1
|
Abd-Allah H, Youshia J, Abdel Jaleel GA, Hassan A, El Madani M, Nasr M. Gastroprotective Chitosan Nanoparticles Loaded with Oleuropein: An In Vivo Proof of Concept. Pharmaceutics 2024; 16:153. [PMID: 38276520 PMCID: PMC10819437 DOI: 10.3390/pharmaceutics16010153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Oleuropein is the main constituent of olive leaf extract, and it has shown antioxidant and gastroprotective properties against gastric ulcers. Chitosan nanoparticles are known for their mucoadhesive abilities, and consequently, they can increase the retention time of drugs in the gastrointestinal tract. Therefore, loading oleuropein onto chitosan nanoparticles is expected to enhance its biological efficiency. Oleuropein-loaded chitosan nanoparticles were prepared and characterized for particle size, surface charge, in vitro release, and anti-inflammatory activity. Their in vivo efficacy was assessed by measuring specific inflammatory and protective biomarkers, along with histopathological examination. The optimum oleuropein chitosan nanoparticles were cationic, had a size of 174.3 ± 2.4 nm and an entrapment efficiency of 92.81%, and released 70% of oleuropein within 8 h. They recorded a lower IC50 in comparison to oleuropein solutions for membrane stabilization of RBCs (22.6 vs. 25.6 µg/mL) and lipoxygenase inhibition (7.17 vs. 15.6 µg/mL). In an ethanol-induced gastric ulcer in vivo model, they decreased IL-1β, TNF-α, and TBARS levels by 2.1, 1.7, and 1.3 fold, respectively, in comparison to increments caused by exposure to ethanol. Moreover, they increased prostaglandin E2 and catalase enzyme levels by 2.4 and 3.8 fold, respectively. Immunohistochemical examination showed that oleuropein chitosan nanoparticles markedly lowered the expression of IL-6 and caspase-3 in gastric tissues in comparison to oleuropein solution. Overall, oleuropein chitosan nanoparticles showed superior gastroprotective effects to oleuropein solution since comparable effects were demonstrated at a 12-fold lower drug dose, delineating that chitosan nanoparticles indeed enhanced the potency of oleuropein as a gastroprotective agent.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| | - John Youshia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| | | | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo 12613, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (H.A.-A.)
| |
Collapse
|
2
|
Wang T, Wang N, Wang M, Wang L, Shi Y, Du J, Yu D. Theoretical exploration and experimental regulation of the degradation of Δ 9-tetrahydrocannabinol in hemp seed oil by density functional theory. Food Res Int 2023; 170:112996. [PMID: 37316068 DOI: 10.1016/j.foodres.2023.112996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC) in hemp seed oil is a psychoactive cannabinoid, and the content of Δ9-THC can be reduced. Density functional theory (DFT) was used to simulate the degradation path of Δ9-THC, and the ultrasonic treatment was used to degrade the Δ9-THC in hemp seed oil. Results found that the reaction of Δ9-THC degradation to cannabinol (CBN) was a spontaneous exothermic reaction, which required a certain amount of external energy to initiate reaction process. Through the surface electrostatic potential analysis, the minimum value of electrostatic potential of Δ9-THC was -37.68 kcal/mol, and the maximum value was 40.98 kcal/mol. The frontier molecular orbitals analysis found that the energy level difference of Δ9-THC was lower than that of CBN, indicating that the reactivity of Δ9-THC was stronger. The degradation process of Δ9-THC could be divided into two stages, which needed to cross the reaction energy barriers of 3197.40 and 3087.24 kJ/mol, respectively. Ultrasonic treatment was used to degrade Δ9-THC standard solution, it was found that Δ9-THC can be effectively degraded into CBN through intermediate. Subsequently, ultrasonic technology was applied to hemp seed oil, under the conditions of ultrasonic power 150 W and ultrasonic time 21 min, the Δ9-THC was degraded to 10.00 mg/kg.
Collapse
Affiliation(s)
- Tong Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Ning Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Minghao Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Liqi Wang
- Harbin University of Commerce, Harbin 150028, China
| | - Yongge Shi
- Jiusan Grain and Oil Industrial Group Co., Ltd, Harbin 150090, China
| | - Jing Du
- Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
3
|
Optimized Baccharis dracunculifolia extract as photoprotective and antioxidant: in vitro and in silico assessment. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Al-Shuaeeb RAA, Yassin AA, Ibrahim MAA, Abd El-Mageed HR, Ghandour MA, Khalil MM. Computer-based identification of olive oil components as a potential inhibitor of neirisaral adhesion a regulatory protein. J Biomol Struct Dyn 2023; 41:1553-1560. [PMID: 34974817 DOI: 10.1080/07391102.2021.2022535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In silico methods such as molecular docking and molecular dynamic (MD) simulations have significant interest due to their ability to identify the protein-ligand interactions at the atomic level. In this work, different computational methods were used to elucidate the ability of some olive oil components to act as Neisseria adhesion A Regulatory protein (NadR) inhibitors. The frontier molecular orbitals (FMOs) and the global properties such as global hardness, electronegativity, and global softness of ten olive oil components (α-Tocopherol, Erythrodiol, Hydroxytyrosol, Linoleic acid, Apigenin, Luteolin, Oleic acid, Oleocanthal, Palmitic acid, and Tyrosol) were reported using Density Functional Theory (DFT) methods. Among all investigated compounds, Erythrodiol, Apigenin, and Luteolin demonstrated the highest binding affinities (-8.72, -7.12, and -8.24 kcal/mol, respectively) against NadR, compared to -8.21 kcal/mol of the native ligand based on molecular docking calculations. ADMET properties and physicochemical features showed that Erythrodiol, Apigenin, and Luteolin have good physicochemical features and can act as drugs candidate. Molecular dynamics (MD) simulations demonstrated that Erythrodiol, Apigenin, and Luteolin show stable binding affinity and molecular interaction with NadR. Further Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analyses using the MD trajectories also demonstrated the higher binding affinity of Erythrodiol, Apigenin and Luteolin inside NadR protein. The overall study provides a rationale to use Erythrodiol, Apigenin, and Luteolin in the drug development as anti-adhesive drugs lead. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - A A Yassin
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - H R Abd El-Mageed
- Micro-Analysis, Environmental Research and Community Affairs Center (MAESC), Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - M A Ghandour
- Chemistry Department, Faculty of Science, Assuit University, Asyut, Egypt
| | - M M Khalil
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
5
|
Nenadis N, Pyrka I, Tsimidou MZ. The Contribution of Theoretical Prediction Studies to the Antioxidant Activity Assessment of the Bioactive Secoiridoids Encountered in Olive Tree Products and By-Products. Molecules 2023; 28:2267. [PMID: 36903511 PMCID: PMC10005156 DOI: 10.3390/molecules28052267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Assessment of the antioxidant activity of different types of natural compounds is a complex research area that encompasses various in vitro tests and in vivo studies. Sophisticated modern analytical tools permit the unambiguous characterization of the compounds present in a matrix. The contemporary researcher, knowing the chemical structure of the compounds present, can carry out quantum chemical calculations that provide important physicochemical information assisting the prediction of antioxidant potential and the mechanism behind the activity of target compounds before further experimentation. The efficiency of calculations is steadily improved due to the rapid evolution of both hardware and software. It is possible, consequently, to study compounds of medium or even larger size, incorporating also models that simulate the liquid phase (solution). This review contributes to the establishment of theoretical calculations as an inherent part of the antioxidant activity assessment process, having as a case study the complex mixtures of olive bioactive secoiridoids (oleuropein, ligstroside, and related compounds). The literature indicates great variability in theoretical approaches and models used so far for only a limited number of this group of phenolic compounds. Proposals are made for standardization of methodology (reference compounds, DFT functional, basis set size, and solvation model) to facilitate comparisons and communication of findings.
Collapse
Affiliation(s)
| | | | - Maria Z. Tsimidou
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
6
|
Bahloul A, Benayahoum A, Bouakkaz S, Bordjiba T, Boudjahem A, Lilya B, Bachari K. The antioxidant activity of N-E-caffeoyl and N-E-feruloyl tyramine conformers and their sulfured analogs contribution: density functional theory studies. Theor Chem Acc 2023. [DOI: 10.1007/s00214-022-02939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
7
|
Sezgin B, Tilki T, Karabacak Atay Ç, Dede B. Comparative in vitro and DFT antioxidant studies of phenolic group substituted pyridine-based azo derivatives. J Biomol Struct Dyn 2022; 40:4921-4932. [DOI: 10.1080/07391102.2020.1863264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Barış Sezgin
- Faculty of Science & Art, Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| | - Tahir Tilki
- Faculty of Science & Art, Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| | - Çiğdem Karabacak Atay
- Faculty of Education, Department of Basic Education, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Bülent Dede
- Faculty of Science & Art, Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
8
|
Roquete Amparo T, Cherem Peixoto Silva A, Brandão Seibert J, dos Santos da Silva D, Martins Rebello dos Santos V, Melo de Abreu Vieira P, Célio Brandão G, Henrique Bianco de Souza G, Aloise Maneira Corrêa Santos B. In vitro and in silico investigation of the photoprotective and antioxidant potential of Protium spruceanum leaves and its main flavonoids. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zheng YZ, Fu ZM, Guo R, Chen DF, Zhang YC. The important role of benzylic C H bond in the antioxidant behaviours of the xanthones. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Abstract
A series of naturally occurring 3',4'-dihydroxy aurones have been studied with regard to multiple free radical scavenging reactions in the gas and two liquid phases using density functional theory (DFT). All of the aurones prefer to perform (2 + n)-HAT mechanism to trap 2 + n free radicals, where n is the sum of the numbers of catechol and guaiacyl units in the gas and benzene phases. The second HAT reaction favours occurring in the same catechol moiety of the first HAT mechanism occurring OH group due to the formation of a stable quinone and the highly exothermic step of the final stable product formation. The catechol and guaiacyl moieties show increased potency for the second and fourth H+/e‒ reactions. In the water phase, aurones can perform multiple H+/e‒ reactions through n1PL-ET-n2HAT-(n+1-n2)ET mechanism, where n1 is the number of OH groups and n2 is the number of guaiacyl moieties.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Yu-Cang Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
11
|
Radical scavenger competition of alizarin and curcumin: a mechanistic DFT study on antioxidant activity. J Mol Model 2021; 27:166. [PMID: 33987710 PMCID: PMC8119285 DOI: 10.1007/s00894-021-04778-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
In vivo hydroxyl, peroxyl, and superoxide free radicals caused by oxidative stress can be toxic to molecules that are essential for the human body. However, there are natural compounds that can decrease the amount of these harmful species. In this work, we are focusing on two well-known compounds, alizarin (red) and curcumin, to study their interactions with these small radicals for a comparison between a rigid and a flexible structure. We made a mechanistic study and found the major and minor degradation products of curcumin as well as the autoxidation products of it based on a wide range of literature. We found several more favored pathways than those that were previously proposed. On the contrary, for degradation/oxidation of alizarin, only a few proposed mechanisms can be found which were performed in specific conditions. Our calculations predicted some favored rearrangements for the alizarin by peroxyl and superoxide radicals. Interaction of alizarin red and bright yellow curcumin with small radicals like hydroxyl, peroxyl, and superoxide radicals, such as the reaction between curcumin radicals and oxygen molecule, results in different species like epoxides or another kind of radical forms. The stability of epoxides is different in the case of rigid and flexible structures. ![]()
Collapse
|
12
|
Zheng YZ, Fu ZM, Deng G, Guo R, Chen DF. Role of C‒H bond in the antioxidant activities of rooperol and its derivatives: A DFT study. PHYTOCHEMISTRY 2020; 178:112454. [PMID: 32692658 DOI: 10.1016/j.phytochem.2020.112454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Rooperol and its derivatives, derived from the Hypoxis rooperi plant, are polyphenolic and norlignan compounds with excellent antioxidant activities. The reaction enthalpies for the free-radical scavenging by rooperol and its six derivatives were studied using density functional theory. We found that the C-H groups played a significant role in the antioxidant activities in non-polar phases. In the gas and benzene phases, rooperol and its derivatives preferentially underwent the free-radical scavenging process via the 3‒CH group by following the hydrogen atom transfer (HAT) mechanism. In polar phases, the sequential proton loss electron transfer (SPLET) was the most preferred mechanism, and the phenolic O‒H groups played a significant role. Additionally, we found that when the hydrogen atom in the OH group was replaced by a glucose moiety, the antioxidant activity of the adjacent OH group was reduced. ROP, DHROP-I, DHROP-II, ROP-4″-G and ROP-4'G have catechol moiety, they may proceed double step-wise mechanisms to trap free radicals. In the gas and benzene phases, the preferable mechanism is dHAT. In water phase, it is SPLHAT.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Zhong-Min Fu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Da-Fu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
13
|
Alsharif KF, Almalki AA, Al-Amer O, Mufti AH, Theyab A, Lokman MS, Ramadan SS, Almeer RS, Hafez MM, Kassab RB, Abdel Moneim AE. Oleuropein protects against lipopolysaccharide-induced sepsis and alleviates inflammatory responses in mice. IUBMB Life 2020; 72:2121-2132. [PMID: 32710811 DOI: 10.1002/iub.2347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Sepsis results from a major systemic inflammatory response and can induce disorders in multiple organs. The present study evaluated the potential protective effects of oleuropein (OLE) against hyperinflammatory responses during lipopolysaccharide (LPS)-induced sepsis in mice. Sixty male Balb/c mice were randomly categorized into five groups of 12 animals each: control, intraperitoneally injected with OLE (50 mg/kg), injected with LPS (10 mg/kg, intraperitoneal), and two groups administered OLE (25 and 50 mg/kg) for 3 days prior to LPS injection. Twenty-four hours after lipopolysaccharide injection, the animals were sacrificed. Serum, liver, and kidney tissue samples were collected for biochemical analyses, histopathological examinations, and investigation of inflammation-related gene expression. OLE pretreatment significantly reduced liver damage parameters (alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase) and kidney damage parameters (blood urea nitrogen, creatinine, and kidney injury molecule-1) in the septic mice. OLE pretreatment ameliorated LPS-induced liver and kidney histological changes. OLE significantly mitigated the increased levels of malondialdehyde in the liver and kidneys and reduced levels of reduced glutathione induced by LPS. LPS injection also resulted in increased expression of the proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and inflammation-related genes (Nos2, Hmgb1, Mpo, Cd46, Map2k4, and Map2k7) in the hepatic and renal tissues. OLE reduced these expressions to ameliorate the inflammatory response. Moreover, OLE pretreatment enhanced the survival rate of septic mice. In conclusion, OLE alleviated the inflammatory response to protect against LPS-induced sepsis in mice.
Collapse
Affiliation(s)
- Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulraheem A Almalki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Osama Al-Amer
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmad H Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Mekkah, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S Ramadan
- Department of Biochemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rafa S Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Hafez
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al Baha University, Almakhwah, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
14
|
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
15
|
Boulebd H. The role of benzylic-allylic hydrogen atoms on the antiradical activity of prenylated natural chalcones: a thermodynamic and kinetic study. J Biomol Struct Dyn 2020; 39:1955-1964. [DOI: 10.1080/07391102.2020.1740791] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
16
|
Boulebd H. DFT study of the antiradical properties of some aromatic compounds derived from antioxidant essential oils: C–H bond vs. O–H bond. Free Radic Res 2019; 53:1125-1134. [DOI: 10.1080/10715762.2019.1690652] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Sciences, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
17
|
Ameliorative effect of virgin olive oil against nephrotoxicity following sub-chronic administration of ethephon in male rats. J Tradit Complement Med 2019; 10:487-495. [PMID: 32953565 PMCID: PMC7484965 DOI: 10.1016/j.jtcme.2019.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023] Open
Abstract
Background Ethephon (EP) is the most famous plant growth regulator with different adverse effects on kidney function. Virgin Olive Oil (VOO) is considered as a natural source of antioxidant with beneficial effects. Thus, this study was conducted to investigate the effects of VOO on nephrotoxicity induced by EP in rats. Methods and materials In this study, 80 male rats (weighing 200–250 g) were divided into four groups including I: control group received normal saline as vehicle, II: received VOO, III: received EP (150 mg/kg/day) for 2 months, IV: received EP (150 mg/kg/day for 2 months, after 2-month pretreatment with VOO. VOO (2 mL/kg/day) and vehicle were administered by gastric gavage for 2 months. At the end, the animals were sacrificed, and their blood and kidneys were used for examinations. Isolated kidneys were used for histopathological and oxidative stress studies. Results Significant increases were recorded in blood (neutrophils, monocytes) and urinary parameters as well as malondialdehyde (MDA) content in the group III compared to groups II and I (P˂0.05). Antioxidant enzymes significantly declined and histopathological alterations increased in the group III. In the group IV, significant decreases were recorded in blood and urinary parameters, MDA, and histopathological alterations and a significant increase were found in antioxidant enzymes compared to group III (P˂0.05). Conclusions Findings of the present study demonstrated protective effects of VOO in prevention of kidneys against EP -induced toxicity in albino rats. Ethephon as a most famous example of plant growth regulator induced nephrotoxicity and histopathological alterations by increasing malondialdehyde (MDA) content and decreasing antioxidant levels. Virgin olive oil (VOO) is considered as a natural source of antioxidant with hypoglycaemic, hypotensive, hepatoprotective cardiovascular effects. VOO has a protective effects against ethephon induced renal toxicity through its antioxidant properties in adult albino rat VOO increased the levels of antioxidant enzymes and decreased MDA content of renal tissue. VOO decreased the levels of blood (neutrophils, monocytes) and urinary parameters. VOO reduced the degeneration of tubules and glomeruli and decreased the percentage of PCNA+ of tubular epithelium.
Collapse
|
18
|
Augustine C. Unravelling the Competence of Leucocyanidin in Free Radical Scavenging: A Theoretical Approach Based on Electronic Structure Calculations. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619020045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
da Silva ACP, Paiva JP, Diniz RR, Dos Anjos VM, Silva ABSM, Pinto AV, Dos Santos EP, Leitão AC, Cabral LM, Rodrigues CR, de Pádula M, Santos BAMC. Photoprotection assessment of olive (Olea europaea L.) leaves extract standardized to oleuropein: In vitro and in silico approach for improved sunscreens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:162-171. [PMID: 30884286 DOI: 10.1016/j.jphotobiol.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 03/09/2019] [Indexed: 11/25/2022]
Abstract
Olive leaves contain higher amount of polyphenols than olive oil and represent a waste product from olive harvest and pruning of olive trees. The most abundant compound in olive leaves is oleuropein. Benefits of the topical application of olive leaves extract were previously reported, but little information is available on its photoprotective potential and the result of the association of this extract with organic UV filters in topical sunscreen formulations. The olive leaves extract photoprotective potential is less explored for both oral and topical photoprotection in comparison with other plants extracts and polyphenols, such as Polypodium leucotomos extract and resveratrol. There are increasing efforts towards developing more efficient sunscreens and a photoprotection assessement along with a better understanding of the photochemistry of naturally occurring sunscreens could aid the design of new and improved commercial sunscreen formulations. This study was designed to investigate the photoprotective potential of olive leaves extract standardized for oleuropein performing a set of in vitro and in silico tools as an innovative approach, highlighting yeast assays, in vitro Sun Protection Factor (SPF) and molecular modelling studies of UV absorption. This study supports the use of olive leaves extract for photoprotection, as an effective photoprotective, anti-mutagenic and antioxidant active, also showing a synergistic effect in association with UV filters with an improvement on in vitro SPF of sunscreen formulations.
Collapse
Affiliation(s)
- Anne C P da Silva
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Juliana P Paiva
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Raiane R Diniz
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Vitor M Dos Anjos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Ana Beatriz S M Silva
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alicia Viviana Pinto
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Elisabete P Dos Santos
- Laboratório de Desenvolvimento Galênico (LADEG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Alvaro C Leitão
- Laboratório de Radiobiologia Molecular (Radmol), Instituto de Biofísica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Lucio M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica (LabTIF), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Carlos R Rodrigues
- Laboratório de Modelagem Molecular & QSAR-3D (ModMolQSAR), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Marcelo de Pádula
- Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Bianca Aloise M C Santos
- Laboratório de Planejamento Farmacêutico e Simulação Computacional (LaPFarSC), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; Laboratório de Microbiologia e Avaliação Genotóxica (LAMIAG), Faculdade de Farmácia, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil.
| |
Collapse
|
20
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. Olive Biophenols Reduces Alzheimer's Pathology in SH-SY5Y Cells and APPswe Mice. Int J Mol Sci 2018; 20:ijms20010125. [PMID: 30598025 PMCID: PMC6337485 DOI: 10.3390/ijms20010125] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disease, associated with the hallmark proteinacious constituent called amyloid beta (Aβ) of senile plaques. Moreover, it is already established that metals (particularly copper, zinc and iron) have a key role in the pathogenesis of AD. In order to reduce the Aβ plaque burden and overcome the side effects from the synthetic inhibitors, the current study was designed to focus on direct inhibition of with or without metal-induced Aβ fibril formation and aggregation by using olive biophenols. Exposure of neuroblastoma (SH-SY5Y) cells with Aβ42 resulted in decrease of cell viability and morphological changes might be due to severe increase in the reactive oxygen species (ROS). The pre-treated SH-SY5Y cells with olive biophenols were able to attenuate cell death caused by Aβ42, copper- Aβ42, and [laevodihydroxyphenylalanine (l-DOPA)] l-DOPA-Aβ42-induced toxicity after 24 h of treatment. Oleuropein, verbascoside and rutin were the major anti-amyloidogenic compounds. Transgenic mice (APPswe/PS1dE9) received 50 mg/kg of oleuropein containing olive leaf extracts (OLE) or control diet from 7 to 23 weeks of age. Treatment mice (OLE) were showed significantly reduced amyloid plaque deposition (p < 0.001) in cortex and hippocampus as compared to control mice. Our findings provide a basis for considering natural and low cost biophenols from olive as a promising candidate drug against AD. Further studies warrant to validate and determine the anti-amyloid mechanism, bioavailability as well as permeability of olive biophenols against blood brain barrier in AD.
Collapse
Affiliation(s)
- Syed Haris Omar
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
21
|
Zheng YZ, Chen DF, Deng G, Guo R, Fu ZM. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis. PHYTOCHEMISTRY 2018; 156:184-192. [PMID: 30312934 DOI: 10.1016/j.phytochem.2018.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 05/27/2023]
Abstract
The naturally occurring stilbenes piceatannol and its derivatives are excellent antioxidants. In this work, the antioxidative activities of piceatannol and different piceatannol derivatives have been investigated using the density functional theory (DFT) method based on three widely accepted radical scavenging mechanisms, namely, the hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). The gas and four solvent phases, namely, bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE), related to these mechanisms were calculated to elucidate the antioxidative capacities of the investigated compounds. This work focuses specifically on the thermodynamically preferred mechanism, antioxidative site and antioxidative activity order of the investigated stilbenes. The substituted effects of the methyl group and prenyl group on the chemical properties of the remaining OH and CH groups are also analysed. This work confirms the vital role of the OH and CH groups on free radical scavenging of piceatannol and its derivatives.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| |
Collapse
|
22
|
Koc K, Cerig S, Ucar S, Colak S, Bakir M, Erol HS, Yildirim S, Hosseinigouzdagani M, Simsek Ozek N, Aysin F, Fehim Kocpinar E, Budak H, Geyikoglu F. Gastroprotective effects of oleuropein and thymol on indomethacin-induced gastric ulcer in Sprague-Dawley rats. Drug Chem Toxicol 2018; 43:441-453. [PMID: 30426792 DOI: 10.1080/01480545.2018.1530261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ethnopharmacological studies demonstrated that thymol (Thym) and oleuropein (Ole) have therapeutic potential for gastric ulcers. The molecular mechanism underlying the gastroprotective effects of these compounds have not been elucidated yet especially for their individual and combination use at high dose. Therefore, this study was conducted to explore their gastroprotective mechanisms on indomethacin (Indo)-induced gastric ulcer model. Ole (50,100, 250, and 500 mg/kg) and Thym (50,100, 200, and 500 mg/kg) were orally administered to the rats 10 min before the induction of ulcer with Indo. The combination of 500 mg/kg doses of Ole and Thym were applied. The gastric mucosa was evaluated histopathologically. Moreover, TAC/TOS, tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), endothelial nitric oxide synthase (eNOS), and caspase-3 levels were assessed by ELISA and the caspase-3 and TNF-α expressions were quantified by qRT-PCR. Indo-induced histopathological changes while Ole and Thym pretreatment prevented these effects. Unlike the 500 mg/kg dose of Ole treatment, the 500 mg/kg dose of Thym administration enhanced these damages. The decreased TAC, PGE2 levels and increased TOS, eNOS, TNF-α, caspase-3 levels were obtained in Indo group. However, these changes were reversed by Ole and Thym groups except the 500 mg/kg dose of Thym and the combination treatment groups. Similar trends were observed in the caspase-3 and TNF-α expression levels. These results demonstrated that enhanced inflammation, oxidant/antioxidant imbalance, and apoptotic activities were occurred in Indo, 500 mg/kg dose of Thym and the combination treatment groups while not in the other groups. The findings demonstrated the gastroprotective ability of Ole and low doses of Thym in gastric ulcer models.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Salim Cerig
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Serap Ucar
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Suat Colak
- Department of Biology, Erzincan University, Erzincan, Turkey
| | - Murat Bakir
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | | | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey.,East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Enver Fehim Kocpinar
- Department of Medical Laboratory, Techniques Vocational School of Health Services, Alparslan University, Mus, Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
23
|
Squillaro T, Cimini A, Peluso G, Giordano A, Melone MAB. Nano-delivery systems for encapsulation of dietary polyphenols: An experimental approach for neurodegenerative diseases and brain tumors. Biochem Pharmacol 2018; 154:303-317. [PMID: 29803506 DOI: 10.1016/j.bcp.2018.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Neurodegenerative diseases (NDs) and brain tumors are severe, disabling, and incurable disorders that represent a critical problem regarding human suffering and the economic burden on the healthcare system. Because of the lack of effective therapies to treat NDs and brain tumors, the challenge for physicians is to discover new drugs to improve their patients' quality of life. In addition to risk factors such as genetics and environmental influences, increased cellular oxidative stress has been reported as one of the potential common etiologies in both disorders. Given their antioxidant and anti-inflammatory potential, dietary polyphenols are considered to be one of the most bioactive natural agents in chronic disease prevention and treatment. Despite the protective activity of polyphenols, their inefficient delivery systems and poor bioavailability strongly limit their use in medicine and functional food. A potential solution lies in polymeric nanoparticle-based polyphenol delivery systems that are able to enhance their absorption across the gastrointestinal tract, improve their bioavailability, and transport them to target organs. In the present manuscript, we provide an overview of the primary polyphenols used for ND and brain tumor prevention and treatment by focusing on recent findings, the principal factors limiting their application in clinical practice, and a promising delivery strategy to improve their bioavailability.
Collapse
Affiliation(s)
- T Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - A Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - G Peluso
- Institute of Agro-Environmental and Forest Biology, CNR, Naples, Italy
| | - A Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA; Department of Medicine, Surgery and Neuroscience University of Siena, Italy.
| | - M A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Taamalli A, Arráez Román D, Gómez Caravaca AM, Zarrouk M, Segura Carretero A. Geographical Characterization of Tunisian Olive Tree Leaves (cv. Chemlali) Using HPLC-ESI-TOF and IT/MS Fingerprinting with Hierarchical Cluster Analysis. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:6789704. [PMID: 29725553 PMCID: PMC5872618 DOI: 10.1155/2018/6789704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
The olive plant has been extensively studied for its nutritional value, whereas its leaves have been specifically recognized as a processing by-product. Leaves are considered by-products of olive farming, representing a significant material arriving to the olive mill. They have been considered for centuries as an important herbal remedy in Mediterranean countries. Their beneficial properties are generally attributed to the presence of a range of phytochemicals such as secoiridoids, triterpenes, lignans, and flavonoids. With the aim to study the impact of geographical location on the phenolic compounds, Olea europaea leaves were handpicked from the Tunisian cultivar "Chemlali" from nine regions in the north, center, and south of Tunisia. The ground leaves were then extracted with methanol : water 80% (v/v) and analyzed by using high-performance liquid chromatography coupled to electrospray time of flight and ion trap mass spectrometry analyzers. A total of 38 compounds could be identified. Their contents showed significant variation among samples from different regions. Hierarchical cluster analysis was applied to highlight similarities in the phytochemical composition observed between the samples of different regions.
Collapse
Affiliation(s)
- Amani Taamalli
- Laboratoire de Biotechnologie de l'Olivier, Centre de Biotechnologie de Borj-Cedria, Hammam-Lif, Tunisia
| | - David Arráez Román
- Center of Research and Development of Functional Food, Health Science Technological Park, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana María Gómez Caravaca
- Center of Research and Development of Functional Food, Health Science Technological Park, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Mokhtar Zarrouk
- Laboratoire de Biotechnologie de l'Olivier, Centre de Biotechnologie de Borj-Cedria, Hammam-Lif, Tunisia
| | - Antonio Segura Carretero
- Center of Research and Development of Functional Food, Health Science Technological Park, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| |
Collapse
|
25
|
Geyikoglu F, Isikgoz H, Onalan H, Colak S, Cerig S, Bakir M, Hosseinigouzdagani M, Koc K, Erol HS, Saglam YS, Yildirim S. Impact of high-dose oleuropein on cisplatin-induced oxidative stress, genotoxicity and pathological changes in rat stomach and lung. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:1214-1231. [PMID: 28429624 DOI: 10.1080/10286020.2017.1317751] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
The current systemic treatments of the various solid tumors involve Cisplatin (CIS)-based chemotherapy. Due to its cytotoxicity, this approach is limited. Moreover, the safety of CIS is only discussed especially in breast and stomach cancers. Therefore, we, for the first time, explored the restorative efficacy of oleuropein (OLE), in stomach and lung injuries induced by CIS. Sprague-Dawley rats were divided into eight groups: control CIS, OLE and CIS + OLE. Single dose of (7 mg/kg) CIS was administered intraperitoneally to CIS and CIS + OLE groups. After 24 h, 50, 100 and 200 mg/kg OLE was given for three consecutive days to OLE and CIS + OLE groups. The 8-OH-dG, total oxidative/antioxidant status (TOS/TAS) and malondialdehyde (MDA) levels were evaluated and histopathological analyses were performed on the studied tissues. The results indicated that CIS significantly increased 8-OH-dG, MDA and TOS levels and caused severe tissue damages. However, high dose of OLE induced a significant decrease in the 8-OH-dG, MDA levels, an increase in TAS levels and it restores CIS-induced tissue damages. We hope that the results of this study will provide an impetus for future studies on novel therapeutic strategies including the protective use of oleuropein in gastric and lung cancers due to chemotherapy.
Collapse
Affiliation(s)
- Fatime Geyikoglu
- a Faculty of Science, Department of Biology , Ataturk University , Erzurum 25040 , Turkey
| | - Hatice Isikgoz
- a Faculty of Science, Department of Biology , Ataturk University , Erzurum 25040 , Turkey
| | - Hakan Onalan
- a Faculty of Science, Department of Biology , Ataturk University , Erzurum 25040 , Turkey
| | - Suat Colak
- b Uzumlu Vocational School , Erzincan University , Erzincan 24150 , Turkey
| | - Salim Cerig
- a Faculty of Science, Department of Biology , Ataturk University , Erzurum 25040 , Turkey
| | - Murat Bakir
- a Faculty of Science, Department of Biology , Ataturk University , Erzurum 25040 , Turkey
| | | | - Kubra Koc
- a Faculty of Science, Department of Biology , Ataturk University , Erzurum 25040 , Turkey
| | - Huseyin Serkan Erol
- c Faculty of Veterinary, Department of Biochemistry , Ataturk University , Erzurum 25040 , Turkey
| | - Yavuz Selim Saglam
- d Faculty of Veterinary, Department of Pathology , Ataturk University , Erzurum 25040 , Turkey
| | - Serkan Yildirim
- d Faculty of Veterinary, Department of Pathology , Ataturk University , Erzurum 25040 , Turkey
| |
Collapse
|
26
|
Serreli G, Incani A, Atzeri A, Angioni A, Campus M, Cauli E, Zurru R, Deiana M. Antioxidant Effect of Natural Table Olives Phenolic Extract Against Oxidative Stress and Membrane Damage in Enterocyte-Like Cells. J Food Sci 2017; 82:380-385. [PMID: 28071793 DOI: 10.1111/1750-3841.13613] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 12/31/2022]
Abstract
The phenolic fraction of a naturally fermented cultivar of table olives, "Tonda di Cagliari," was investigated for the ability to protect Caco-2 cells against oxidative stress and membrane damage induced by tert-butyl hydroperoxyde (TBH). TBH exposure resulted in an alteration of cellular redox status, with an increase in reactive oxygen species (ROS) and a decrease in reduced glutathione (GSH) level. A loss of the epithelial integrity, as indicated by the decrease of the transepithelial electrical resistance value, was also observed over time, together with an intense lipid peroxidation process. The olives phenolic extract significantly counteracted ROS generation and subsequent alteration of monolayer integrity and membrane oxidative damage. The protective action of the extract is likely due to the scavenging ability of its main components, as hydroxytyrosol, oleuropein, and verbascoside among the secoiridoids and derivatives. Since olives phenolic compounds concentrate in the intestinal lumen, they may be a useful tool in the prevention of intestinal disorders related to oxidative damage.
Collapse
Affiliation(s)
- Gabriele Serreli
- Dept. of Biomedical Sciences, Unit of Experimental Pathology, Univ. of Cagliari, Cittadella Universitaria, SS 554, Monserrato (CA), 09042, Italy
| | - Alessandra Incani
- Dept. of Biomedical Sciences, Unit of Experimental Pathology, Univ. of Cagliari, Cittadella Universitaria, SS 554, Monserrato (CA), 09042, Italy
| | - Angela Atzeri
- Dept. of Biomedical Sciences, Unit of Experimental Pathology, Univ. of Cagliari, Cittadella Universitaria, SS 554, Monserrato (CA), 09042, Italy
| | - Alberto Angioni
- Dept. of Life and Environmental Sciences, Univ. of Cagliari, Via Ospedale 72, 09124, Cagliari, Italy
| | - Marco Campus
- Agricultural Research Agency of Sardinia (Agris Sardegna), Km 18.600 S.S. 291, Loc. Bonassai, Sassari, Italy
| | - Emanuele Cauli
- Agricultural Research Agency of Sardinia (Agris Sardegna), Km 18.600 S.S. 291, Loc. Bonassai, Sassari, Italy
| | - Roberto Zurru
- Agricultural Research Agency of Sardinia (Agris Sardegna), Km 18.600 S.S. 291, Loc. Bonassai, Sassari, Italy
| | - Monica Deiana
- Dept. of Biomedical Sciences, Unit of Experimental Pathology, Univ. of Cagliari, Cittadella Universitaria, SS 554, Monserrato (CA), 09042, Italy
| |
Collapse
|
27
|
Ardjani ATE, Mekelleche SM. Analysis of the antioxidant activity of 4-(5-chloro-2-hydroxyphenylamino)-4-oxobut-2-enoic acid derivatives using quantum-chemistry descriptors and molecular docking. J Mol Model 2016; 22:302. [DOI: 10.1007/s00894-016-3160-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/08/2016] [Indexed: 01/05/2023]
|
28
|
Akhtari K, Hassanzadeh K, Fakhraei B, Akhtari G. Topological Analysis and Frequency Dependent Hyperpolarizability Calculations of FDDNP: a DFT Study. CHEMISTRY JOURNAL OF MOLDOVA 2016. [DOI: 10.19261/cjm.2016.11(2).04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Geyikoglu F, Emir M, Colak S, Koc K, Turkez H, Bakir M, Hosseinigouzdagani M, Cerig S, Keles ON, Ozek NS. Effect of oleuropein against chemotherapy drug-induced histological changes, oxidative stress, and DNA damages in rat kidney injury. J Food Drug Anal 2016; 25:447-459. [PMID: 28911689 PMCID: PMC9332526 DOI: 10.1016/j.jfda.2016.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/16/2016] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Cisplatin-based chemotherapy is responsible for a large number of renal failures, and it is still associated with high rates of mortality today. Oleuropein (OLE) presents a plethora of pharmacological beneficial properties. In this study we investigated whether OLE could provide sufficient protection against cisplatin-induced nephrotoxicity. With this aim, Sprague-Dawley rats were divided into eight groups: control; 7 mg/kg/d cisplatin, 50 mg/kg, 100 mg/kg, and 200 mg/kg OLE; and treatment with OLE for 3 days starting at 24 hours following cisplatin injection. After exposure to the chemotherapy agent and OLE, oxidative DNA damage was quantitated in the renal tissue of experimental animals by measuring the amount of 8-hydroxy-2′-deoxyguanosine (8-OHdG) adducts. Malondialdehyde (MDA) level, total oxidative stress (TOS), and total antioxidant status (TAS) were assessed to determine the oxidative injury in kidney cells. The histology of the kidney was examined using four different staining methods: hematoxylin-eosin (H&E), periodic acid Schiff (PAS), Masson trichrome, and amyloid. In addition, the blood urea nitrogen (BUN), uric acid (UA), and creatinine (CRE) levels were established. Our experimental data showed that tissue 8-OHdG levels were significantly higher in the cisplatin group when compared to the control group. The glomerular cells were sensitive to cisplatin as tubular cells. In addition, treatment with cisplatin elevated the levels of BUN, UA, CRE, and TOS, but lowered the level of TAS compared to the control group. The OLE therapy modulated oxidative stress in order to restore normal kidney function and reduced the formation of 8-OHdG induced by cisplatin. Furthermore, the OLE treatment significantly reduced pathological findings in renal tissue. We demonstrate for the first time that OLE presents significant cytoprotective properties against cisplatin-induced genotoxicity by restoring the antioxidant system of the renal tissue. According to our findings, OLE is a promising novel natural source for the prevention of serious kidney damage in current chemotherapies.
Collapse
Affiliation(s)
- Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Murat Emir
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Suat Colak
- Department of Biology, Erzincan University, Uzumlu Vocational School, Erzincan, Turkey
| | - Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey.
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Murat Bakir
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | | | - Salim Cerig
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Osman Nuri Keles
- Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
30
|
Papadopoulos AG, Nenadis N, Sigalas MP. DFT study of radical scavenging activity of sesame oil lignans and selected in vivo metabolites of sesamin. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2015.11.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Abdel-Gayoum AA, Al-Hassan AA, Ginawi IA, Alshankyty IM. The ameliorative effects of virgin olive oil and olive leaf extract on amikacin-induced nephrotoxicity in the rat. Toxicol Rep 2015; 2:1327-1333. [PMID: 28962475 PMCID: PMC5598311 DOI: 10.1016/j.toxrep.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 12/05/2022] Open
Abstract
Amikacin is an important antibiotic, and its use is limited because of the induced nephrotoxicity. Thus, search for natural and synthetic agents that can moderate amikacin toxicity never stopped. The present study aims to investigate the possible ameliorative effects of virgin olive oil and olive leaf extract against the amikacin-induced nephrotoxicity in rat. Methods 48 rats were distributed into 6 groups: 1-Animals of control (C) group were injected intraperitoneally (ip) with saline, 2-(AK); injected ip with amikacin {300 mg/kg/day for 12days}, 3-(OO) group: given olive oil {7 ml/kg/day for 16days}, 4-(OOAK) group: given olive oil as in OO and amikacin for 12days, 5-(OL) group: given olive leaf extract {50 mg/kg/day for 16days}, 6-(OLAK) group: given leaf extract as in OL and amikacin for 12days. Animals were fasted and sacrificed. Serum was used for biochemical analysis and kidneys for histopathology. Results Serum urea and creatinine were significantly (P < 0.001) elevated in AK, and significantly dropped in the OOAK and OLAK groups. Serum uric acid was reduced in AK by 45.29%. Kidneys from AK showed necrosis, whereas, those from OOAK and OLAK showed mild histology. The serum triglyceride was decreased by 17.8% in OL, by 37.02% in OOAK and by 31.48% in OLAK. The calculated amikacin effect showed a significant positive correlation with urea (r = 0.521, P = 0.0004), and a negative correlation with uric acid (r = 0.58, P < 0.0001). Conclusion The study confirmed nephrotoxicity of amikacin in rat which was ameliorated by virgin olive oil and by olive leaf extract. Amikacin did not cause dyslipidemia but reduced serum uric acid.
Collapse
Affiliation(s)
- Abdelgayoum A. Abdel-Gayoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
- Corresponding author.
| | - Abdelrahman A. Al-Hassan
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Ibrahim A. Ginawi
- Department of Community Medicine, Faculty of Medicine, University of Hail, Hail, Saudi Arabia
| | - Ibraheem M. Alshankyty
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
32
|
Antiradical potential of phenolic compounds fingerprints of propolis extracts: DFT approach. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Effect of an olive phenolic extract on the quality of vegetable oils during frying. Food Chem 2015; 176:184-92. [DOI: 10.1016/j.foodchem.2014.12.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/05/2014] [Accepted: 12/12/2014] [Indexed: 11/24/2022]
|
34
|
Vargas-Sánchez R, Mendoza-Wilson A, Balandrán-Quintana R, Torrescano-Urrutia G, Sánchez-Escalante A. Study of the molecular structure and chemical reactivity of pinocembrin by DFT calculations. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.01.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Mechanisms of the hydroxyl and superoxide anion radical scavenging activity and protective effect on lipid peroxidation of thymoquinone: a DFT study. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1341-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|