory of Agricultural Products Processing Quality and Safety, Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Bei Fan, ; Feng-Zhong Wang,
| | - Feng-Zhong Wang
- Risk Assessment Laboratory of Agricultural Products Processing Quality and Safety, Key Laboratory of Agricultural Products Quality and Safety Collection, Storage and Transportation Control (Ministry of Agriculture and Rural Affairs), Institute of Agricultural Products Processing, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Bei Fan, ; Feng-Zhong Wang,
| |
Collapse
|
9
|
Liu B, Tao Y, Manickam S, Li D, Han Y, Yu Y, Liu D. Influence of sequential exogenous pretreatment and contact ultrasound-assisted air drying on the metabolic pathway of glucoraphanin in broccoli florets. ULTRASONICS SONOCHEMISTRY 2022; 84:105977. [PMID: 35279633 PMCID: PMC8915014 DOI: 10.1016/j.ultsonch.2022.105977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this investigation, the combinations of exogenous pretreatment (melatonin or vitamin C) and contact ultrasound-assisted air drying were utilized to dry broccoli florets. To understand the influences of the studied dehydration methods on the conversion of glucoraphanin to bioactive sulforaphane in broccoli, various components (like glucoraphanin, sulforaphane, myrosinase, etc.) and factors (temperature and moisture) involved in the metabolism pathway were analyzed. The results showed that compared with direct air drying, the sequential exogenous pretreatment and contact ultrasound drying shortened the drying time by 19.0-22.7%. Meanwhile, contact sonication could promote the degradation of glucoraphanin. Both melatonin pretreatment and vitamin C pretreatment showed protective effects on the sulforaphane content and myrosinase activity during the subsequent drying process. At the end of drying, the sulforaphane content in samples dehydrated by the sequential melatonin (or vitamin C) pretreatment and ultrasound-intensified drying was 14.4% (or 26.5%) higher than only air-dried samples. The correlation analysis revealed that the exogenous pretreatment or ultrasound could affect the enzymatic degradation of glucoraphanin and the generation of sulforaphane through weakening the connections of sulforaphane-myrosinase, sulforaphane-VC, and VC-myrosinase. Overall, the reported results can enrich the biochemistry knowledge about the transformation of glucoraphanin to sulforaphane in cruciferous vegetables during drying, and the combined VC/melatonin pretreatment and ultrasound drying is conducive to protect bioactive sulforaphane in dehydrated broccoli.
Collapse
Affiliation(s)
- Beini Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yongbin Han
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ying Yu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Dongfeng Liu
- Zelang Postgraduate Working Station, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Pedrosa MC, Lima L, Heleno S, Carocho M, Ferreira ICFR, Barros L. Food Metabolites as Tools for Authentication, Processing, and Nutritive Value Assessment. Foods 2021; 10:2213. [PMID: 34574323 PMCID: PMC8465241 DOI: 10.3390/foods10092213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022] Open
Abstract
Secondary metabolites are molecules with unlimited applications that have been gaining importance in various industries and studied from many angles. They are mainly used for their bioactive capabilities, but due to the improvement of sensibility in analytical chemistry, they are also used for authentication and as a quality control parameter for foods, further allowing to help avoid food adulteration and food fraud, as well as helping understand the nutritional value of foods. This manuscript covers the examples of secondary metabolites that have been used as qualitative and authentication molecules in foods, from production, through processing and along their shelf-life. Furthermore, perspectives of analytical chemistry and their contribution to metabolite detection and general perspectives of metabolomics are also discussed.
Collapse
Affiliation(s)
| | | | | | - Márcio Carocho
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (M.C.P.); (L.L.); (S.H.); (I.C.F.R.F.); (L.B.)
| | | | | |
Collapse
|
11
|
Langston FMA, Nash GR, Bows JR. The retention and bioavailability of phytochemicals in the manufacturing of baked snacks. Crit Rev Food Sci Nutr 2021; 63:2141-2177. [PMID: 34529547 DOI: 10.1080/10408398.2021.1971944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is a growing body of evidence supporting the role that phytochemicals play in reducing the risk of various chronic diseases. Although there has been a rise in health products marketed as being "supergrains," "superfood," or advertising their abundance in antioxidants, these food items are often limited to powdered blends, dried fruit, nuts, or seeds, rarely intercepting the market of baked snacks. This is in part due to the still limited understanding of the impact that different industrial processes have on phytochemicals in a complex food matrix and their corresponding bioavailability. This review brings together the current data on how various industrial dehydration processes influence the retention and bioaccessibility of phytochemicals in baked snacks. It considers the interplay of molecules in an intricate snack matrix, limitations of conventional technologies, and constraints with consumer acceptance preventing wider utilization of novel technologies. Furthermore, the review takes a holistic approach, encompassing each stage of production-discussing the potential for inclusion of by-products to promote a circular economy and the proposal for a shift in agriculture toward biofortification or tailored growing of crops for their nutritional and post-harvest attributes.
Collapse
Affiliation(s)
- Faye M A Langston
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | - Geoff R Nash
- Natural Sciences, Streatham Campus, University of Exeter, Exeter, UK
| | | |
Collapse
|
12
|
Li S, Tian Y, Jiang P, Lin Y, Liu X, Yang H. Recent advances in the application of metabolomics for food safety control and food quality analyses. Crit Rev Food Sci Nutr 2020; 61:1448-1469. [PMID: 32441547 DOI: 10.1080/10408398.2020.1761287] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
As one of the omics fields, metabolomics has unique advantages in facilitating the understanding of physiological and pathological activities in biology, physiology, pathology, and food science. In this review, based on developments in analytical chemistry tools, cheminformatics, and bioinformatics methods, we highlight the current applications of metabolomics in food safety, food authenticity and quality, and food traceability. Additionally, the combined use of metabolomics with other omics techniques for "foodomics" is comprehensively described. Finally, the latest developments and advances, practical challenges and limitations, and requirements related to the application of metabolomics are critically discussed, providing new insight into the application of metabolomics in food analysis.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yufeng Tian
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Pingyingzi Jiang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Ying Lin
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Garcia-Ibañez P, Moreno DA, Nuñez-Gomez V, Agudelo A, Carvajal M. Use of elicitation in the cultivation of Bimi® for food and ingredients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2099-2109. [PMID: 31875967 DOI: 10.1002/jsfa.10233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/19/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cruciferous foods rich in health-promoting metabolites are of particular interest to consumers as well as being a good source of bioactives-enriched ingredients. Several elicitors have been used to stimulate the biosynthesis and accumulation of secondary metabolites in foods; however, little is known about the response of new hybrid varieties, such as Bimi®, under field-crop production conditions. Therefore, this study was designed to evaluate the effect of salicylic acid (200 μmol L-1 , SA), methyl jasmonate (100 μmol L-1 , MeJA), and their combination on Bimi plant organs (inflorescences and aerial vegetative tissues - stems and leaves). For this, the composition of the glucosinolates present in the tissues was evaluated. Also, aqueous extracts of the plant material, obtained with different times of extraction with boiling water, were studied. RESULTS The results indicate that the combined treatment (SA + MeJA) significantly increased the content of glucosinolates in the inflorescences and that MeJA was the most effective elicitor in leaves. Regarding the aqueous extracts, the greatest amount of glucosinolates was extracted at 30 min - except for the leaves elicited with MeJA, for which 15 min was optimal. CONCLUSION The elicitation in the field enriched leaves in glucobrassicin (GB), 4-methoxyglucobrassicin (MGB), and neoglucobrassicin (NGB) and stems and inflorescences in glucoraphanin, 4-hydroxyglucobrassicin, GB, MGB, and NGB. In this way, this enhanced vegetable material favored the presence of bioactives in the extracts, which is of great interest regarding enriched foods and ingredients with added value obtained from them. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paula Garcia-Ibañez
- Aquaporins Group, Department of Plant Nutrition, CEBAS-CSIC, Murcia, Spain
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, CEBAS-CSIC, Murcia, Spain
| | - Diego A Moreno
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, CEBAS-CSIC, Murcia, Spain
| | - Vanessa Nuñez-Gomez
- Phytochemistry and Healthy Foods Lab, Department of Food Science Technology, CEBAS-CSIC, Murcia, Spain
| | - Agatha Agudelo
- R&D Special Collaborative Projects, Sakata Seed Ibérica S.L.U., Valencia, Spain
- IBMCP, Universidad Politécnica de Valencia, Valencia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Department of Plant Nutrition, CEBAS-CSIC, Murcia, Spain
| |
Collapse
|
14
|
Mabuchi R, Tanaka M, Nakanishi C, Takatani N, Tanimoto S. Analysis of Primary Metabolites in Cabbage ( Brassica oleracea var. capitata) Varieties Correlated with Antioxidant Activity and Taste Attributes by Metabolic Profiling. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24234282. [PMID: 31775226 PMCID: PMC6930592 DOI: 10.3390/molecules24234282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022]
Abstract
Brassica vegetables, such as cabbage, have many health benefits arising from their antioxidant and anticancer properties. These properties are endowed by the metabolite composition of the plant, and it is therefore important to elucidate the metabolic profile and associated activities in this genus. This study objectively evaluated the characteristics of cabbage varieties using metabolic profiling to identify the primary metabolic components that correlate with antioxidant activity and taste attributes. GC-MS analysis was used to identify the primary metabolites. Antioxidant activity was measured by oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging assays, and an electronic tongue was used to quantitate nine taste attributes. Orthogonal projections to latent structures (OPLS) using SIMCA 14 correlated the metabolite components with the taste and antioxidant characteristics. We identified 4-aminobutyric acid, fructose 1-phosphate, adipic acid, 5-oxoproline, N-acetylglycine, O-phosphoethanolamine, and homovanillic acid as important determinants of DPPH scavenging activity and umami, sourness, acidic bitterness, irritant and saltiness, bitterness, astringency, and richness, respectively. These metabolites represent markers indicating breed differences and contribute to differential cabbage functionality. These studies could be extended to measure additional metabolites, as well as to understand the role of growth conditions on the metabolic profile and health benefits of plants.
Collapse
|
15
|
Tao Y, Han M, Gao X, Han Y, Show PL, Liu C, Ye X, Xie G. Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: Drying mechanism, bioactive profile, color and rehydration property. ULTRASONICS SONOCHEMISTRY 2019; 53:192-201. [PMID: 30691995 DOI: 10.1016/j.ultsonch.2019.01.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/16/2018] [Accepted: 01/05/2019] [Indexed: 05/23/2023]
Abstract
This work studied the influences of water blanching pretreatment (30 s), surface contacting ultrasound (492.3 and 1131.1 W/m2) assisted air drying, and their combination on drying kinetics and quality of white cabbage. Contacting sonication was performed by placing samples on an ultrasonic vibration plate, and the drying temperature was 60 °C. Through drying kinetic analysis and numerical simulation considering internal and external resistances and shrinkage, it was found that both blanching pretreatment and contacting sonication during drying intensified internal water diffusion and external water exchange to shorten cabbage drying time. Meanwhile, blanching pretreatment was more effective to enhance the drying process. The largest reduction of drying time (from 145 min to 24 min) was obtained when sequential blanching and contacting sonication at 1131.1 W/m2 were conducted. Dehydrated cabbages with blanching pretreatment were characterized by green color and high retention of vitamin C, while a severe loss of vitamin C was found in dried cabbages without blanching pretreatment. Moreover, although both blanching and contacting sonication shortened the drying time, the losses of phenolics, glucosinolates and resulting breakdown products were not alleviated. Contents of total phenolics, one glucosinolates (sinigrin) and one glucobrassicin breakdown product (indole-3-acetoritrile) in only air dried cabbages were significantly (p < 0.05) higher than that in samples dried by sequential blanching and contacting ultrasound-assisted drying. The changes of glucosinolate profile and resulting degradation products under different treatments were irregular, due to complex bioconversion pathways included.
Collapse
Affiliation(s)
- Yang Tao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengfan Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoge Gao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongbin Han
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Semenyih 43500, Malaysia
| | - Chunquan Liu
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaosong Ye
- Zhihai Postgraduate Working Station, Zhenjiang, Jiangsu 212000, China
| | - Guangjie Xie
- Zhihai Postgraduate Working Station, Zhenjiang, Jiangsu 212000, China
| |
Collapse
|
16
|
Shen Q, Jiang J, Wang M, Chen J, Liu D, Ye X, Hu Y. Volatile compounds and antioxidant properties of pickled and dried mustard as influenced by different cooking methods. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qing Shen
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences University of California Davis California
| | - Jing Jiang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Mengting Wang
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Jianchu Chen
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
- National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Fuli Institute of Food Science Zhejiang University Hangzhou China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
- National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Fuli Institute of Food Science Zhejiang University Hangzhou China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
- National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Fuli Institute of Food Science Zhejiang University Hangzhou China
| | - Yaqin Hu
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
- National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Fuli Institute of Food Science Zhejiang University Hangzhou China
| |
Collapse
|
17
|
Ethanol extracts from the branch of Taxillus yadoriki parasitic to Neolitsea sericea induces cyclin D1 proteasomal degradation through cyclin D1 nuclear export. Altern Ther Health Med 2018; 18:189. [PMID: 29925351 PMCID: PMC6011405 DOI: 10.1186/s12906-018-2258-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 11/12/2022]
Abstract
Background Although the inhibitory effect of mistletoe on cancer cell growth has been reported, the underlying mechanisms to explain its anti-proliferative activity are not fully studied. Thus, we elucidated the potential molecular mechanism of the branch from Taxillus yadoriki (TY) parasitic to Neolitsea sericea (NS) (TY-NS-B) for the anti-proliferative effect. Methods Anti-cell proliferative effect was evaluated by MTT assay. The change of cyclin D1 protein or mRNA level was evaluated by Western blot and RT-RCR, respectively. Results In comparison of anti-proliferative effect of TY from the host trees such as Cryptomeria japonica (CJ), Neolitsea sericea (NS), Prunus serrulata (PS), Cinnamomum camphora (CC) and Quercus acutissima (QA), TY-NS showed higher anti-cell proliferative effect than TY-CJ, TY-PS, TY-CC or TY-QA. In addition, the anti-proliferative effect of branch from TY from all host trees was better than leaves. Thus, we selected the branch from Taxillus yadoriki parasitic to Neolitsea sericea (TY-NS-B) for the further study. TY-NS-B inhibited the cell proliferation in the various cancer cells and downregulated cyclin D1 protein level. MG132 treatment attenuated cyclin D1 downregulation of cyclin D1 protein level by TY-NS-B. In addition, TY-NS-B increased threonine-286 (T286) phosphorylation of cyclin D1, and the mutation of T286 to alanine (T286A) blocked cyclin D1 proteasomal degradation by TY-NS-B. But the upstream factors related to cyclin D1 degradation such as ERK1/2, p38, JNK, GSK3β, PI3K, IκK or ROS did not affect cyclin D1 degradation by TY-NS-B. However, LMB treatment was observed to inhibit cyclin D1 degradation by TY-NS-B, and T286A blocked cyclin D1 degradation through suppressing cyclin D1 redistribution from nucleus to cytoplasm by TY-NS-B. In addition, TY-NS-B activated CRM1 expression. Conclusions Our results suggest that TY-NS-B may suppress cell proliferation by downregulating cyclin D1 protein level through proteasomal degradation via T286 phosphorylation-dependent cyclin D1 nuclear export. These findings will provide the evidence that TY-NS-B has potential to be a candidate for the development of chemoprevention or therapeutic agents for human cancer.
Collapse
|
18
|
Castro-Puyana M, Pérez-Míguez R, Montero L, Herrero M. Reprint of: Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
Capuano E, Oliviero T, van Boekel MA. Modeling food matrix effects on chemical reactivity: Challenges and perspectives. Crit Rev Food Sci Nutr 2017; 58:2814-2828. [DOI: 10.1080/10408398.2017.1342595] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Edoardo Capuano
- Food Quality & Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Teresa Oliviero
- Food Quality & Design Group, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
20
|
Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Wang YQ, Hu LP, Liu GM, Zhang DS, He HJ. Evaluation of the Nutritional Quality of Chinese Kale (Brassica alboglabra Bailey) Using UHPLC-Quadrupole-Orbitrap MS/MS-Based Metabolomics. Molecules 2017; 22:E1262. [PMID: 28749430 PMCID: PMC6152293 DOI: 10.3390/molecules22081262] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
Chinese kale (Brassica alboglabra Bailey) is a widely consumed vegetable which is rich in antioxidants and anticarcinogenic compounds. Herein, we used an untargeted ultra-high-performance liquid chromatography (UHPLC)-Quadrupole-Orbitrap MS/MS-based metabolomics strategy to study the nutrient profiles of Chinese kale. Seven Chinese kale cultivars and three different edible parts were evaluated, and amino acids, sugars, organic acids, glucosinolates and phenolic compounds were analysed simultaneously. We found that two cultivars, a purple-stem cultivar W1 and a yellow-flower cultivar Y1, had more health-promoting compounds than others. The multivariate statistical analysis results showed that gluconapin was the most important contributor for discriminating both cultivars and edible parts. The purple-stem cultivar W1 had higher levels of some phenolic acids and flavonoids than the green stem cultivars. Compared to stems and leaves, the inflorescences contained more amino acids, glucosinolates and most of the phenolic acids. Meanwhile, the stems had the least amounts of phenolic compounds among the organs tested. Metabolomics is a powerful approach for the comprehensive understanding of vegetable nutritional quality. The results provide the basis for future metabolomics-guided breeding and nutritional quality improvement.
Collapse
Affiliation(s)
- Ya-Qin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - Li-Ping Hu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - Guang-Min Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - De-Shuang Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| | - Hong-Ju He
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 10097, China.
| |
Collapse
|
22
|
Koutidou M, Grauwet T, Van Loey A, Acharya P. Potential of different mechanical and thermal treatments to control off-flavour generation in broccoli puree. Food Chem 2016; 217:531-541. [PMID: 27664669 DOI: 10.1016/j.foodchem.2016.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022]
Abstract
The aim of this study was scientifically investigate the impact of the sequence of different thermo-mechanical treatments on the volatile profile of differently processed broccoli puree, and to investigate if any relationship persists between detected off-flavour changes and microstructural changes as a function of selected process conditions. Comparison of the headspace GC-MS fingerprinting of the differently processed broccoli purees revealed that an adequate combination of processing steps allows to reduce the level of off-flavour volatiles. Moreover, applying mechanical processing before or after the thermal processing at 90°C determines the pattern of broccoli tissue disruption, resulting into different microstructures and various enzymatic reactions inducing volatile generation. These results may aid the identification of optimal process conditions generating a reduced level of off-flavour in processed broccoli. In this way, broccoli can be incorporated as a food ingredient into mixed food products with limited implications on sensorial consumer acceptance.
Collapse
Affiliation(s)
- Maria Koutidou
- Unilever R&D, Olivier Van Noortlaan 120, NL-3130AC Vlaardingen, The Netherlands; Laboratory of Food Technology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22 Box 2457, B-3001 Heverlee, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22 Box 2457, B-3001 Heverlee, Belgium
| | - Ann Van Loey
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Center (LFoRCe), Department of Microbial and Molecular Systems (M(2)S), KU Leuven, Kasteelpark Arenberg 22 Box 2457, B-3001 Heverlee, Belgium
| | - Parag Acharya
- Unilever R&D, Olivier Van Noortlaan 120, NL-3130AC Vlaardingen, The Netherlands.
| |
Collapse
|
23
|
Doppler M, Kluger B, Bueschl C, Schneider C, Krska R, Delcambre S, Hiller K, Lemmens M, Schuhmacher R. Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants. Int J Mol Sci 2016; 17:ijms17071017. [PMID: 27367667 PMCID: PMC4964393 DOI: 10.3390/ijms17071017] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v) mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v)), with and without the addition of 0.1% (v/v) formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem) and 57% (ear) of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone.
Collapse
Affiliation(s)
- Maria Doppler
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Institute for Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Bernhard Kluger
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Institute for Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Christoph Bueschl
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Institute for Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Christina Schneider
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Institute for Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Institute for Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Sylvie Delcambre
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Campus Belval, Avenue du Swing 6, 4367 Esch-Belval, Luxembourg.
| | - Karsten Hiller
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg Campus Belval, Avenue du Swing 6, 4367 Esch-Belval, Luxembourg.
| | - Marc Lemmens
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Institute for Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| | - Rainer Schuhmacher
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
- Institute for Biotechnology in Plant Production, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Strasse 20, 3430 Tulln, Austria.
| |
Collapse
|
24
|
Yarkhunova Y, Edwards CE, Ewers BE, Baker RL, Aston TL, McClung CR, Lou P, Weinig C. Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa. THE NEW PHYTOLOGIST 2016; 210:133-44. [PMID: 26618783 DOI: 10.1111/nph.13758] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/14/2015] [Indexed: 05/05/2023]
Abstract
Crop selection often leads to dramatic morphological diversification, in which allocation to the harvestable component increases. Shifts in allocation are predicted to impact (as well as rely on) physiological traits; yet, little is known about the evolution of gas exchange and related anatomical features during crop diversification. In Brassica rapa, we tested for physiological differentiation among three crop morphotypes (leaf, turnip, and oilseed) and for correlated evolution of circadian, gas exchange, and phenological traits. We also examined internal and surficial leaf anatomical features and biochemical limits to photosynthesis. Crop types differed in gas exchange; oilseed varieties had higher net carbon assimilation and stomatal conductance relative to vegetable types. Phylogenetically independent contrasts indicated correlated evolution between circadian traits and both gas exchange and biomass accumulation; shifts to shorter circadian period (closer to 24 h) between phylogenetic nodes are associated with higher stomatal conductance, lower photosynthetic rate (when CO2 supply is factored out), and lower biomass accumulation. Crop type differences in gas exchange are also associated with stomatal density, epidermal thickness, numbers of palisade layers, and biochemical limits to photosynthesis. Brassica crop diversification involves correlated evolution of circadian and physiological traits, which is potentially relevant to understanding mechanistic targets for crop improvement.
Collapse
Affiliation(s)
- Yulia Yarkhunova
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Christine E Edwards
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St Louis, MO, 63166, USA
| | - Brent E Ewers
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Robert L Baker
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | | | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Ping Lou
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Cynthia Weinig
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
25
|
Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S. Recent progress in the use of 'omics technologies in brassicaceous vegetables. FRONTIERS IN PLANT SCIENCE 2015; 6:244. [PMID: 25926843 PMCID: PMC4396356 DOI: 10.3389/fpls.2015.00244] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/26/2015] [Indexed: 05/21/2023]
Abstract
Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub-optimal irradiation. This review covers recent applications of 'omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.
Collapse
Affiliation(s)
- Katja Witzel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Neugart
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Silke Ruppel
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Monika Schreiner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Melanie Wiesner
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
| | - Susanne Baldermann
- Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.Großbeeren, Germany
- Institute of Nutritional Science, University of PotsdamNuthetal, Germany
| |
Collapse
|
26
|
Giambanelli E, Verkerk R, Fogliano V, Capuano E, D'Antuono LF, Oliviero T. Broccoli glucosinolate degradation is reduced performing thermal treatment in binary systems with other food ingredients. RSC Adv 2015. [DOI: 10.1039/c5ra11409h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glucosinolate (GL) stability has been widely studied in differentBrassicaspecies.
Collapse
Affiliation(s)
- E. Giambanelli
- Department of Agri-Food Science and Technology
- Food Science University Campus
- University of Bologna
- Cesena
- Italy
| | - R. Verkerk
- Food Quality and Design Group
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| | - V. Fogliano
- Food Quality and Design Group
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| | - E. Capuano
- Food Quality and Design Group
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| | - L. F. D'Antuono
- Department of Agri-Food Science and Technology
- Food Science University Campus
- University of Bologna
- Cesena
- Italy
| | - T. Oliviero
- Food Quality and Design Group
- Wageningen University
- 6700 AA Wageningen
- The Netherlands
| |
Collapse
|
27
|
Hanschen FS, Lamy E, Schreiner M, Rohn S. Reactivity and stability of glucosinolates and their breakdown products in foods. Angew Chem Int Ed Engl 2014; 53:11430-50. [PMID: 25163974 DOI: 10.1002/anie.201402639] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 12/25/2022]
Abstract
The chemistry of glucosinolates and their behavior during food processing is very complex. Their instability leads to the formation of a bunch of breakdown and reaction products that are very often reactive themselves. Although excessive consumption of cabbage varieties has been thought for long time to have adverse, especially goitrogenic effects, nowadays, epidemiologic studies provide data that there might be beneficial health effects as well. Especially Brassica vegetables, such as broccoli, radish, or cabbage, are rich in these interesting plant metabolites. However, information on the bioactivity of glucosinolates is only valuable when one knows which compounds are formed during processing and subsequent consumption. This review provides a comprehensive, in-depth overview on the chemical reactivity of different glucosinolates and breakdown products thereof during food preparation.
Collapse
Affiliation(s)
- Franziska S Hanschen
- Department of Quality, Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren and Erfurt e.V. Theodor-Echtermeyer-Weg 1, 14979 Großbeeren (Germany) http://www.igzev.de.
| | | | | | | |
Collapse
|
28
|
Hanschen FS, Lamy E, Schreiner M, Rohn S. Reaktivität und Stabilität von Glucosinolaten und ihren Abbauprodukten in Lebensmitteln. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|