1
|
Zhao X, Zheng L, Shi Q, Lin Y, Zeng Z, Song C, Jin S, Xiao L. Comparative pharmacognosy and secondary metabolite analysis of Balanophorae herbs from different sources. Hereditas 2024; 161:19. [PMID: 38907290 PMCID: PMC11191205 DOI: 10.1186/s41065-024-00323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
The Balanophorae are not only traditional Chinese herbal medicines but also functional foods with diverse sources. This study aimed to distinguish pharmacognostic characteristics and secondary metabolites among different species of Balanophorae. Eight species of Balanophorae herbs were harvested, including 21 batches with 209 samples. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze secondary metabolites of Balanophorae from 21 sources. Targeted metabolomic analysis was performed to compare differences among the groups. Rhopalocnemis phalloide and B. indica can be identified by their pharmacognostic characteristics. Then, 41 secondary metabolites were identified or characterized in the mixed extracts of the 209 samples, mainly phenolic acids, flavonoids, and their derivatives. The distribution of these secondary metabolites revealed apparent differences among different species. In addition, targeted metabolomic analysis suggested that the secondary metabolite profiles of seven species of Balanophorae showed noticeable differences, and differences were also observed among different growing regions. Finally, five important metabolic markers were screened to successfully distinguish B. laxiflora, B. harlandii, and B. polyandra, including three phenolic acids and two flavonoids. This is the first study to systematically compare both the morphology and secondary metabolites among different sources of Balanophorae, which could provide effective information for identifying diverse species.
Collapse
Affiliation(s)
- Xueyan Zhao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Lihui Zheng
- Hubei Institute for Drug Control, Hubei Engineering Research Center for Drug Quality Control, NMPA Key Laboratory of Quality Control of Chinese Medicine, Wuhan, Hubei, 430075, China
| | - Qingxin Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Yuqi Lin
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Zhaoxiang Zeng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
| | - Chengwu Song
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China
| | - Shuna Jin
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, HuangJiaHu West Road 16, Wuhan, Hubei, 430065, China.
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430065, China.
| | - Ling Xiao
- Hubei Institute for Drug Control, Hubei Engineering Research Center for Drug Quality Control, NMPA Key Laboratory of Quality Control of Chinese Medicine, Wuhan, Hubei, 430075, China.
| |
Collapse
|
2
|
Santos Pereira ED, de Oliveira Raphaelli C, Massaut KB, Camargo TM, Radünz M, Hoffmann JF, Vizzotto M, Pieniz S, Fiorentini ÂM. Probiotic Yogurt Supplemented with Lactococcus lactis R7 and Red Guava Extract: Bioaccessibility of Phenolic Compounds and Influence in Antioxidant Activity and Action of Alpha-amylase and Alpha-glucosidase Enzymes. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:219-224. [PMID: 38345666 DOI: 10.1007/s11130-024-01149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The industry has increasingly explored the development of foods with functional properties, where supplementation with probiotics and bioactive compounds has gained prominence. In this context, the study aimed to evaluate the influence of in vitro biological digestion on the content of phenolic compounds, antioxidant activity, and inhibition of α-amylase and α-glucosidase activities of probiotic yogurt supplemented with the lactic acid bacteria Lactococcus lactis R7 and red guava extract (Psidium cattleianum). A yogurt containing L. lactis R7 (0.1%) and red guava extract (4%) was characterized for the content of phenolic compounds, antioxidant activity, and potential for inhibition of digestive enzymes after a simulated in vitro digestion process. After digestion, the caffeic and hydroxybenzoic acids remained, and sinapic acid only in the last digestive phase. Antioxidant activity decreased during digestion by 28.93, 53.60, and 27.97% for DPPH, nitric oxide and hydroxyl radicals, respectively, and the inhibition of the α-amylase enzyme decreased only 4.01% after the digestion process. α-glucosidase was more efficient in intestinal digestion, demonstrating an increase of almost 50% in probiotic yogurt with red guava extract before digestion. Possibly, the phenolics change their conformation during digestion, generating new compounds, reducing antioxidant activity, and increasing the inhibitory activity of α-glucosidase digestive enzymes. It was concluded that the probiotic yogurt formulation supplemented with red guava extract could interfere with the concentration of phenolic compounds and the formation of new compounds, suggesting a positive and effective inhibition of the digestive enzymes, even after the digestive process.
Collapse
Affiliation(s)
- Elisa Dos Santos Pereira
- Faculty of Nutrition, Department of Nutrition, University Federal de Pelotas, R. Gomes Carneiro, 01, Pelotas, RS, 96010-610, Brazil
| | - Chirle de Oliveira Raphaelli
- Faculty of Agronomy, Department of Food Science and Technology, University Federal de Pelotas, Pelotas, RS, Brazil.
| | - Khadija Bezerra Massaut
- Faculty of Nutrition, Department of Nutrition, University Federal de Pelotas, R. Gomes Carneiro, 01, Pelotas, RS, 96010-610, Brazil
| | - Taiane Mota Camargo
- Faculty of Agronomy, Department of Food Science and Technology, University Federal de Pelotas, Pelotas, RS, Brazil
| | - Marjana Radünz
- Faculty of Agronomy, Department of Food Science and Technology, University Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica Fernanda Hoffmann
- Technological Institute in Food for Health, School of Health, University of Vale dos Sinos, São Leopoldo, Brazil
| | - Márcia Vizzotto
- Department of Food Science and Technology, Brazilian Agricultural Research Company - EMBRAPA, Pelotas, RS, Brazil
| | - Simone Pieniz
- Faculty of Nutrition, Department of Nutrition, University Federal de Pelotas, R. Gomes Carneiro, 01, Pelotas, RS, 96010-610, Brazil
| | - Ângela Maria Fiorentini
- Faculty of Agronomy, Department of Food Science and Technology, University Federal de Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
3
|
Lacorte DH, Valério Filho A, Carvalho MD, Avila LB, Moraes CC, da Rosa GS. Optimization of the Green Extraction of Red Araçá ( Psidium catteyanum Sabine) and Application in Alginate Membranes for Use as Dressings. Molecules 2023; 28:6688. [PMID: 37764464 PMCID: PMC10537386 DOI: 10.3390/molecules28186688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In this research, the aim was to introduce innovation to the pharmaceutical field through the exploration of an underutilized plant matrix, the red araçá, along with the utilization of sodium alginate for the development of membranes designed for active topical dressings. Within this context, optimal extraction conditions were investigated using the central composite rotational statistical design (CCRD) to obtain a red araçá epicarp extract (RAEE) rich in bioactive compounds utilizing the maceration technique. The extract acquired under the optimized conditions (temperature of 66 °C and a hydroalcoholic solvent concentration of 32%) was incorporated into a sodium alginate matrix for the production of active membranes using a casting method. Characterization of the membranes revealed that the addition of the extract did not significantly alter its morphology. Furthermore, satisfactory results were observed regarding mechanical and barrier properties, as well as the controlled release of phenolic compounds in an environment simulating wound exudate. Based on these findings, the material produced from renewable matrices demonstrates the promising potential for application as a topical dressing within the pharmaceutical industry.
Collapse
Affiliation(s)
- Douglas Hardt Lacorte
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, Bagé 96413-172, Brazil; (D.H.L.); (C.C.M.)
| | - Alaor Valério Filho
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, Pelotas 96010-610, Brazil;
| | | | - Luisa Bataglin Avila
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, Bagé 96413-172, Brazil; (D.H.L.); (C.C.M.)
| | - Gabriela Silveira da Rosa
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, Bagé 96413-172, Brazil; (D.H.L.); (C.C.M.)
- Chemical Engineering, Federal University of Pampa, Bagé 96413-172, Brazil;
| |
Collapse
|
4
|
Application of araçá fruit husks (Psidium cattleianum) in the preparation of activated carbon with FeCl3 for atrazine herbicide adsorption. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Rajha HN, Paule A, Aragonès G, Barbosa M, Caddeo C, Debs E, Dinkova R, Eckert GP, Fontana A, Gebrayel P, Maroun RG, Napolitano A, Panzella L, Pasinetti GM, Stevens JF, Schieber A, Edeas M. Recent Advances in Research on Polyphenols: Effects on Microbiota, Metabolism, and Health. Mol Nutr Food Res 2021; 66:e2100670. [PMID: 34806294 DOI: 10.1002/mnfr.202100670] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Indexed: 01/02/2023]
Abstract
Polyphenols have attracted huge interest among researchers of various disciplines because of their numerous biological activities, such as antioxidative, antiinflammatory, antiapoptotic, cancer chemopreventive, anticarcinogenic, and antimicrobial properties, and their promising applications in many fields, mainly in the medical, cosmetics, dietary supplement and food industries. In this review, the latest scientific findings in the research on polyphenols interaction with the microbiome and mitochondria, their metabolism and health beneficial effects, their involvement in cognitive diseases and obesity development, as well as some innovations in their analysis, extraction methods, development of cosmetic formulations and functional food are summarized based on the papers presented at the 13th World Congress on Polyphenol Applications. Future implications of polyphenols in disease prevention and their strategic use as prophylactic measures are specifically addressed. Polyphenols may play a key role in our tomorrow´s food and nutrition to prevent many diseases.
Collapse
Affiliation(s)
| | - Armelle Paule
- International Society of Antioxidants in Nutrition and Health, Paris, France
| | | | | | | | | | - Rada Dinkova
- University of Food Technologies, Plovdiv, Bulgaria
| | | | | | - Prisca Gebrayel
- International Society of Antioxidants in Nutrition and Health, Paris, France
| | | | | | | | | | | | | | - Marvin Edeas
- University de Paris, Institut Cochin, Inserm, Paris, 1016, France
| |
Collapse
|
6
|
Mesomo Bombardelli MC, Machado CS, Kotovicz V, Kruger RL, Santa ORD, Torres YR, Corazza ML, da Silva EA. Extracts from red Araçá (Psidium cattleianum) fruits: Extraction process, modelling and assessment of the bioactivity potentialities. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Pereira Barbosa-Carvalho AP, Texeira Costa Leitão DDS, Campos de Siqueira F, Zerlotti Mercadante A, Campos Chisté R. Antrocaryon amazonicum: An unexploited Amazonian fruit with high potential of scavenging reactive oxygen and nitrogen species. J Food Sci 2021; 86:4045-4059. [PMID: 34355397 DOI: 10.1111/1750-3841.15868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
Antrocaryon amazonicum fruits are unexploited sources of bioactive compounds found in the Amazonia region of Brazil. In this study, for the first time, the carotenoid and phenolic compound profiles of the pulp and peel of A. amazonicum fruits, from two varieties at two harvest periods, were determined by LC-MS. Additionally, the potential of the peel and pulp extracts to scavenge physiologically relevant reactive oxygen species (ROS) and reactive nitrogen species (RNS) was assessed. The major carotenoids in both parts of the fruits were lutein, accounting for ≈42% of the identified carotenoids in the peel and ≈25% in the pulp, whereas catechin and hydroxybenzoic acid derivatives were the major phenolics in both parts. The peel extract, which presented the highest bioactive compound contents, was more efficient to scavenge ROS than the pulp. The peel extract showed high scavenging efficiency (IC50 ) for singlet oxygen (1 O2 ; 16 µg/ml), hypochlorous acid (HOCl; 20 µg/ml), peroxynitrite (ONOO- ; 38 µg/ml), and superoxide radical (O2 •- ; 47 µg/ml), whereas the pulp extract exhibited high efficiency for ONOO- (13 µg/ml), followed by HOCl (30 µg/ml), ¹O2 (76 µg/ml), and less efficient for O2 •- (44 µg/ml). Therefore, A. amazonicum fruits can be seen as an expressive source of bioactive compounds with high antioxidant potential to be further investigated to inhibit or delay oxidative processes both in food and physiological systems triggered by ROS and RNS. PRACTICAL APPLICATION: Bioactive compound extracts of Antrocaryon amazonicum fruits have high potential to be exploited for inhibiting or delaying oxidative processes and increase food stability.
Collapse
Affiliation(s)
| | | | - Francilia Campos de Siqueira
- Postgraduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | | | - Renan Campos Chisté
- Postgraduate Program of Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém, Pará, Brazil.,Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém, Pará, Brazil
| |
Collapse
|
8
|
Rojas-Garbanzo C, Rodríguez L, Pérez AM, Mayorga-Gross AL, Vásquez-Chaves V, Fuentes E, Palomo I. Anti-platelet activity and chemical characterization by UPLC-DAD-ESI-QTOF-MS of the main polyphenols in extracts from Psidium leaves and fruits. Food Res Int 2021; 141:110070. [PMID: 33641960 DOI: 10.1016/j.foodres.2020.110070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 11/30/2022]
Abstract
In Costa Rica, two species of Psidium fruits, P. guajava and P. friedrichsthalianum, are widely consumed as food and used in folk medicine. Although studies have revealed the health effects of these fruits, there has been little research showing the antiplatelet activity of these species. This work evaluated the antiplatelet potential of aqueous extracts made from leaves and fruits of pink guava and Costa Rican guava. Platelet aggregation was induced by the platelet agonists ADP, TRAP-6, collagen and PMA. Platelet activation and secretion were studied using flow cytometry. The chemical profiles of the four extracts were characterized using UPLC-DAD-ESI-QTOF-MS. The studies revealed that the aqueous extracts of leaves and fruits of P. guajava and P. friedrichsthalianum inhibited platelet aggregation induced by ADP (4 µM), TRAP-6 (5 µM), collagen (1 µg mL-1) and PMA (100 nM), and the effect was dependent on the extract concentration. Extracts of leaves and fruits of pink guava and Costa Rican guava reduced secretion of P-selectin and activation of GP IIb/IIIa. The extracts of leaves and fruits of pink guava and Costa Rican guava proved to be a rich source of phenolic compounds, mainly quercetin aglycones and proanthocyanidins derived from (epi) catechin units. Other compounds such as ellagitannins, and benzophenones were also putatively identified. This research showed that P. guajava and P. friedrichsthalianum could potentially be used for the prevention of thrombotic events.
Collapse
Affiliation(s)
- Carolina Rojas-Garbanzo
- National Center of Food Science and Technology (CITA), University of Costa Rica, 11501-2060 San José, Costa Rica
| | - Lyanne Rodríguez
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile.
| | - Ana M Pérez
- National Center of Food Science and Technology (CITA), University of Costa Rica, 11501-2060 San José, Costa Rica.
| | - Ana Lucía Mayorga-Gross
- National Center of Food Science and Technology (CITA), University of Costa Rica, 11501-2060 San José, Costa Rica.
| | - Víctor Vásquez-Chaves
- Research Center in Natural Products (CIPRONA), University of Costa Rica, 11501-2060 San José, Costa Rica.
| | - Eduardo Fuentes
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile.
| | - Iván Palomo
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, University of Talca, 3460000 Talca, Chile.
| |
Collapse
|
9
|
Cádiz-Gurrea MDLL, Pinto D, Delerue-Matos C, Rodrigues F. Olive Fruit and Leaf Wastes as Bioactive Ingredients for Cosmetics-A Preliminary Study. Antioxidants (Basel) 2021; 10:245. [PMID: 33562523 PMCID: PMC7914505 DOI: 10.3390/antiox10020245] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Olea europaea cultivar, native in the Mediterranean basin, has expanded worldwide, mainly due to the olive oil industry. This expansion is attributed to the benefits of olive oil consumption, since this product is rich in nutritional and bioactive compounds. However, the olive industry generates high amounts of wastes, which could be related to polluting effects on soil and water. To minimize the environmental impact, different strategies of revalorization have been proposed. In this sense, the aim of this work was to develop high cosmetic value added oleuropein-enriched extracts (O20 and O30), a bioactive compound from olive byproducts, performing a comprehensive characterization using high performance liquid chromatography coupled to mass spectrometry and evaluate their bioactivity by in vitro assays. A total of 49 compounds were detected, with oleuropein and its derivatives widely found in O30 extract, whereas iridoids were mainly detected in O20 extract. Moreover, 10 compounds were detected for the first time in olive leaves. Both extracts demonstrated strong antioxidant and antiradical activities, although O30 showed higher values. In addition, radical oxygen and nitrogen species scavenging and enzyme inhibition values were higher in O30, with the exception of HOCl and hyaluronidase inhibition assays. Regarding cell viability, olive byproduct extracts did not lead to a decrease in keratinocytes viability until 100 µg/mL. All data reported by the present study reflect the potential of industrial byproducts as cosmetic ingredients.
Collapse
Affiliation(s)
- María de la Luz Cádiz-Gurrea
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (C.D.-M.)
| | | | | | - Francisca Rodrigues
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Rua António Bernardino de Almeida, 4249-015 Porto, Portugal; (D.P.); (C.D.-M.)
| |
Collapse
|
10
|
Freitas T, Rodrigues G, Fakhouri F, Silva C, Cardoso C, Velasco J, Filgueiras C, Garcia V. Application of the Box–Behnken experimental design for the extraction of phenolic compounds from araçá‐roxo (
Psidium myrtoides
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thainá Freitas
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
| | - Giovana Rodrigues
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
| | - Farayde Fakhouri
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
- Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC BarcelonaTech)Poly2 Group Terrassa Spain
| | - Camila Silva
- Department of Technology State University of Maringá Umuarama Brazil
| | - Claudia Cardoso
- Department of Chemistry State University of Mato Grosso do Sul Dourados Brazil
| | - José Velasco
- Department of Materials Science and Engineering Universitat Politècnica de Catalunya (UPC BarcelonaTech)Poly2 Group Terrassa Spain
| | - Cristina Filgueiras
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
| | - Vitor Garcia
- Faculty of Engineering Federal University of Grande Dourados Dourados Brazil
- Faculty of Animal Science and Food Engineering University of São Paulo Pirassununga Brazil
| |
Collapse
|
11
|
Ferreira FB, Magalhães FDS, Cardoso VL, Reis MHM. Enhanced conditions to obtain a clarified purple araça (
Psidium myrtoides
) fruit extract. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Franz Berbert Ferreira
- School of Chemical Engineering Federal University of Uberlândia Uberlândia Minas Gerais Brazil
| | | | - Vicelma Luiz Cardoso
- School of Chemical Engineering Federal University of Uberlândia Uberlândia Minas Gerais Brazil
| | | |
Collapse
|
12
|
Pharmacological Modulation of Smooth Muscles and Platelet Aggregation by Psidium cattleyanum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4291795. [PMID: 33101443 PMCID: PMC7568158 DOI: 10.1155/2020/4291795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/14/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
Traditionally, in the Southern Asian countries, Psidium cattleyanum is a widely used plant for the management of various ailments such as gastrointestinal, respiratory, and cardiac disorders, but it lacks proof on a scientific basis, and therefore, this is the major emphasis of the current research work. Crude extract of Psidium cattleyanum (Pc.Cr) was preliminary analyzed for the presence of different classes of bioactive molecules. The aqueous and dichloromethane fractions of Pc.Cr were subjected to in vitro and in vivo studies. It was applied at variable concentrations (0.1-10 mg/ml) to isolated rabbit jejunum to investigate spasmolytic effect. Concentration dependent curves of calcium were constructed to check the calcium channel antagonistic activity. For the evaluation of tracheorelaxant activity, isolated tracheal tissue was treated with High-K+ (80 mM) and carbachol (CCh) and then challenged cumulatively with Pc.Cr. To study the antidiarrheal effect of the plant extract, castor oil-induced diarrhea model was adopted. For evaluation of the hypotensive effect of Pc.Cr, it was given intravenously to preanesthetized normotensive rats, and the response was recorded using pressure transducer. Platelet rich plasma was used for the assessment of the antiplatelet activity when challenged with purinergic and adrenergic agonists. Concentration-dependent inhibition of spontaneous and High-K+ mediated contractions in isolated jejunum was observed by the application of Pc.Cr. Contractions induced in isolated tracheal tissue by High-K+ and CCh were inhibited by application of Pc.Cr to these tissues. Similarly, application of Pc.Cr to High-K+ and phenylephrine (PE) treated aortic strips resulted in vasodilation. Platelet aggregation inhibition was shown by Pc.Cr against adenosine diphosphate (ADP) only. The antidiarrheal effect was observed as a reduction in the total number of feces in Pc.Cr-treated mice when given castor oil. Dose-dependent hypotension was seen in normotensive rats when treated with Pc.Cr intravenously. This study showed the spasmolytic, tracheorelaxant, vasodilator, platelet aggregation inhibitory, antidiarrheal, and hypotensive activities of P. cattleyanum which may be due to the blockage of calcium channels, but the involvement of any other pathway cannot be ignored.
Collapse
|
13
|
Pereira EDS, Vinholes JR, Camargo TM, Nora FR, Crizel RL, Chaves F, Nora L, Vizzotto M. Characterization of araçá fruits (Psidium cattleianum Sabine): Phenolic composition, antioxidant activity and inhibition of α-amylase and α-glucosidase. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Pimentel FB, Cermeño M, Kleekayai T, Machado S, Rego A, Fernandes E, Alves RC, Oliveira MBP, FitzGerald RJ. Contribution of in vitro simulated gastrointestinal digestion to the antioxidant activity of Porphyra dioica conchocelis. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Leitão DDSTC, Siqueira FC, de Sousa SHB, Mercadante AZ, Chisté RC, Lopes AS. Amazonian Eryngium foetidum leaves exhibited very high contents of bioactive compounds and high singlet oxygen quenching capacity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1811311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Francilia Campos Siqueira
- Postgraduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Sérgio Henrique Brabo de Sousa
- Postgraduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | | | - Renan Campos Chisté
- Postgraduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| | - Alessandra Santos Lopes
- Postgraduate Program of Food Science and Technology (PPGCTA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
- Faculty of Food Engineering (FEA), Institute of Technology (ITEC), Federal University of Pará (UFPA), Belém, PA, Brazil
| |
Collapse
|
16
|
Santos LS, Alves Filho EG, Ribeiro PR, Zocolo GJ, Silva SM, de Lucena EM, Alves RE, de Brito ES. Chemotaxonomic evaluation of different species from the Myrtaceae family by UPLC-qToF/MS-MS coupled to supervised classification based on genus. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Schulz M, Seraglio SKT, Della Betta F, Nehring P, Valese AC, Daguer H, Gonzaga LV, Costa ACO, Fett R. Determination of Phenolic Compounds in Three Edible Ripening Stages of Yellow Guava (Psidium cattleianum Sabine) after Acidic Hydrolysis by LC-MS/MS. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:110-115. [PMID: 31907761 DOI: 10.1007/s11130-019-00792-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Yellow guava (Psidium cattleianum Sabine) has received considerable attention in the last years because of their high content in bioactive compounds with potential application in food and pharmaceutical industries. In this regard, this study aimed to investigate the phenolic compounds of three edible ripening stages of yellow guava fruits after acidic hydrolysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and their antioxidant capacity. Among the 23 phenolics quantified, catechin, isoquercitrin, quercetin, gallic acid, and syringic acid showed significant concentrations in all the evaluated stages, with values ranging from 479.59 ± 12.52 to 12,795.50 ± 320.95 μg 100 g-1 of dry matter. In general, higher concentrations of phenolic acids were found in the latter ripening stages, while flavonoids were in the earlier ripening stages. These findings suggest that the ripening process promotes changes in the phenolic composition of yellow guava. However, considering the sum of phenolic compounds and the antioxidant capacity, all ripening stages investigated can be suggested as a supply of bioactive compounds for consumers.
Collapse
Affiliation(s)
- Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil.
| | | | - Fabiana Della Betta
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Priscila Nehring
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Andressa Camargo Valese
- Livestock, and Food Supply, Brazilian Ministry of Agriculture, São José, SC, 88102-600, Brazil
| | - Heitor Daguer
- Livestock, and Food Supply, Brazilian Ministry of Agriculture, São José, SC, 88102-600, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
18
|
Comprehensive identification and quantification of unexploited phenolic compounds from red and yellow araçá (Psidium cattleianum Sabine) by LC-DAD-ESI-MS/MS. Food Res Int 2020; 131:108978. [PMID: 32247464 DOI: 10.1016/j.foodres.2020.108978] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Abstract
LC-DAD-ESI-MS/MS was used to comprehensively characterise the non-extractable phenolic compounds (NEPC) in red and yellow araçá genotypes. Results showed a total of 45 and 43 phenolic compounds in the NEPC fraction and, similarly, 51 and 50 compounds in extractable phenolic compounds (EPC) fraction from red and yellow araçá, respectively. Gallic acid and ellagic acid were the unique compounds found in both fractions. The NEPC fraction represented about 35% (m/m) of the total phenolic content and was characterised by an abundance of phenolic acids, while the EPC fraction was rich in flavanols. Although NEPC represented one-third of the total phenolic compounds found in araçá, its antioxidant capacity (against peroxyl radical) was 50% higher than the EPC fraction. The results of this work show that the NEPC fraction of araçá has great diversity and a relatively high concentration of low-molecular-weight phenolic compounds with high antioxidant capacity.
Collapse
|
19
|
de Francisco LMB, Pinto D, Rosseto HC, de Toledo LDAS, Dos Santos RS, Costa PJCD, Oliveira MBPP, Sarmento B, Rodrigues F, Bruschi ML. Design and characterization of an organogel system containing ascorbic acid microparticles produced with propolis by-product. Pharm Dev Technol 2019; 25:54-67. [PMID: 31535923 DOI: 10.1080/10837450.2019.1669643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study aimed to prepare and characterize organogels containing microparticles of ascorbic acid (AA) obtained from propolis by-product. The formulations F1 (5% of microparticles) and F2 (10% of microparticles) were evaluated regarding rheological and textural properties, antioxidant and radical scavenging activity, in vitro release and cellular studies. The organogels showed plastic flow behavior and rheopexy. The textural parameters were within acceptable values for semisolid formulations. The antioxidant capacity of organogels F1 and F2 by the DPPH assay demonstrated IC50 ranging from 1523.59 to 1166.97 μg/mL, respectively. For the FRAP assay, the values found were 842.88 and 956.14 μmol of FSE/g formulation, respectively. Good scavenging activity against nitrogen species was observed. The concentration of 63 μg/mL did not present toxicity on HaCaT and HFF-1 cells. In vitro release profile of AA from organogels showed a slow pattern of drug release, mainly for F2. Therefore, the proposed organogel containing AA microparticles with propolis by-product matrix represents a promising platform for topical drug delivery with antioxidant effect.
Collapse
Affiliation(s)
- Lizziane Maria Belloto de Francisco
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| | - Diana Pinto
- Department of Chemical Sciences, Faculty of Pharmacy, REQUIMTE/LAQV, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Porto, Portugal
| | - Hélen Cássia Rosseto
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| | - Lucas de Alcântara Sica de Toledo
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| | - Rafaela Said Dos Santos
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| | - Paulo Jorge Cardoso da Costa
- REQUIMTE/UCIBIO, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Beatriz P P Oliveira
- Department of Chemical Sciences, Faculty of Pharmacy, REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,iNEB - Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal.,CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - Francisca Rodrigues
- Department of Chemical Sciences, Faculty of Pharmacy, REQUIMTE/LAQV, University of Porto, Porto, Portugal.,REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Porto, Portugal
| | - Marcos Luciano Bruschi
- Department of Pharmacy, Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, State University of Maringa, Maringa, Brazil
| |
Collapse
|
20
|
Dacoreggio MV, Moroni LS, Kempka AP. Antioxidant, antimicrobial and allelopathic activities and surface disinfection of the extract of Psidium cattleianum sabine leaves. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Cambrussi ANCO, De Oliveira JA, de Sá ML, de Sena Neto LR, Eiras C, Osajima JA, Ribeiro AB. Synthesis of catalyst composed of palygorskita-TiO 2 and silver nanoparticles for the development of assays antioxidant based on the generation of reactive oxygen species. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:4349-4358. [PMID: 31478004 PMCID: PMC6706493 DOI: 10.1007/s13197-019-03903-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/19/2019] [Accepted: 06/24/2019] [Indexed: 06/10/2023]
Abstract
The great interest in compounds that present antioxidant capacity has generating the urgent need for analytical methods that could determine the antioxidant potential of these sources. A method based on generation of reactive oxygen species in water from catalyst composed of palygorskita-TiO2 and silver nanoparticles (AgNPs/TiO2-PAL) was developed and applied to antioxidant assays. Silver nanoparticles were synthesized using silver nitrate solution, sodium borohydride reducing agent and Caraia gum as stabilizing agent. Incorporation of AgNPs into the previously synthesized TiO2-PAL was performed. The catalyst AgNPs/TiO2-PAL was characterized by UV-vis spectroscopy, X-ray diffractometry and scanning electron microscopy. The catalyst AgNPs/TiO2-PAL were used to perform an antioxidant activity method which consisted in monitoring the discoloration of acid yellow 73 dye (AY73) in the presence of gallic acid antioxidant comparing to the dye discoloration in the absence of the antioxidant. A microplate reader was used to measure the discoloration of the aqueous solutions of AY73, irradiated by UV light for 60 min. The effect of reactive oxygen species generated by AgNPs/TiO2-PAL based in photocatalytic kinetics of AY73 dye was investigated. The oxidation of AY73 dye by photocatalysis in the system with AgNPs/TiO2-PAL catalysts was carried out mainly by the participation of O2 ·-, HO· and 1O2 species, in this order of importance. The results showed that the synthesis of the AgNPs/TiO2-PAL catalyst was successfully carried out and the application of this material in the development of an innovative methodology for the determination of antioxidant activity was extremely promising.
Collapse
Affiliation(s)
| | - Joziel Alves De Oliveira
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, UFPI, Teresina, PI 64049-550 Brazil
| | - Marcel Leiner de Sá
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, UFPI, Teresina, PI 64049-550 Brazil
| | | | - Carla Eiras
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, UFPI, Teresina, PI 64049-550 Brazil
| | - Josy Anteveli Osajima
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, UFPI, Teresina, PI 64049-550 Brazil
| | - Alessandra Braga Ribeiro
- Interdisciplinary Laboratory for Advanced Materials - LIMAV, UFPI, Teresina, PI 64049-550 Brazil
| |
Collapse
|
22
|
Anthocyanins, non-anthocyanin phenolics, tocopherols and antioxidant capacity of açaí juice (Euterpe oleracea) as affected by high pressure processing and thermal pasteurization. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Paludo MC, de Oliveira LF, Hermosín-Gutiérrez I, Ballus CA, Ribeiro AB, de Oliveira SBP, Godoy HT. Extracts of Peels and Seeds of Five Varieties of Brazilian Jabuticaba Present High Capacity to Deactivate Reactive Species of Oxygen and Nitrogen. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:135-140. [PMID: 30644023 DOI: 10.1007/s11130-019-0712-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Jabuticaba has a high concentration of phenolic compounds, which have a significant antioxidant capacity. Methodologies have been developed to evaluate the ability of plant extracts to fight free radicals such as H2O2, O2•-, HOCl, ONOO- and ROO•. Thus, the capacity of deactivation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in peel and seed extracts of five varieties of jabuticaba was evaluated. Sabará peel (SFP) deactivated HOCl with IC50 9.24 μg. mL-1; Paulista seed (PF) deactivated O2•- with IC50 16.15 μg. mL-1; Coroada seed (CFP) deactivated ONOO- with IC50 3.84 μg. mL-1; the peel of CFP deactivated ONOO- with IC50 5.88 μg. mL-1; the peel of SFP deactivated the ROO• at 918.16 μmol TE. g-1; and Sabará seed deactivated H2O2 with 49.11% inhibition at a concentration of 125 μg. mL-1 of extract. These results demonstrate the high antioxidant potential of this fruit, indicating that it could be extremely beneficial to human health.
Collapse
Affiliation(s)
- Michelly Cristiane Paludo
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil
| | | | - Isidro Hermosín-Gutiérrez
- Instituto Regional de Investigación Científica Aplicada, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Cristiano Augusto Ballus
- Department of Food Science and Technology, Center for Agrarian Sciences, Federal University of Santa Maria, Avenida Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Alessandra Braga Ribeiro
- Graduate Program of Materials Science -Federal University of Piaui, Campus Ministro Petrônio Portella, Teresina-Piauí, PI, CEP 64049-550, Brazil
| | - Silvia Borges Pimentel de Oliveira
- Department of Structural and Functional Biology, State University of Campinas, Av. Bertrand Russel, CP 6109, Campinas, SP, 13083-865, Brazil
| | - Helena Teixeira Godoy
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato 80, Campinas, SP, 13083-862, Brazil.
| |
Collapse
|
24
|
Antioxidant Activity and Volatile Composition of Red Araçá Pulp Under Different Drying Conditions. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1155/2019/9836929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Araçá fruit extracts were dried at different air conditions, and an investigation of the impact of drying on the volatile composition and antioxidant activity of araçá extracts was conducted. The effective moisture diffusivity varied between 8.542 × 10−8 and 13.34 × 10−8 m2/min. Fruit extracts dried at 50°C and 2.0 m/s had the highest total antioxidant activity (1916.10 mgascorbic acid/100 garaçá). The highest phenolic content (556.28 mgGAE/100 garaçá) was obtained when fruits were dried at 40°C and 1.5 m/s, but the resulting extract contained high amounts of 5-hydroxymethylfurfural (HMF), a contaminant formed in sugar-rich foods as a result of heating. Araçá extracts had similar qualitative profiles of volatile compounds by GC-MS, with caryophyllene being the most abundant terpene, followed by 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, selina-3,7(11)-diene, γ-terpinene, γ-cadinene, and α-salinene. HMF corresponded to the major peak in all chromatograms, proving that thermal drying affected the quality of the extracts.
Collapse
|
25
|
Characterization of phytochemicals in Costa Rican guava (Psidium friedrichsthalianum -Nied.) fruit and stability of main compounds during juice processing - (U)HPLC-DAD-ESI-TQD-MSn. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2018.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Betta FD, Nehring P, Seraglio SKT, Schulz M, Valese AC, Daguer H, Gonzaga LV, Fett R, Costa ACO. Phenolic Compounds Determined by LC-MS/MS and In Vitro Antioxidant Capacity of Brazilian Fruits in Two Edible Ripening Stages. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2018; 73:302-307. [PMID: 30218257 DOI: 10.1007/s11130-018-0690-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate the free individual phenolics and the in vitro antioxidant capacity of blackberry, acerola, yellow guava, guabiju, jambolan and jabuticaba fruits in two edible stages. Of the thirty-three phenolics investigated by liquid chromatography - tandem mass spectrometry (LC-MS/MS), twenty-five were quantified and the major ones were catechin, isoquercitrin, epicatechin and gallic acid. The highest values for the total phenolic content (in dry matter) were observed for acerola (83.6 to 97.7 mg gallic acid equivalents g-1 DM) and blackberry (18.9 to 28.3 mg gallic acid equivalents g-1 DM); however, acerola, jabuticaba, and blackberry showed the highest antioxidant capacities (134.6 to 1120.4 mg Trolox equivalents g-1 for 2,2-diphenyl-1-picrylhydrazyl and 43.6 to 501.8 μmol Trolox equivalents g-1 for ferric reducing antioxidant power). For most fruits, the antioxidant capacity decreased during the ripening, possibly due to a decrease in the concentration of most of the phenolics.
Collapse
Affiliation(s)
- Fabiana Della Betta
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Priscila Nehring
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | | | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Andressa Camargo Valese
- National Agricultural Laboratory (SLAV/SC/LANAGRO-RS), Ministry of Agriculture, Livestock and Food Supply, São José, SC, 88102-600, Brazil
| | - Heitor Daguer
- National Agricultural Laboratory (SLAV/SC/LANAGRO-RS), Ministry of Agriculture, Livestock and Food Supply, São José, SC, 88102-600, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, 88034-001, Brazil.
| |
Collapse
|
27
|
Oliveira PS, Chaves VC, Soares MSP, Bona NP, Mendonça LT, Carvalho FB, Gutierres JM, Vasconcellos FA, Vizzotto M, Vieira A, Spanevello RM, Reginatto FH, Lencina CL, Stefanello FM. Southern Brazilian native fruit shows neurochemical, metabolic and behavioral benefits in an animal model of metabolic syndrome. Metab Brain Dis 2018; 33:1551-1562. [PMID: 29882020 DOI: 10.1007/s11011-018-0262-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/29/2018] [Indexed: 01/03/2023]
Abstract
In this work, we evaluated the effects of Psidium cattleianum (Red Type) (PcRT) fruit extract on metabolic, behavioral, and neurochemical parameters in rats fed with a highly palatable diet (HPD) consisted of sucrose (65% carbohydrates being 34% from condensed milk, 8% from sucrose and 23% from starch, 25% protein and 10% fat). Animals were divided into 4 groups: standard chow, standard chow + PcRT extract (200 mg/Kg/day by gavage), HPD, HPD + extract. The animals were treated for 150 days. Concerning chemical profiling, LC/PDA/MS/MS analysis revealed cyanidin-3-O-glucoside as the only anthocyanin in the PcRT extract. Our results showed that the animals exposed to HPD presented glucose intolerance, increased weight gain and visceral fat, as well as higher serum levels of glucose, triacylglycerol, total cholesterol, LDL-cholesterol and interleukin-6. These alterations were prevented by PcRT. In addition, HPD caused an increase in immobility time in a forced swimming test and the fruit extract prevented this alteration, indicating an antidepressant-like effect. PcRT treatment also prevented increased acetylcholinesterase activity in the prefrontal cortex caused by HPD consumption. Moreover, PcRT extract was able to restore Ca2+-ATPase activity in the prefrontal cortex, hippocampus, and striatum, as well as Na+,K+-ATPase activity in the prefrontal cortex and hippocampus. PcRT treatment decreased thiobarbituric acid-reactive substances, nitrite, and reactive oxygen species levels and prevented the reduction of superoxide dismutase activity in all cerebral structures of the HPD group. Additionally, HPD decreased catalase in the hippocampus and striatum. However, the extract prevented this change in the hippocampus. Our results showed that this berry extract has antihyperglycemic and antihyperlipidemic effects, and neuroprotective properties, proving to be a potential therapeutic agent for individuals with metabolic syndrome.
Collapse
Affiliation(s)
- Pathise Souto Oliveira
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Vitor Clasen Chaves
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Mayara Sandrielly Pereira Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Natália Pontes Bona
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Lorenço Torres Mendonça
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Fabiano Barbosa Carvalho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jessié Martins Gutierres
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Flávia Aleixo Vasconcellos
- Laboratório de Química Aplicada a Bioativos, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Marcia Vizzotto
- Empresa Brasileira de Pesquisa Agropecuária, Centro de Pesquisa Agropecuária de Clima Temperado, Pelotas, RS, Brazil
| | - Andriele Vieira
- Laboratório de Fisiopatologia, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Roselia Maria Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Flávio Henrique Reginatto
- Laboratório de Farmacognosia, Programa de Pós-Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Claiton Leoneti Lencina
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil
| | - Francieli Moro Stefanello
- Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário s/n, Pelotas, RS, Brazil.
- Universidade Federal de Pelotas, Campus Universitário s/n, CEP, Capão do Leão, RS, 96160-000, Brazil.
| |
Collapse
|
28
|
Almeida D, Pinto D, Santos J, Vinha AF, Palmeira J, Ferreira HN, Rodrigues F, Oliveira MBPP. Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chem 2018; 259:113-121. [PMID: 29680033 DOI: 10.1016/j.foodchem.2018.03.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/14/2018] [Accepted: 03/25/2018] [Indexed: 12/22/2022]
Abstract
The present study reports for the first time the identification and quantification of phenolic compounds, the antioxidant and antimicrobial activities as well as the in vitro radical scavenging activity and intestinal cell effects of A. arguta leaves extracts. Extractions were carried out under water, water:ethanol (50:50) and ethanol. The highest antioxidant activity were obtained in alcoholic extract (IC50 = 53.95 ± 3.09 μg/mL for DPPH; 6628.42 ± 382.49 µmol/mg dry weight basis for FRAP) while the phenolic profile confirmed by HPLC analysis revealed highest amounts of phenolic acids (hydroxycinnamic acid derivatives) and flavonoids (flavan-3-ol and flavonols derivatives). An excellent scavenging activity against reactive oxygen and nitrogen species were determined for all extracts as well as no adverse effects on Caco-2 and HT29-MTX cells in concentrations below 100 μg/mL and 1000 μg/mL, respectively. These results highlight the potentialities of hardy kiwi leaves valorization.
Collapse
Affiliation(s)
- Diana Almeida
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Diana Pinto
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Joana Santos
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana F Vinha
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FCS/UFP, Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Josman Palmeira
- REQUIMTE, Microbiology Service, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Helena N Ferreira
- REQUIMTE, Microbiology Service, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | - Francisca Rodrigues
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - M Beatriz P P Oliveira
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Farmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
29
|
Psidium cattleianum fruits: A review on its composition and bioactivity. Food Chem 2018; 258:95-103. [PMID: 29655760 DOI: 10.1016/j.foodchem.2018.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 01/19/2023]
Abstract
Psidium cattleianum Sabine, commonly known as araçá, is a Brazilian native fruit, which is very juicy, with sweet to sub acid pulp and a spicy touch. The fruit can be eaten fresh or processed into juice, jellies and ice creams. Araçás are source of vitamin C, minerals, fatty acids, polysaccharides, volatile compounds, carotenoids and phenolic compounds, which can provide nutrients and phytochemical agents with different biological functions. Different pharmacological studies demonstrate that P. cattleianum exerts antioxidant, antidiabetic, anticarcinogenic, antimicrobial, anti-inflammatory and antiaging effects. Thus, this article aims to review the chemical composition and biological effects reported for araçá fruit in the last years.
Collapse
|
30
|
Tremocoldi MA, Rosalen PL, Franchin M, Massarioli AP, Denny C, Daiuto ÉR, Paschoal JAR, Melo PS, Alencar SMD. Exploration of avocado by-products as natural sources of bioactive compounds. PLoS One 2018; 13:e0192577. [PMID: 29444125 PMCID: PMC5812635 DOI: 10.1371/journal.pone.0192577] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/25/2018] [Indexed: 02/04/2023] Open
Abstract
This study aimed to evaluate the antioxidant, anti-inflammatory, and cytotoxic properties and phenolic composition of peel and seed of avocado varieties Hass and Fuerte using green solvents. Ethanol soluble compounds were identified in peel and seed of both varieties using HPLC-MS/MS and quantified using HPLC-DAD. Agro-industrial by-products of both varieties exhibited high radical scavenging activity against synthetic free radicals (DPPH and ABTS) and reactive oxygen species (peroxyl, superoxide, and hypochlorous acid) and high ability to reduce Fe3+ to Fe2+. The main compounds with significant contribution to the antioxidant activity determined by online HPLC-ABTS●+ analyses were procyanidin B2 and epicatechin in the peel and trans-5-O-caffeoyl-D-quinic acid, procyanidin B1, catechin, and epicatechin in the seed. Peel of Fuerte significantly suppressed TNF-α and nitric oxide (NO) release (459.3 pg/mL and 8.5 μM, respectively), possibly because of the high phenolic content and antioxidant activity detected. Avocado agro-industrial by-products can be used for food and pharmaceutical purposes due to their antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Maria Augusta Tremocoldi
- Department of Agri-food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Pedro Luiz Rosalen
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas, Piracicaba, SP, Brazil
| | - Marcelo Franchin
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas, Piracicaba, SP, Brazil
| | - Adna Prado Massarioli
- Department of Agri-food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Carina Denny
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas, Piracicaba, SP, Brazil
| | - Érica Regina Daiuto
- School of Agricultural Sciences, State University Paulista "Júlio de Mesquita Filho", Rua José Barbosa de Barros, Botucatu, SP, Brazil
| | - Jonas Augusto Rizzato Paschoal
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Vila Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Priscilla Siqueira Melo
- Department of Agri-food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Severino Matias de Alencar
- Department of Agri-food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
31
|
Vinholes J, Reis SF, Lemos G, Barbieri RL, de Freitas V, Franzon RC, Vizzotto M. Effect of in vitro digestion on the functional properties of Psidium cattleianum Sabine (araçá), Butia odorata (Barb. Rodr.) Noblick (butiá) and Eugenia uniflora L. (pitanga) fruit extracts. Food Funct 2018; 9:6380-6390. [DOI: 10.1039/c8fo01329b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study evaluated the effect of in vitro digestion on the functional properties of three Brazilian native fruit extracts.
Collapse
Affiliation(s)
| | - Sofia F. Reis
- ICETA/REQUIMTE/LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências da Universidade do Porto
- Porto
- Portugal
| | | | | | - Victor de Freitas
- ICETA/REQUIMTE/LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências da Universidade do Porto
- Porto
- Portugal
| | | | | |
Collapse
|
32
|
de Francisco LMB, Pinto D, Rosseto HC, de Toledo LDAS, dos Santos RS, Costa P, Rodrigues F, Oliveira MBPP, Sarmento B, Bruschi ML. Development of a microparticulate system containing Brazilian propolis by-product and gelatine for ascorbic acid delivery: evaluation of intestinal cell viability and radical scavenging activity. Food Funct 2018; 9:4194-4206. [DOI: 10.1039/c8fo00863a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of propolis by-product (PBP) microparticles (MP) as delivery systems can be a promising tool to surpass drawbacks related to low stability of ascorbic acid (AA).
Collapse
Affiliation(s)
- Lizziane Maria Belloto de Francisco
- Postgraduate Program in Pharmaceutical Sciences
- Laboratory of Research and Development of Drug Delivery Systems
- Department of Pharmacy
- State University of Maringá
- 87020-900 Maringá
| | - Diana Pinto
- LAQV/REQUIMTE
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- 4050-313 Porto
| | - Hélen Cássia Rosseto
- Postgraduate Program in Pharmaceutical Sciences
- Laboratory of Research and Development of Drug Delivery Systems
- Department of Pharmacy
- State University of Maringá
- 87020-900 Maringá
| | - Lucas de Alcântara Sica de Toledo
- Postgraduate Program in Pharmaceutical Sciences
- Laboratory of Research and Development of Drug Delivery Systems
- Department of Pharmacy
- State University of Maringá
- 87020-900 Maringá
| | - Rafaela Said dos Santos
- Postgraduate Program in Pharmaceutical Sciences
- Laboratory of Research and Development of Drug Delivery Systems
- Department of Pharmacy
- State University of Maringá
- 87020-900 Maringá
| | - Paulo Costa
- Laboratory of Pharmaceutical Technology
- Department of Medicinal Sciences
- Faculty of Pharmacy
- University of Porto
- 4050-313 Porto
| | - Francisca Rodrigues
- LAQV/REQUIMTE
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- 4050-313 Porto
| | | | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde
- University of Porto
- 4200-135 Porto
- Portugal
- iNEB – Instituto de Engenharia Biomédica
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences
- Laboratory of Research and Development of Drug Delivery Systems
- Department of Pharmacy
- State University of Maringá
- 87020-900 Maringá
| |
Collapse
|
33
|
de Francisco L, Pinto D, Rosseto H, Toledo L, Santos R, Tobaldini-Valério F, Svidzinski T, Bruschi M, Sarmento B, Oliveira MBPP, Rodrigues F. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Res Int 2017; 105:537-547. [PMID: 29433245 DOI: 10.1016/j.foodres.2017.11.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/10/2017] [Accepted: 11/19/2017] [Indexed: 02/09/2023]
Abstract
Propolis is a natural adhesive resinous compound produced by honeybees to protect hives from bacteria and fungi, being extremely expensive for food industry. During propolis production, a resinous by-product is formed. This resinous waste is currently undervalued and underexploited. Accordingly, in this study the proximate physical and chemical quality, as well as the antioxidant activity, radical scavenging activity and cell viability of this by-product were evaluated and compared with propolis in order to boost new applications in food and pharmaceutical industries. The results revealed that the by-product meets the physical and chemical quality standards expected and showed that the propolis waste contains similar amounts of total phenolic content (TPC) and total flavonoid content (TFC) to propolis. Also, a good scavenging activity against reactive oxygen and nitrogen species (ROS and RNS, respectively) determined by the assays of superoxide anion radical (O2-), hydrogen peroxide (H2O2), hypochlorous acid (HOCl), nitric oxide (NO) and peroxyl radical (ROO) were determined. Linear positive correlations were established between the TPC of both samples and the antioxidant activity evaluated by three different methods (DPPH, ABTS and FRAP assays). The extracts were also screened for cell viability assays in two different intestinal cell lines (HT29-MTX and Caco-2), showing a viability concentration-dependent. Similarly, the Artemia salina assay, used to assess toxicity, demonstrated the concentration influence on results. Finally, the antifungal activity against ATCC species of Candida was demonstrated. These results suggest that propolis by-product can be used as a new rich source of bioactive compounds for different areas, such as food or pharmaceutical.
Collapse
Affiliation(s)
- Lizziane de Francisco
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Diana Pinto
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n. °280, 4050-313 Porto, Portugal
| | - Hélen Rosseto
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Lucas Toledo
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Rafaela Santos
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Flávia Tobaldini-Valério
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900 Maringá, Brazil
| | - Terezinha Svidzinski
- Laboratory of Medical Mycology, Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900 Maringá, Brazil
| | - Marcos Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, 87020-900 Maringá, Brazil
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; iNEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| | - M Beatriz P P Oliveira
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n. °280, 4050-313 Porto, Portugal
| | - Francisca Rodrigues
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira n. °280, 4050-313 Porto, Portugal.
| |
Collapse
|
34
|
da Silveira TFF, de Souza TCL, Carvalho AV, Ribeiro AB, Kuhnle GG, Godoy HT. White açaí juice (Euterpe oleracea): Phenolic composition by LC-ESI-MS/MS, antioxidant capacity and inhibition effect on the formation of colorectal cancer related compounds. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
35
|
Vinholes J, Lemos G, Lia Barbieri R, Franzon RC, Vizzotto M. In vitro assessment of the antihyperglycemic and antioxidant properties of araçá, butiá and pitanga. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Boeing JS, Ribeiro D, Chisté RC, Visentainer JV, Costa VM, Freitas M, Fernandes E. Chemical characterization and protective effect of the Bactris setosa Mart. fruit against oxidative/nitrosative stress. Food Chem 2017; 220:427-437. [DOI: 10.1016/j.foodchem.2016.09.188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 12/25/2022]
|
37
|
Rajan A, Rajan AR, Philip D. Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. OPENNANO 2017. [DOI: 10.1016/j.onano.2016.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
38
|
Barizão ÉO, Visentainer JV, de Cinque Almeida V, Ribeiro D, Chisté RC, Fernandes E. Citharexylum solanaceum fruit extracts: Profiles of phenolic compounds and carotenoids and their relation with ROS and RNS scavenging capacities. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Ribeiro AB, Chisté RC, Lima JLFC, Fernandes E. Solanum diploconos fruits: profile of bioactive compounds and in vitro antioxidant capacity of different parts of the fruit. Food Funct 2016; 7:2249-57. [PMID: 27142444 DOI: 10.1039/c6fo00326e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Solanum diploconos is an unexploited Brazilian native fruit that belongs to the same genus of important food crops, such as tomato (Solanum lycorpersicum) and potato (Solanum tuberosum). In this study, we determined, for the first time, the profile of bioactive compounds (phenolic compounds, carotenoids, ascorbic acid and tocopherols) of the freeze-dried pulp and peel of Solanum diploconos fruits, as well as of an extract obtained from the whole fruit. Additionally, the antioxidant potential of the whole fruit extract was evaluated in vitro, against reactive oxygen species (ROS) and reactive nitrogen species (RNS). Eighteen phenolic compounds were identified in the peel and pulp and 6 compounds were found in the whole fruit extract. Coumaric, ferulic and caffeic acid derivatives were revealed to be the major phenolic constituents. All-trans-β-carotene was the major carotenoid (17-38 μg g(-1), dry basis), but all-trans-lutein and 9-cis-β-carotene were also identified. The peel and pulp presented <2 μg per mL of tocopherols, and ascorbic acid was not detected. The whole fruit extract exhibited scavenging capacity against all tested ROS and RNS (IC50 = 14-461 μg mL(-1)) with high antioxidant efficiency against HOCl. Thus, Solanum diploconos fruits may be seen as a promising source of bioactive compounds with high antioxidant potential against the most physiologically relevant ROS and RNS.
Collapse
Affiliation(s)
- Alessandra Braga Ribeiro
- UCIBIO-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | | | | | | |
Collapse
|
40
|
Díaz-de-Cerio E, Gómez-Caravaca AM, Verardo V, Fernández-Gutiérrez A, Segura-Carretero A. Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Chisté RC, Ribeiro D, Freitas M, Leite A, Moniz T, Rangel M, Fernandes E. Uncovering novel 3-hydroxy-4-pyridinone metal ion complexes with potential anti-inflammatory properties. J Inorg Biochem 2015; 155:9-16. [PMID: 26606288 DOI: 10.1016/j.jinorgbio.2015.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 01/14/2023]
Abstract
Ligands of the 3-hydroxy-4-pyridinone (3,4-HPO) type, with one (Hmpp) or two methyl groups (Hdmpp), have been reported to possess biomedical, chemical and analytical applications. In this first screening study aiming to uncover new promising agents to mitigate the oxidative damage highly present in several metabolic disorders, such as diabetes mellitus, we assessed the potential of twelve 3,4-HPO metal ion complexes to modulate oxidative burst in human neutrophils. Metal ion 3,4-HPO complexes of Ni, Fe, V, Co, Cu and Zn were synthesized and tested up to 15μM. Among all the compounds, [Cu(mpp)2] and [Cu(dmpp)2] exhibited the highest scavenging capacity against superoxide radical (O2(-)) (IC50=0.36±0.07 and 0.30±0.06μM, respectively) and against hypochlorous acid (HOCl) (IC50=0.6±0.3 and 0.4±0.1μM, respectively). In the particular case of O2(-), [Fe(mpp)3] and [Fe(dmpp)3] (both at 15μM) presented 35% and 22% of inhibition, respectively, while all the other compounds were neither able to scavenge O2(-) nor stimulate its production. Regarding the scavenging capacity against hydrogen peroxide (H2O2), all the compounds showed low efficiency (from 6-39%). Finally, with exception of [VO(mpp)2] and [VO(dmpp)2], all compounds exhibited scavenging activity against HOCl (39-81%) and the most efficient compounds were Cu(II) and Zn(II) complexes. Thus, these preliminary results uncover promising new metal ion complexes, inhibitors of neutrophil's oxidative burst, with potential anti-inflammatory properties, which may be seen as an useful strategy for further studies in the treatment of a number of diseases where oxidative damage is a serious issue.
Collapse
Affiliation(s)
- Renan Campos Chisté
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Marisa Freitas
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal
| | - Andreia Leite
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 404169-007 Porto, Portugal
| | - Tânia Moniz
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 404169-007 Porto, Portugal
| | - Maria Rangel
- UCIBIO, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Eduarda Fernandes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto (FFUP), 4050-313 Porto, Portugal.
| |
Collapse
|
42
|
Berto A, Ribeiro AB, de Souza NE, Fernandes E, Chisté RC. Bioactive compounds and scavenging capacity of pulp, peel and seed extracts of the Amazonian fruit Quararibea cordata against ROS and RNS. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Berto A, Ribeiro AB, Sentandreu E, de Souza NE, Mercadante AZ, Chisté RC, Fernandes E. The seed of the Amazonian fruit Couepia bracteosa exhibits higher scavenging capacity against ROS and RNS than its shell and pulp extracts. Food Funct 2015. [DOI: 10.1039/c5fo00722d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Couepia bracteosa is an interesting source of bioactive compounds which may be investigated for protecting human health against oxidative damage.
Collapse
Affiliation(s)
- Alessandra Berto
- Postgraduate Program of Chemistry
- State University of Maringá
- Maringá
- Brazil
| | | | - Enrique Sentandreu
- Department of Food Science
- Faculty of Food Engineering
- University of Campinas (UNICAMP)
- Campinas
- Brazil
| | | | | | - Renan Campos Chisté
- UCIBIO-REQUIMTE
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- (FFUP)
| | - Eduarda Fernandes
- UCIBIO-REQUIMTE
- Department of Chemical Sciences
- Faculty of Pharmacy
- University of Porto
- (FFUP)
| |
Collapse
|