1
|
Barea P, Illera AE, Melgosa R, Benito-Román Ó, Candela H, Beltrán S, Sanz MT. Green extraction of isoflavones from okara using subcritical water: Kinetics, optimization, and comparison with other water-based sustainable methods. Food Chem 2025; 482:144166. [PMID: 40203693 DOI: 10.1016/j.foodchem.2025.144166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/15/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Water has been explored as a green extraction agent for isoflavone extraction from okara. First, subcritical water (subW) was explored using two different okaras: (1) washed and dried (OKW) and (2) non-pretreated (OKC). Genistein family was the most abundant, with very low quantities in the glycitein family. Kinetic data revealed interconversion of malonyl-glycosides to β-glycosides in subW, with increasing degradation rate constants for all isoflavones with temperature. A maximum of 1229 μg isoflavone/g of dried okara was obtained at 120 °C after 30 min for OKC. Microwave (MAE) and ultrasound (UAE) technologies achieved 72.8 % and 75.4 %, of the yield of subW. Productivity at the maximum was of 41.0, 82.5 and 92.8 μg isoflavone/g dry okara min for subW, MAE, UAE. However, higher fraction of the more bioavailable forms β-glycoside + aglycone was obtained by subW.
Collapse
Affiliation(s)
- Pedro Barea
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos. Spain
| | - Alba Ester Illera
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos. Spain
| | - Rodrigo Melgosa
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos. Spain
| | - Óscar Benito-Román
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos. Spain
| | - Helena Candela
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos. Spain
| | - Sagrario Beltrán
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos. Spain
| | - María Teresa Sanz
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos. Spain.
| |
Collapse
|
2
|
Ferreira RSB, de Souza PT, Cardoso LP, de Jesus MB, Batista EAC. Sustainable extraction of phytoestrogens from soybean and okara using green solvents. Food Res Int 2025; 201:115521. [PMID: 39849685 DOI: 10.1016/j.foodres.2024.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/21/2024] [Accepted: 12/14/2024] [Indexed: 01/30/2025]
Abstract
Soy extract waste, okara, is a rich source of bioactive compounds such as isoflavones, which are phytoestrogens with potential health benefits. To develop a green approach to recovering these compounds and valorizing okara, a study was developed to screen variables for the extraction of isoflavones from okara and soybean (for comparison) using Deep Eutectic Solvents (DES) composed with choline chloride ([Ch]Cl) and acetic acid (AA) ([Ch]Cl: AA, 1:2). A fractional design (24-1) was used to evaluate variables in the extraction of isoflavones, followed by a Central Composite Rotatable Design (CCRD). The variables analyzed included temperature, % water, solid-liquid ratio, and stirring speed. Furthermore, cytotoxicity tests were carried out using Caco-2 cells from the extracts obtained under best conditions, and the solid matrices were evaluated by scanning electron microscopy (SEM). This study showed that 1194.56 µg TIC/g of dried soybeans were extracted using [Ch]Cl: AA with 70 % water added at low temperature (25 °C), 500 rpm, S/L ratio of 10 mg/mL and extraction time of 2 h. For okara, 450.9 µg TIC/g of dry okara were extracted at 40 °C, 500 rpm, 61.5 % water in DES, S/L ratio of 10 mg/mL, and extraction time of 1 h. In the cytotoxicity tests, it was observed that the neutralization step of the extracts is necessary to reduce the cytotoxic effects caused by the high acidity of the solvents. In summary, this work has shown that aqueous mixtures of DES can be used as sustainable alternative techniques for recovering isoflavones from soybean residue and can replace toxic conventional solvents.
Collapse
Affiliation(s)
- Ramon S B Ferreira
- Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil
| | - Patrícia T de Souza
- Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil
| | - Luana P Cardoso
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Marcelo B de Jesus
- Laboratório de Interações Nanopartículas & Células, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia CP 6109, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil
| | - Eduardo A C Batista
- Laboratório de Extração, Termodinâmica Aplicada e Equilíbrio - EXTRAE, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Rua Monteiro Lobato,80, 13083-062 Campinas, SP, Brazil.
| |
Collapse
|
3
|
Orts A, Navarro-Torre S, Macías-Benítez S, Orts JM, Naranjo E, Castaño A, Parrado J. A new biostimulant derived from soybean by-products enhances plant tolerance to abiotic stress triggered by ozone. BMC PLANT BIOLOGY 2024; 24:580. [PMID: 38890606 PMCID: PMC11186251 DOI: 10.1186/s12870-024-05290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tropospheric ozone is an air pollutant that causes negative effects on vegetation, leading to significant losses in crop productivity. It is generated by chemical reactions in the presence of sunlight between primary pollutants resulting from human activity, such as nitrogen oxides and volatile organic compounds. Due to the constantly increasing emission of ozone precursors, together with the influence of a warming climate on ozone levels, crop losses may be aggravated in the future. Therefore, the search for solutions to mitigate these losses becomes a priority. Ozone-induced abiotic stress is mainly due to reactive oxygen species generated by the spontaneous decomposition of ozone once it reaches the apoplast. In this regard, compounds with antioxidant activity offer a viable option to alleviate ozone-induced damage. Using enzymatic technology, we have developed a process that enables the production of an extract with biostimulant properties from okara, an industrial soybean byproduct. The biostimulant, named as OEE (Okara Enzymatic Extract), is water-soluble and is enriched in bioactive compounds present in okara, such as isoflavones. Additionally, it contains a significant fraction of protein hydrolysates contributing to its functional effect. Given its antioxidant capacity, we aimed to investigate whether OEE could alleviate ozone-induced damage in plants. For that, pepper plants (Capsicum annuum) exposed to ozone were treated with a foliar application of OEE. RESULTS OEE mitigated ozone-induced damage, as evidenced by the net photosynthetic rate, electron transport rate, effective quantum yield of PSII, and delayed fluorescence. This protection was confirmed by the level of expression of genes associated with photosystem II. The beneficial effect was primarily due to its antioxidant activity, as evidenced by the lipid peroxidation rate measured through malondialdehyde content. Additionally, OEE triggered a mild oxidative response, indicated by increased activities of antioxidant enzymes in leaves (catalase, superoxide dismutase, and guaiacol peroxidase) and the oxidative stress index, providing further protection against ozone-induced stress. CONCLUSIONS The present results support that OEE protects plants from ozone exposure. Taking into consideration that the promotion of plant resistance against abiotic damage is an important goal of biostimulants, we assume that its use as a new biostimulant could be considered.
Collapse
Affiliation(s)
- Angel Orts
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Sandra Macías-Benítez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - José M Orts
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Emilia Naranjo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| | - Angélica Castaño
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain.
| | - Juan Parrado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla. C/Profesor García González, Nº2. 41012, Seville, Spain
| |
Collapse
|
4
|
Privatti RT, Capellini MC, Aracava KK, Pugine SMP, de Melo MP, Rodrigues CEC. Saline as solvent and ethanol-based purification process for the extraction of proteins and isoflavones from wet okara. Food Chem 2024; 443:138605. [PMID: 38301555 DOI: 10.1016/j.foodchem.2024.138605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Okara, the solid byproduct of water-soluble soybean extract production, is a potential source of proteins and isoflavones. This study investigated different experimental configurations for extracting these compounds from wet okara, including lipid removal with ethanol at different stages of the recovery process, sequential crosscurrent extraction, and using a saline MgCl2 solution as the solvent. Three washes with a 60:40 ethanol:water (w/w) solution after isoelectric precipitation significantly increased protein content by reducing lipid content (60 %). The crosscurrent approach using 0.05 M MgCl2 yielded okara proteinaceous material with 248 µg/g daidzein and 236 µg/g genistein, along with a 3 % increase in protein content, attributed to enhanced extraction of 7S globulins. These configurations notably affected the functional properties of the protein materials. Overall, this research provides detailed insights into the composition and properties of proteins extracted from wet okara, facilitating their specialized application in food products.
Collapse
Affiliation(s)
- Rafaela T Privatti
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Maria C Capellini
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil.
| | - Keila K Aracava
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Silvana M P Pugine
- Laboratório de Química Biológica (LQB), Departamento de Ciências Básicas (ZAB), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Mariza P de Melo
- Laboratório de Química Biológica (LQB), Departamento de Ciências Básicas (ZAB), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Christianne E C Rodrigues
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil.
| |
Collapse
|
5
|
Aussanasuwannakul A, Boonbumrung S, Pantoa T. Valorization of Soybean Residue (Okara) by Supercritical Carbon Dioxide Extraction: Compositional, Physicochemical, and Functional Properties of Oil and Defatted Powder. Foods 2023; 12:2698. [PMID: 37509790 PMCID: PMC10378935 DOI: 10.3390/foods12142698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In the context of food waste valorization, the purpose of this study is to demonstrate the complete valorization of soybean residue (okara) through supercritical carbon dioxide extraction (SCE). Okara oil (OKO) was separated from full-fat powder (FFP) using SCE with and without ethanol (EtOH) as a cosolvent. The kinetics of extraction, chemical composition, and physicochemical, functional, and health-promoting properties of OKO and defatted powder (DFP) were determined. The process yielded 18.5% oil after 450 min. The soluble dietary fiber and protein of the DFP increased significantly; its water and oil absorption capacities increased despite the decrease in swelling capacity corresponding to particle size reduction. The OKO was rich in linoleic and oleic acids, with a ratio of ω6-to-ω3 fatty acids = 9.53, and EtOH increased its phenolic content (0.45 mg GAE/g), aglycone content (239.6 μg/g), and antioxidant capacity (0.195 mg TE/g). The DFP paste showed gel-like consistency and shear-thinning flow behavior, whereas the OKO showed characteristic transition of the product and affected lubrication at contact zones. Both fractions showed potential as food ingredients based on their nutritional and functional properties, as well as the capability of modifying the microstructure of a model food system.
Collapse
Affiliation(s)
- Aunchalee Aussanasuwannakul
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10903, Thailand
| | - Sumitra Boonbumrung
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10903, Thailand
| | - Thidarat Pantoa
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10903, Thailand
| |
Collapse
|
6
|
Optimization of Mixed Fermentation Conditions of Dietary Fiber from Soybean Residue and the Effect on Structure, Properties and Potential Biological Activity of Dietary Fiber from Soybean Residue. Molecules 2023; 28:molecules28031322. [PMID: 36770993 PMCID: PMC9920189 DOI: 10.3390/molecules28031322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Soybean residue is a by-product of soybean product production that is wasted unreasonably at present. Accomplishing the efficient utilization of soybean residue can save resources. A composite microbial system was constructed using lactic acid bacteria (LAB) and Saccharomyces cerevisiae (SC), and modified soybean residue was prepared by solid fermentation. In order to explore the value of modified soybean residue as a food raw material, its physical and chemical properties, adsorption properties, and antioxidant properties were studied. The results showed that the soluble dietary fiber (SDF) yield of mixed fermentation (MF) increased significantly. Both groups of soybean residues had representative polysaccharide infrared absorption peaks, and MF showed a looser structure and lower crystallinity. In terms of the adsorption capacity index, MF also has a higher adsorption capacity for water molecules, oil molecules, and cholesterol molecules. In addition, the in vitro antioxidant capacity of MF was also significantly higher than that of unfermented soybean residue (UF). In conclusion, our study shows that mixed fermentation could increase SDF content and improve the functional properties of soybean residue. Modified soybean residue prepared by mixed fermentation is the ideal food raw material.
Collapse
|
7
|
Pereira GM, Jun S, Li QX, Wall MM, Ho KK. Formation and physical characterization of soy protein-isoflavone dispersions and emulsions. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Yao H, Yuan J, Chen R, Kang X, Duan Y, Lei C. Differential analysis and bioactivity identification of Neurospora crassa metabolites based on okara by widely-targeted metabolomics. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Characterisation of a High Fibre Flour Prepared from Soy Milk By-Product and Its Potential Use in White Wheat Bread. Foods 2022; 11:foods11233921. [PMID: 36496729 PMCID: PMC9740637 DOI: 10.3390/foods11233921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The commercial production of soy milk renders a large quantity of wet soybean by-product (SMB), which is typically dumped, incinerated, or partially used as animal fodder. This wet SMB has a high moisture content that is rich in nutritional and biologically active compounds. This study aimed to characterise the composition and properties of a flour milled from SMB dried at 100 °C (SMB100) and assess its possible application as a fibre substitute in white bread. The results showed that SMB100 has high levels of dietary fibre (40.6%) and protein (26.5%). It also contains high levels of saponins (31.4 mg/g) and isoflavones (698.0 µg/g). SMB100 has a light-yellow colour with low moisture content and water activity (8.2% and 0.55, respectively). The results also indicated that replacement of wheat flour with SMB100 at 10 or 12.5% by flour weight negatively impacted the raising volume, density, and texture of white bread. Alternatively, substituting wheat flour with 5% of SMB100, did not significantly impact the physical properties of white bread, while significantly improving its dietary fibre content in comparison with the control, revealing that SMB100 is a potential substitute of wheat flour for improvement of dietary fibre in bread. Future studies are needed to optimise bread formulation and improve the processing condition which produces quality white bread with high dietary fibre using SMB100.
Collapse
|
10
|
Coscueta ER, Pellegrini-Malpiedi L, Pintado MM, Nerli BB. Production of soy protein concentrate with the recovery of bioactive compounds: From destruction to valorization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Privatti RT, Capellini MC, Thomazini M, Favaro-Trindade CS, Rodrigues CEC. Profile and content of isoflavones on flaked and extruded soybeans and okara submitted to different drying methods. Food Chem 2022; 380:132168. [PMID: 35121442 DOI: 10.1016/j.foodchem.2022.132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/17/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Isoflavones (IFs) are biocompounds found in considerable amounts in soybean grains. However, to originate soybean-based materials, the grains must be subjected to numerous thermal and mechanical treatments, which can impair the IFs content. The influence of these treatments was investigated and a protocol for IFs extraction and quantification is proposed. Sequential extractions were performed on industrially pretreated soybean samples (broken, flakes, and collets), on okara submitted to different drying methods (freeze-drying, forced convection, and under vacuum), and on soybean oils extracted with hexane and ethanol. β-glucosides levels were decreased by the thermal processes of lamination, expansion, and drying, while the aglycone forms were not affected. Lyophilization was identified as the most viable drying method for the quantification of IFs in okara. Soybean oils extracted with ethanol presented significant amounts of aglycone. Furthermore, two stages of extraction were sufficient for the recovery of the IFs from different matrices.
Collapse
Affiliation(s)
- Rafaela T Privatti
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Maria C Capellini
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Marcelo Thomazini
- Laboratório de Encapsulação e Alimentos Funcionais (LENALIS), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Carmen S Favaro-Trindade
- Laboratório de Encapsulação e Alimentos Funcionais (LENALIS), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil
| | - Christianne E C Rodrigues
- Laboratório de Engenharia de Separações (LES), Departamento de Engenharia de Alimentos (ZEA), Faculdade de Zootecnia e Engenharia de Alimentos (FZEA), Universidade de São Paulo (USP), 13635-900 Pirassununga, São Paulo, Brazil.
| |
Collapse
|
12
|
Nile SH, Venkidasamy B, Samynathan R, Nile A, Shao K, Chen T, Sun M, Khan MU, Dutta N, Thiruvengadam M, Shariati MA, Rebezov M, Kai G. Soybean Processing Wastes: Novel Insights on Their Production, Extraction of Isoflavones, and Their Therapeutic Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6849-6863. [PMID: 34645264 DOI: 10.1021/acs.jafc.1c04927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soybean processing waste (SPW) has potential as a sustainable source of phytochemicals and functional foods. A variety of phytochemicals, nutrients, and minerals have been characterized from SPW using various analytical methods. SPW utilization strategies may provide a new way to increase production of bioactive compounds, nutritional supplements, and cosmetic ingredients. SPW has the potential for value-added processing, to improve commercial use, and to lower environmental pollution through proper use. Okara, a byproduct generated during soybean processing of tofu and soy milk, is rich in dietary fiber, isoflavones, and saponins. Isoflavones, an important class of biologically active compounds owing to their multifunctional and therapeutic effects, are extracted from SPW. Further, studies have shown that okara has potential prebiotic and therapeutic value in lowering the risk of noncommunicable diseases. Therefore, in this review, we focus on several extraction methods and pharmacotherapeutic effects of different SPWs. Their effective uses in functional foods, nutraceuticals, and health applications, as biocatalysts, and as value-added resources have been discussed.
Collapse
Affiliation(s)
- Shivraj Hariram Nile
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641062, India
| | - Ramkumar Samynathan
- R&D Division, Alchem Diagnostics, No. 1/1, Gokhale Street, Ram Nagar, Coimbatore, 641009, Tamil Nadu India
| | - Arti Nile
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Keding Shao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Tingting Chen
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Meihong Sun
- Institute of Plant Biotechnology, School of Life Sciences, Shanghai Normal University, Shanghai 200234, PR China
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Nalok Dutta
- Bioproducts Science & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Tri-Cities Campus, Richland, Washington 99354, United States
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 73 Zemlyanoy Val, Moscow 109004, Russian Federation
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow 109316, Russian Federation
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, The Third Affiliated Hospital, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| |
Collapse
|
13
|
Zhang Y, Duan F, Fang J, Lu J, Wang J, Zhang J, Gao J, Yu H, Fan H. Preparation of soybean dreg fiber solid emulsifier and its effect on the stability of Pickering emulsion. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
High purity insoluble dietary fiber (HPIDF) was extracted from Okara by compound enzyme method, and solid emulsifiers with different particle sizes were prepared by wet grinding. Its composition, structure and physicochemical properties were studied, and the influence mechanism of solid emulsifiers with different particle sizes on emulsifying properties and interface stability of Pickering emulsion was systematically studied. The results showed that the particle size of HPIDF decreased significantly, the ζ-potential, contact Angle and swelling capacity of HPIDF ncrease significantly (p < 0.05). HPIDF forms an adsorption layer at the oil-water interface, and some of them are connected to form a bridge network structure, which plays a role of steric hindrance. And the emulsion has excellent stability under different environmental factors. HPIDF are suitable raw materials as natural food-grade solid emulsifiers. It is cost-effective and eco-friendly to realize the high-value utilization of Okara resources, reduce resource waste, and extend the industrial chain.
Collapse
Affiliation(s)
- Ying Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Fangyu Duan
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
| | - Jiaqi Fang
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Jiahong Lu
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Jinyu Wang
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Jiarui Zhang
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Junpeng Gao
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
| | - Hansong Yu
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| | - Hongliang Fan
- College of Food Science and Engineering , Jilin Agricultural University , Jilin , Changchun 130118 , China
- National Soybean Industry Technology System Processing Laboratory , Jilin , Changchun 130118 , China
| |
Collapse
|
14
|
Kathuria D, Dhiman AK, Surekha A. Effect of different extraction techniques and drying conditions for the assay of isoflavone from
Harit
soya seeds. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Deepika Kathuria
- Department of Food Science and Technology Dr YS Parmar University of Horticulture and Forestry Solan India
| | - Anju K. Dhiman
- Department of Food Science and Technology Dr YS Parmar University of Horticulture and Forestry Solan India
| | - Attri Surekha
- Department of Food Science and Technology Dr YS Parmar University of Horticulture and Forestry Solan India
| |
Collapse
|
15
|
de Queirós LD, Dias FFG, de Ávila ARA, Macedo JA, Macedo GA, Leite Nobrega de Moura Bell JM. Effects of enzyme-assisted extraction on the profile and bioaccessibility of isoflavones from soybean flour. Food Res Int 2021; 147:110474. [PMID: 34399471 DOI: 10.1016/j.foodres.2021.110474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
The effects of enzymatic extraction strategies on extractability, bioconversion, and bioaccessibility of biologically active isoflavone aglycones, total phenolic content, and antioxidant activity of aqueous extracts from full-fat soy flour were evaluated. Protease, tannase, and cellulase enzymes were used individually or in combination. Except for the protease treatment, all enzymatic treatments increased the extraction of biologically active isoflavones (daidzein and genistein) compared with the control. The use of a mixture of protease, tannase, and cellulase resulted in increased extractability and/or bioconversion of aglycones from soy flour, indicating a synergistic effect amongst the enzymes. Daidzein and genistein concentrations increased from 29.0 to 158.2 μg/g and from 27.0 to 156.5 μg/g (compared to the control), respectively. Furthermore, enzymatic extraction followed by in vitro gastrointestinal digestion significantly increased the bioaccessibility of isoflavone aglycones, total phenolic content (by 22-45%), and antioxidant activity (by 15-22%) of the extracts. These results demonstrate that enzyme selection is an efficient strategy to maximize the extraction, bioconversion, and bioaccessibility of bioactive isoflavones from soy flour, which could contribute to health benefits associated with the consumption of soy-rich products.
Collapse
Affiliation(s)
- Livia Dias de Queirós
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, Campinas, SP 13083-862, Brazil; Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Fernanda Furlan Gonçalves Dias
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Amanda Rejane Alves de Ávila
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, Campinas, SP 13083-862, Brazil
| | - Juliana Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, Campinas, SP 13083-862, Brazil
| | - Gabriela Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, Campinas, SP 13083-862, Brazil
| | - Juliana Maria Leite Nobrega de Moura Bell
- Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
16
|
Jia W, Kyriakopoulou K, Roelofs B, Ndiaye M, Vincken JP, Keppler JK, van der Goot AJ. Removal of phenolic compounds from de-oiled sunflower kernels by aqueous ethanol washing. Food Chem 2021; 362:130204. [PMID: 34091162 DOI: 10.1016/j.foodchem.2021.130204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/02/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Selective removal of phenolic compounds (PCs) from de-oiled sunflower kernel is generally considered a key step for food applications, but this often leads to protein loss. PC removal yield and protein loss were assessed during an aqueous or aqueous ethanol washing process with different temperatures, pH-values and ethanol contents. PC yield and protein loss increased when the ethanol content was < 60% or when a higher temperature was applied. Our main finding is that preventing protein loss should be the key objective when selecting process conditions. This can be achieved using solvents with high ethanol content. Simulation of the multi-step exhaustive process showed that process optimization is possible with additional washing steps. PC yield of 95% can be achieved with only 1% protein loss using 9 steps and 80% ethanol content at 25℃. The functional properties of the resulting concentrates were hardly altered with the use of high ethanol solvents.
Collapse
Affiliation(s)
- Wanqing Jia
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Konstantina Kyriakopoulou
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Bente Roelofs
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | | | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Julia K Keppler
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
17
|
Privatti RT, Rodrigues CEDC. An Overview of the Composition, Applications, and Recovery Techniques of the Components of Okara Aimed at the Biovalorization of This Soybean Processing Residue. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rafaela Torrezan Privatti
- Laboratório De Engenharia De Separações (LES), Departamento De Engenharia De Alimentos (ZEA), Faculdade De Zootecnia E Engenharia De Alimentos (FZEA), Universidade De Sao Paulo (USP), Pirassununga, Brazil
| | - Christianne Elisabete da Costa Rodrigues
- Laboratório De Engenharia De Separações (LES), Departamento De Engenharia De Alimentos (ZEA), Faculdade De Zootecnia E Engenharia De Alimentos (FZEA), Universidade De Sao Paulo (USP), Pirassununga, Brazil
| |
Collapse
|
18
|
Zang Y, Santana RAV, Moura DC, Galvão JGB, Brito AF. Replacing soybean meal with okara meal: Effects on production, milk fatty acid and plasma amino acid profile, and nutrient utilization in dairy cows. J Dairy Sci 2021; 104:3109-3122. [PMID: 33358820 DOI: 10.3168/jds.2020-19182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/28/2020] [Indexed: 11/19/2022]
Abstract
Okara meal is a byproduct from the production of soymilk and tofu and can potentially replace soybean meal (SBM) in dairy diets due to its high crude protein (CP) concentration and residual fat. The objective of this study was to investigate the effects of replacing SBM with okara meal on feed intake, yields of milk and milk components, milk fatty acid (FA) profile, nutrient utilization, and plasma AA concentration in lactating dairy cows. Twelve multiparous (65 ± 33 d in milk) and 8 primiparous (100 ± 35 d in milk) organically certified Jersey cows were paired by parity or days in milk, and within pair, randomly assigned to treatments in a crossover design with 21-d periods (14 d for diet adaptation and 7 d for data and sample collection). Diets were fed as total mixed ration formulated to be isonitrogenous and isofibrous and contained (dry matter basis) 50% mixed, mostly grass baleage, 2% sugarcane liquid molasses, 2% minerals-vitamins premix, and either (1) 8.1% SBM, 10% soyhulls, and 27.9% ground corn (CTRL); or (2) 15% okara meal, 8% soyhulls, and 23% ground corn (OKR). Dietary CP, ash-free neutral detergent fiber, and total FA averaged 15.4, 35.3, and 3.08% for CTRL and 15.9%, 36.3%, and 3.74% for OKR, respectively. Substitution of SBM with okara meal did not alter dry matter intake but increased intakes of CP and ash-free neutral detergent fiber. Additionally, no significant differences between treatments were observed for yields of milk and milk components, and concentrations of milk fat, lactose, and total solids. However, milk true protein concentration was lower in cows fed OKR (3.76%) versus CTRL (3.81%). Both milk urea N (8.51 vs. 9.47 mg/dL) and plasma urea N (16.9 vs. 17.8 mg/dL) concentrations decreased with OKR relative to the CTRL diet, respectively. Compared with CTRL, feeding OKR lowered the milk proportions of total odd-chain FA, de novo FA, and mixed FA and increased those of preformed FA, total n-6 FA, and total n-3 FA. The milk proportions of trans-10 18:1, trans-11 18:1, and cis-9,trans-11 18:2 were greater with feeding OKR versus the CTRL diet. The apparent total-tract digestibility of nutrients, urinary excretion of total purine derivatives (uric acid plus allantoin), and total N were not affected by treatments. Except for plasma Leu, which was lower in OKR compared with the CTRL diet, no other significant changes in the plasma concentrations of AA were observed. The plasma concentration of carnosine was lowest in cows receiving the OKR diet. Overall, our results revealed that okara meal can completely replace SBM without negatively affecting production and nutrient digestibility in early- to mid-lactation Jersey cows. Further research is needed to assess the economic feasibility of including okara meal in dairy diets, as well as the amount of okara meal that maximizes yields of milk and milk components in dairy cows in different stages of lactation.
Collapse
Affiliation(s)
- Y Zang
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham 03824
| | - R A V Santana
- Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais, Arinos, MG, Brazil 38680-000
| | - D C Moura
- Programa em Ciência Animal, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil 78060-900
| | - J G B Galvão
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Ipanguaçu, RN, Brazil 59508-000
| | - A F Brito
- Department of Agriculture, Nutrition and Food Systems, University of New Hampshire, Durham 03824.
| |
Collapse
|
19
|
Li YT, Chen MS, Deng LZ, Liang YZ, Liu YK, Liu W, Chen J, Liu CM. Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Davy P, Vuong QV. Soy Milk By-product: Its Composition and Utilisation. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1855191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Philip Davy
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Ourimbah, NSW, Australia
| | - Quan V. Vuong
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Ourimbah, NSW, Australia
| |
Collapse
|
21
|
Lin D, Zheng Y, Wang X, Huang Y, Ni L, Chen X, Wu Z, Huang C, Yi Q, Li J, Qin W, Zhang Q, Chen H, Wu D. Study on physicochemical properties, antioxidant and antimicrobial activity of okara soluble dietary fiber/sodium carboxymethyl cellulose/thyme essential oil active edible composite films incorporated with pectin. Int J Biol Macromol 2020; 165:1241-1249. [DOI: 10.1016/j.ijbiomac.2020.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/06/2023]
|
22
|
Nile SH, Nile A, Oh JW, Kai G. Soybean processing waste: Potential antioxidant, cytotoxic and enzyme inhibitory activities. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Sun C, Wu X, Chen X, Li X, Zheng Z, Jiang S. Production and characterization of okara dietary fiber produced by fermentation with Monascus anka. Food Chem 2020; 316:126243. [PMID: 32036177 DOI: 10.1016/j.foodchem.2020.126243] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Okara dietary fiber was prepared by liquid fermentation with Monascus anka (M. anka). Infrared spectra results indicated that there were more oligosaccharides because of the hydrogen bond cleavage of the polysaccharides in okara Monascus dietary fiber (OMDF). Scanning electron microscopy and X-ray analyses showed that the structures of OMDF were altered as compared to that of the control. The UV-visible spectrum of the M. anka seed broth (MSB) contained three absorption peaks corresponding to red, orange, and yellow pigments, which were present in equal quantities. The concentration of citrinin in MSB and Monascus okara fermentation broth was 0.980 ppm and 0.940 ppm, respectively. After fermentation, the soluble OMDF content in OMDF was 7.7 g/100 g, which was 1.79 times of that in the control. Further, the water holding capacity, oil holding capacity, and swelling capacity of OMDF increased significantly, while the water retaining capacity decreased slightly. HYPOTHESIS: This study was aimed at investigating the effect of liquid fermentation of M. anka on okara. After fermentation, the dietary fiber structure may change and the functional properties may be improved.
Collapse
Affiliation(s)
- Congcong Sun
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui Province 230009, PR China.
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui Province 238000, PR China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Suwei Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| |
Collapse
|
24
|
Lu Y, Liang X, Cheng L, Fang S. Microencapsulation of Pigments by Directly Spray-Drying of Anthocyanins Extracts from Blueberry Pomace: Chemical Characterization and Extraction Modeling. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
AbstractThe aim of this study was to develop an environmentally friendly process to extract anthocyanins from blueberry pomace using water as a solvent and directly microencapsulate anthocyanins by spray drying. The anthocyanins in water and ethanol extracts were characterized by high-performance liquid chromatography and mass spectrometry. The malvidin-3-O-galactoside and malvidin-3-O-glucoside were identified as the main anthocyanins in the blueberry pomace. The anthocyanins profiles of water extracts were similar to that by ethanol extraction. The effects of extraction parameters including solid-to-liquid ratio and temperature on the extraction efficiency and anthocyanins concentration were studied. The blueberry anthocyanins degraded at temperatures higher than 60 °C and all anthocyanins showed similar degradation tendency. The result showed that the artificial neural network (ANN) modeling could be well used to portray the effects of these parameters. Finally, the water extracts were successfully spray dried to produce microencapsulation of blueberry anthocyanins with maltodextrin (MD) as wall materials.
Collapse
Affiliation(s)
- Yushuang Lu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, HangzhouZhejiang, China
| | - Xianrui Liang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, HangzhouZhejiang, China
| | - Lishuang Cheng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, HangzhouZhejiang, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, HangzhouZhejiang, China
| |
Collapse
|
25
|
Quintana G, Spínola V, Martins GN, Gerbino E, Gómez-Zavaglia A, Castilho PC. Release of health-related compounds during in vitro gastro-intestinal digestion of okara and okara fermented with Lactobacillus plantarum. Journal of Food Science and Technology 2019; 57:1061-1070. [PMID: 32123427 DOI: 10.1007/s13197-019-04140-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 11/28/2022]
Abstract
Okara is a highly perishable by-product remaining after filtration of the smashed soybeans seeds in the production of soymilk. Due to its nutritional value, different approaches have been developed to use it as functional ingredient. Fermentation of okara appears as an interesting strategy to preclude spoilage, providing a more stable matrix to be incorporated in the formulation of functional foods. Okara has antioxidant compounds but the effect of fermentation, and their bioaccessibility still need to be investigated. To achieve this aim, the phenolic compounds (as determined by TPC and TFC assays) and the antioxidant properties (as determined by ABTS ·+, DPPH · , O2 ·- assays) of okara and okara fermented with Lactobacillus plantarum CIDCA 83114 were assessed both before and after exposure to simulated gastro-intestinal conditions. Before digestion, okara showed higher values of TPC and TFC than the fermented counterpart. Although a decrease of TPC and TFC was observed after exposing okara to gastric conditions, no significant differences between okara and fermented okara were detected. No further decrease of TPC were observed in intestinal conditions. Okara showed higher antioxidant activity than fermented okara. There was a considerable decrease in the antioxidant activity for both samples when exposed to gastric and intestinal conditions. A good correlation between TFC and antioxidant activities was detected, suggesting that flavonoids play an important role as antioxidants. As a whole, this work provides a solid support for the stability of phytochemicals along the digestive process of both okara and fermented okara.
Collapse
Affiliation(s)
- Gabriel Quintana
- 1Center for Research and Development in Food Cryotechnology (CIDCA-CCT-CONICET La Plata), RA-1900 La Plata, Argentina
| | - Vítor Spínola
- 2CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Gonçalo N Martins
- 2CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Esteban Gerbino
- 1Center for Research and Development in Food Cryotechnology (CIDCA-CCT-CONICET La Plata), RA-1900 La Plata, Argentina
| | - Andrea Gómez-Zavaglia
- 1Center for Research and Development in Food Cryotechnology (CIDCA-CCT-CONICET La Plata), RA-1900 La Plata, Argentina
| | - Paula C Castilho
- 2CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
26
|
Zhu Y, Wang Z, Zhang L. Optimization of lactic acid fermentation conditions for fermented tofu whey beverage with high-isoflavone aglycones. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Orts A, Revilla E, Rodriguez-Morgado B, Castaño A, Tejada M, Parrado J, García-Quintanilla A. Protease technology for obtaining a soy pulp extract enriched in bioactive compounds: isoflavones and peptides. Heliyon 2019; 5:e01958. [PMID: 31294110 PMCID: PMC6595185 DOI: 10.1016/j.heliyon.2019.e01958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/23/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022] Open
Abstract
This work presents a new bioprocess process for the extraction of bioactive components from soy pulp by-product (okara) using an enzymatic technology that was compared to a conventional water extraction. Okara is rich in fiber, fat, protein, and bioactive compounds such as isoflavones but its low solubility hampers the use in food and fertilizer industry. After the enzymatic attack with endoproteases half of the original insoluble proteins were converted into soluble peptides. Linked to this process occured the solubilization of isoflavones trapped in the insoluble protein matrix. We were able to extract up to 62.5% of the total isoflavones content, specially aglycones, the more bioactive isoflavone forms, whose values rose 9.12 times. This was probably due to the increased solubilization and interconversion from the original isoflavones. In conclusion, our process resulted in the formulation of a new functional product rich in aglycones and bioactive peptides with higher antioxidant potency than the original source. Therefore, we propose that the enzymatic extraction of okara bioactive compounds is an advantageous tool to replace conventional extraction.
Collapse
Affiliation(s)
- Angel Orts
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Elisa Revilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Bruno Rodriguez-Morgado
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Angélica Castaño
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Manuel Tejada
- Department of Crystallography, Mineralogy and Agricultural Chemistry, ETSIA, University of Seville. Ctr. Utrera Km 1, Seville 41013, Spain
| | - Juan Parrado
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| | - Albert García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville C/ Prof. Garcia Gonzalez 2, Seville 41012, Spain
| |
Collapse
|
28
|
Yu CA, Yang CY. Bio-ionic liquid pretreatment and ultrasound-promoted enzymatic hydrolysis of black soybean okara. J Biosci Bioeng 2019; 127:767-773. [PMID: 30638804 DOI: 10.1016/j.jbiosc.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/09/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
The effective processing method to produce fermentable sugars and modify the microstructure of black soybean okara using bio-ionic liquid (bio-IL) pretreatment and ultrasound-promoted enzymatic hydrolysis was investigated. The morphology and structural characteristics of okara before and after bio-IL pretreatment and enzymatic hydrolysis under different ultrasonic frequencies were analyzed by field emission scanning electron microscope (FE-SEM), X-ray energy dispersive spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR). Without pretreatment, the production of total reducing sugar (TRS) under ultrasound (40 kHz/300 W) was 3.4 times of that without ultrasound. Using the bio-IL choline acetate ([Ch][OAc]) in water for the pretreatment of black soybean okara, the TRS production of enzymatic hydrolysis was further increased to 5.2 times of that without ultrasound in 4 h of reaction. The analysis by FTIR and EDS showed that the highly structured matrix of okara was unfolded and broken by the action of combining ultrasound and choline acetate pretreatment, due to which the surface structures with large pores were presented to facilitate the reduction of unfavorable hindrance for enzymatic hydrolysis. The simplified kinetic model was proposed to describe the transport and reaction phenomena of enzymes in a solid-liquid system by using two kinetic parameters to show the impeded behavior of enzyme within the matrix of okara. The combination of bio-IL pretreatment and ultrasound-promoted enzymatic hydrolysis was able to make the efficient structural changes of black soybean okara to enhance the digestion of enzymes, and the okara could be valorized for use in foods.
Collapse
Affiliation(s)
- Cheng-An Yu
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 24205, Taiwan, ROC
| | - Chun-Yao Yang
- Department of Food Science, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 24205, Taiwan, ROC.
| |
Collapse
|
29
|
Yu C, Yang C. Effect of ultrasound on the extraction of bioactive aglycone isoflavones for the green valorization of black soybean residue (okara). J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cheng‐An Yu
- Department of Food Science Fu Jen Catholic University New Taipei City Taiwan (R.O.C)
| | - Chun‐Yao Yang
- Department of Food Science Fu Jen Catholic University New Taipei City Taiwan (R.O.C)
| |
Collapse
|
30
|
Zhang P, Wang L, Fang S. Modeling of the Adsorption/Desorption Characteristics and Properties of Anthocyanins from Extruded Red Cabbage Juice by Macroporous Adsorbent Resin. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2019. [DOI: 10.1515/ijfe-2018-0239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AbstractThe adsorption/desorption characteristics, modeling and properties of anthocyanins from extruded red cabbage juice by macroporous resins were investigated. The static adsorption and desorption capacities of red cabbage anthocyanins on five macroporous resins were measured and compared. The X-5 resin showed the best capacities and was selected for the adsorption kinetics, isotherms and elution studies. The pseudo-second-order kinetic model and Langmuir isotherm model were used to describe the adsorption process and mechanism. Dynamic adsorption and desorption tests were performed on a fixed-bed column, and the loading and eluent conditions were optimized. The purity of anthocyanins in freeze-dried purified powder by the resin adsorption process is 21.3 ± 0.9 wt % and shows better stability in the air than the unpurified one. Finally, the antioxidant activity and color properties including color density, color intensity, color tonality and degradation index of the purified powders were measured.
Collapse
Affiliation(s)
- Pingjing Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou310018, China
| | - Liping Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou310018, China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Xuezheng Street No. 18, Hangzhou310018, China
| |
Collapse
|
31
|
Coscueta ER, Pellegrini Malpiedi L, Nerli BB. Micellar systems of aliphatic alcohol ethoxylates as a sustainable alternative to extract soybean isoflavones. Food Chem 2018; 264:135-141. [PMID: 29853357 DOI: 10.1016/j.foodchem.2018.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 11/19/2022]
Abstract
Ethoxylated aliphatic surfactants belonging to the Genapol and Tergitol series were assessed as extraction systems of isoflavones. They showed good extraction properties when compared with different solvents, the Genapol X-080 exhibiting the best performance. Available commercial isoflavone pills were used, as a starting simple matrix, to determine the parameters that affect the extraction procedure. The temperature and the surfactant concentration showed to be factors that favored significantly the extraction performance. The application of optimized variables (Genapol X-080 11% m/m, pH 4.5; extraction temperature of 54 °C and extraction time of 60 min) on soybean flour (natural) allowed extracting 3.237 ± 0.173 mg of isoflavone per gram of treated flour. This result was three times what it was for methanol under identical conditions. Extraction with these micellar systems represents a sustainable alternative methodology for industrial purposes due to its low cost, biodegradability, non-toxicity and easy scaling up.
Collapse
Affiliation(s)
- Ezequiel R Coscueta
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, (S2002LRK) Rosario, Argentina
| | - Luciana Pellegrini Malpiedi
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, (S2002LRK) Rosario, Argentina
| | - Bibiana Beatriz Nerli
- Instituto de Procesos Biotecnológicos y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, (S2002LRK) Rosario, Argentina.
| |
Collapse
|
32
|
Haidar CN, Coscueta E, Cordisco E, Nerli BB, Malpiedi LP. Aqueous micellar two-phase system as an alternative method to selectively remove soy antinutritional factors. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
|
34
|
Salakkam A, Kingpho Y, Najunhom S, Aiamsonthi K, Kaewlao S, Reungsang A. Bioconversion of soybean residue for use as alternative nutrient source for ethanol fermentation. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Kašparovská J, Dadáková K, Lochman J, Hadrová S, Křížová L, Kašparovský T. Changes in equol and major soybean isoflavone contents during processing and storage of yogurts made from control or isoflavone-enriched bovine milk determined using LC-MS (TOF) analysis. Food Chem 2017; 222:67-73. [PMID: 28041561 DOI: 10.1016/j.foodchem.2016.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 11/25/2016] [Accepted: 12/04/2016] [Indexed: 01/22/2023]
Abstract
The effect of supplementing a basal diet for dairy cows with "Soybean extract 40" (Biomedica, Prague, Czech Republic), containing 40% soybean isoflavones, on the contents of daidzein, glycitein, genistein, and equol in milk as well as fresh and mature yogurts was estimated. To determine the contents of these isoflavonoids, an efficient analytical LC-MS (TOF) technique was used. The "Soybean extract 40" used in our study contained an especially high proportion of daidzein (307gkg-1). In both milk and yogurt samples, the amounts of daidzein and its metabolite equol were significantly higher in samples obtained from cows that received the isoflavone extract-supplemented diet than from those that received the basal diet, as the precursor daidzein contributed to the increased equol concentrations. Fermentation caused significant changes in the daidzein and glycitein concentrations. With maturation, the concentrations of daidzein and equol were unaffected, while the glycitein concentration decreased significantly.
Collapse
Affiliation(s)
| | | | - Jan Lochman
- Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Sylvie Hadrová
- Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | | | | |
Collapse
|
36
|
Cordisco E, Haidar CN, Coscueta ER, Nerli BB, Malpiedi LP. Integrated extraction and purification of soy isoflavones by using aqueous micellar systems. Food Chem 2016; 213:514-520. [PMID: 27451211 DOI: 10.1016/j.foodchem.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 06/08/2016] [Accepted: 07/01/2016] [Indexed: 01/29/2023]
Abstract
In this work, an integration of solid-liquid and liquid-liquid extractions by using aqueous micellar two-phase systems was evaluated as potential tool to purify soy isoflavones. Additionally, the proposed methodology aimed to preserve the protein content of the processed soy flour. The extractive assays were performed in AMTPS formed by Triton X-114 and sodium tartrate. In order to optimize the purification process, temperature and time were evaluated as independent variables. Under optimal working conditions, i.e. 100min and 33°C of incubation, IF were purified with a recovery percentage of 93 and a purification factor of almost 10. More importantly, the obtained sample presented an aglycone proportion superior to the reported by other methodologies. These results open perspectives to the use of aqueous micellar two-phase systems as an integrative methodology to extract, concentrate and purify isoflavones.
Collapse
Affiliation(s)
- Estefanía Cordisco
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| | - Carla N Haidar
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| | - Ezequiel R Coscueta
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| | - Bibiana B Nerli
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| | - Luciana P Malpiedi
- Instituto de Procesos Biotecnológicos y Químicos Rosario (IPROBYQ), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CP 2000 Rosario, Argentina.
| |
Collapse
|
37
|
Fernandez-Lopez A, Lamothe V, Delample M, Denayrolles M, Bennetau-Pelissero C. Removing isoflavones from modern soyfood: Why and how? Food Chem 2016; 210:286-94. [PMID: 27211649 DOI: 10.1016/j.foodchem.2016.04.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023]
Abstract
Estrogenic isoflavones were found, in the 1940s, to disrupt ewe reproduction and were identified in soy-consumers' urine in 1982. This led to controversy about their safety, often supported by current Asian diet measurements, but not by historical data. Traditional Asian recipes of soy were tested while assaying soy glycosilated isoflavones. As these compounds are water-soluble, their concentration is reduced by soaking. Pre-cooking or simmering time-dependently reduces the isoflavone:protein ratio in Tofu. Cooking soy-juice for 15 or 60min decreases the isoflavone:protein ratios in Tofu from 6.90 to 3.57 and 1.80, respectively (p<0.001). Traditional Tempeh contains only 18.07% of the original soybean isoflavones (p<0.001). Soy-juice isoflavones were reduced by ultra-filtration (6.54 vs 1.24 isoflavone:protein; p<0.001). Soy-protein and isoflavones are dissociated by water rinsing and prolonged cooking, but these have no equivalent in modern processes. As regards human health, a precise definition of the safety level of isoflavone intake requires additional studies.
Collapse
Affiliation(s)
- Adrian Fernandez-Lopez
- Univ. Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, F-33075 Bordeaux, France; INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, F-33075 Bordeaux, France
| | - Valérie Lamothe
- Univ. Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, F-33075 Bordeaux, France; INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, F-33075 Bordeaux, France; Bordeaux Sciences Agro, F-33175 Gradignan, France
| | - Mathieu Delample
- Univ. Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, F-33075 Bordeaux, France; AGIR, Plateforme technologique, F-33600 Pessac, France
| | - Muriel Denayrolles
- Univ. Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, F-33075 Bordeaux, France; Bordeaux Sciences Agro, F-33175 Gradignan, France; UMR 5248 CBMN Univ. Bordeaux, CNRS, Institut Polytechnique Bordeaux, F-33600 Pessac, France
| | - Catherine Bennetau-Pelissero
- Univ. Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, F-33075 Bordeaux, France; INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, F-33075 Bordeaux, France; Bordeaux Sciences Agro, F-33175 Gradignan, France.
| |
Collapse
|
38
|
Fang W, Yang Y, Zhang X, Yin Q, Zhang X, Wang X, Fang Z, Yazhong X. Improve ethanol tolerance of β-glucosidase Bgl1A by semi-rational engineering for the hydrolysis of soybean isoflavone glycosides. J Biotechnol 2016; 227:64-71. [PMID: 27084057 DOI: 10.1016/j.jbiotec.2016.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 04/11/2016] [Accepted: 04/11/2016] [Indexed: 11/28/2022]
Abstract
A β-glucosidase Bgl1A variant (A24S/F297Y) with improved ethanol tolerance was obtained by semi-rational engineering. At 30-40°C, IC50 values (the amount required for inhibiting 50% enzyme activity) of the variant for ethanol were 17-30% (v/v), 1.4- to 2.4-fold of Bgl1A. When incubating in 15% (v/v) ethanol at 30°C, the half-life of A24S/F297Y was 13min; whereas Bgl1A lost all enzyme activity within 5min. A24S/F297Y was more stable at pH 7.5 than at pH 6.5, and more than 50% of the original activity remained after incubation at 30°C for 10h. At 35°C and pH 7.5, the half-life of A24S/F297Y was 80min, 4.3 times longer than that of Bgl1A. When converting isoflavone glycosides to aglycones using A24S/F297Y as catalyst, the hydrolysis rates were 99% for daidzin and 98% for genistin. The concentrations of daidzein and genistein rapidly increased by 7.02mM and 4.35mM within 10min, respectively. These results showed that A24S/F297Y was a promising candidate for the enzymatic hydrolysis of soybean isoflavone glycosides.
Collapse
Affiliation(s)
- Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yang Yang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xinxin Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Qiang Yin
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xiaotang Wang
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| | - Xiao Yazhong
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| |
Collapse
|
39
|
|
40
|
Jankowiak L, Méndez Sevillano D, Boom RM, Ottens M, Zondervan E, van der Goot AJ. A Process Synthesis Approach for Isolation of Isoflavones from Okara. Ind Eng Chem Res 2015. [DOI: 10.1021/ie5038962] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lena Jankowiak
- Laboratory
of Food Engineering, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - David Méndez Sevillano
- Department
of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Remko M. Boom
- Laboratory
of Food Engineering, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marcel Ottens
- Department
of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Edwin Zondervan
- Department
of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Atze Jan van der Goot
- Laboratory
of Food Engineering, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|