1
|
Marzaman AF, Mahfufah U, Fauziah N, Ulum Ar Rahman F, Hidayati N, Hasyim R, Setiawati D, Choiri S, Nuzulia NA, Madani AF, Mir M, Permana AD, Mansjur KQ. Doxycycline-Loaded pH-Sensitive Microparticles as a Potential Site-Specific Drug Delivery System against Periodontitis. ACS OMEGA 2025; 10:5668-5685. [PMID: 39989785 PMCID: PMC11840606 DOI: 10.1021/acsomega.4c08967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/25/2025]
Abstract
A significant obstacle to the healing process of periodontitis is the development of bacterial biofilms within the periodontal pockets. The efficacy of bacterial biofilm therapy is often hindered by the inadequate penetration of antibacterial agents and the nonspecific targeting of bacteria. This study proposes a novel strategy involving the utilization of pH-sensitive microparticles (MPs) of doxycycline (DOX) to enhance biofilm penetration and enable targeted delivery of DOX to infection sites associated with periodontitis. The MPs were developed using a double-emulsion technique with poly(d,l-lactide-co-glycolide) and chitosan in a 1:1 ratio. The morphology of DOX-MP exhibits a spherical form with a particle size of 3.54 ± 0.32 μm and a PDI of 0.221 ± 0.02. The DOX-MP also had great encapsulation efficiency (69.43% ± 5.32) and drug loading efficiency (14.81% ± 1.32) with regulated drug release kinetics and accelerated release rates under low-pH conditions. The antimicrobial activity was evaluated against Escherichia coli and Staphylococcus aureus, and the results indicated the absence of any viable bacterial colonies after 18 h at twice the minimum inhibitory concentration value. Hydrogel-based MPs deliver DOX to the periodontal pocket infection site for ease of use. In situ hydrogels used Pluronic F127 and F68 as the main polymer composition and hydroxypropyl methylcellulose as the adhesion polymer. This formulation exhibited a liquid state at room temperature (25 °C) but went through gelation at 36 °C. The formulation also had good mucoadhesive characteristics (42.65 ± 3.53 dyn/cm2) and good drug permeation at acidic pH in Mueller-Hinton Broth media with the addition of E. coli and S. aureus bacteria. Ex vivo antibacterial activity significantly reduced the microbial count, biofilm quantity, and metabolic activity, confirming the desired antibacterial effect. Hence, the utilization of free drugs and DOX-MPs did not exhibit a notable dissimilarity, showing that integrating the drug into the matrix was not hindering its antibacterial efficacy.
Collapse
Affiliation(s)
| | - Ulfah Mahfufah
- Faculty
of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Nurul Fauziah
- Faculty
of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Fadhlil Ulum Ar Rahman
- Department
of Oral Maxillofacial Radiology, Faculty of Dentistry, Hasanuddin University, Makassar 90245, Indonesia
| | - Nasyrah Hidayati
- Department
of Orthodontic, Faculty of Dentistry, Hasanuddin
University, Makassar 90245, Indonesia
| | - Rafikah Hasyim
- Department
of Oral Biology, Faculty of Dentistry, Hasanuddin
University, Makassar 90245, Indonesia
| | - Dian Setiawati
- Department
of Periodontology, Faculty of Dentistry, Hasanuddin University, Makassar 90245, Indonesia
| | - Syaiful Choiri
- Faculty
of
Mathematics and Natural Sciences, Sebelas
Maret University, Surakarta 57126, Indonesia
| | - Nur Aisyah Nuzulia
- Faculty
of Mathematics and Natural Sciences, Institute
Pertanian Bogor, Bogor 16680, Indonesia
| | | | - Maria Mir
- Department
of Pharmacy, Iqra University, Islamabad Campus 44000, Pakistan
| | - Andi Dian Permana
- Faculty
of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Karima Qurnia Mansjur
- Department
of Orthodontic, Faculty of Dentistry, Hasanuddin
University, Makassar 90245, Indonesia
| |
Collapse
|
2
|
Rifna EJ, Dwivedi M. Encapsulated pomegranate peel extract as a potential antimicrobial ingredient from food waste. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8720-8733. [PMID: 38940545 DOI: 10.1002/jsfa.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Pomegranate peel waste is a valuable reservoir of heat-sensitive total hydrolysable tannins (THT), with potential applications in food and pharmaceuticals. Preserving THT is challenging due to degradation post-extraction. We explore ionic gelation as an encapsulation method to optimize THT utilization. RESULTS Through external gelation, we optimized the process variables using Box-Behnken design. At 40 g kg-1 sodium alginate, 25 g kg-1 calcium chloride, and 300 g kg-1 pomegranate peel extract (PPE), we achieved an 83.65% encapsulation efficiency. Compared to spray drying, external gelation demonstrated superior performance, with enhanced release percentages and stability. Physical, phytochemical, and release profiles of encapsulates were extensively analysed. External gelation achieved an 87.5% release in 30 min, outperforming spray-dried counterparts (69.7% in 25 min). Encapsulated PPE exhibited robust antibacterial activity against Staphylococcus aureus (ATCC 25923) in powdered infant formula, with a 32 ± 0.01 mm zone of inhibition and 300 μg mL-1 minimum inhibitory concentration. Insights into S. aureus growth curves underlined the mechanism of action via membrane potential alterations. The results of carried investigations also showed that the antibacterial activity of the encapsulated PPE extracts against the targeted organism was identical to the antibacterial activity exhibited by synthetic antibiotics used generally to kill microorganisms in food. Therefore, from the findings, it can be concluded that the PPE encapsulate produced using the external gelation technique at the optimized condition displayed superior storage stability possessing strong antimicrobial activity when compared to encapsulate produced using the spray drying technique. CONCLUSIONS External gelation emerges as a potent technique for developing effective encapsulates enriched with natural antimicrobials or antibiotics. This approach holds promise for applications in food, pharmaceuticals, and nutraceuticals, enhancing stability and efficacy while reducing reliance on synthetic antibiotics. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elenjikkal Jerome Rifna
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Madhuresh Dwivedi
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
3
|
Dinakar YH, Rajana N, Kumari NU, Jain V, Mehra NK. Recent Advances of Multifunctional PLGA Nanocarriers in the Management of Triple-Negative Breast Cancer. AAPS PharmSciTech 2023; 24:258. [PMID: 38097825 DOI: 10.1208/s12249-023-02712-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Even though chemotherapy stands as a standard option in the therapy of TNBC, problems associated with it such as anemia, bone marrow suppression, immune suppression, toxic effects on healthy cells, and multi-drug resistance (MDR) can compromise their effects. Nanoparticles gained paramount importance in overcoming the limitations of conventional chemotherapy. Among the various options, nanotechnology has appeared as a promising path in preclinical and clinical studies for early diagnosis of primary tumors and metastases and destroying tumor cells. PLGA has been extensively studied amongst various materials used for the preparation of nanocarriers for anticancer drug delivery and adjuvant therapy because of their capability of higher encapsulation, easy surface functionalization, increased stability, protection of drugs from degradation versatility, biocompatibility, and biodegradability. Furthermore, this review also provides an overview of PLGA-based nanoparticles including hybrid nanoparticles such as the inorganic PLGA nanoparticles, lipid-coated PLGA nanoparticles, cell membrane-coated PLGA nanoparticles, hydrogels, exosomes, and nanofibers. The effects of all these systems in various in vitro and in vivo models of TNBC were explained thus pointing PLGA-based NPs as a strategy for the management of TNBC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Nalla Usha Kumari
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
4
|
Valorisation of Micro/Nanoencapsulated Bioactive Compounds from Plant Sources for Food Applications Towards Sustainability. Foods 2022; 12:foods12010032. [PMID: 36613248 PMCID: PMC9818261 DOI: 10.3390/foods12010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The micro- and nanoencapsulation of bioactive compounds has resulted in a large improvement in the food, nutraceutical, pharmaceutical, and agriculture industries. These technologies serve, on one side, to protect, among others, vitamins, minerals, essential fatty acids, polyphenols, flavours, antimicrobials, colorants, and antioxidants, and, on the other hand, to control the release and assure the delivery of the bioactive compounds, targeting them to specific cells, tissues, or organs in the human body by improving their absorption/penetration through the gastrointestinal tract. The food industry has been applying nanotechnology in several ways to improve food texture, flavour, taste, nutrient bioavailability, and shelf life using nanostructures. The use of micro- and nanocapsules in food is an actual trend used mainly in the cereal, bakery, dairy, and beverage industries, as well as packaging and coating. The elaboration of bio capsules with high-value compounds from agro-industrial by-products is sustainable for the natural ecosystem and economically interesting from a circular economy perspective. This critical review presents the principal methodologies for performing micro- and nanoencapsulation, classifies them (top-down and/or bottom-up), and discusses the differences and advantages among them; the principal types of encapsulation systems; the natural plant sources, including agro-industrial by-products, of bioactive compounds with interest for the food industry to be encapsulated; the bioavailability of encapsulates; and the main techniques used to analyse micro- and nanocapsules. Research work on the use of encapsulated bioactive compounds, such as lycopene, hydroxytyrosol, and resveratrol, from agro-industrial by-products must be further reinforced, and it plays an important role, as it presents a high potential for the use of their antioxidant and/or antimicrobial activities in food applications and, therefore, in the food industry. The incorporation of these bioactive compounds in food is a challenge and must be evaluated, not only for their nutritional aspect, but also for the chemical safety of the ingredients. The potential use of these products is an available economical alternative towards a circular economy and, as a consequence, sustainability.
Collapse
|
5
|
Hyaluronan Oligosaccharides-Coated Paclitaxel-Casein Nanoparticles with Enhanced Stability and Antitumor Activity. Nutrients 2022; 14:nu14193888. [PMID: 36235540 PMCID: PMC9573597 DOI: 10.3390/nu14193888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
This study aims to develop specific-molecular-weight hyaluronic acid oligosaccharides-coated paclitaxel-loaded casein nanoparticles (HA-PT-Cas NPs) via chemical conjugation to increase the stability and antitumor effects. Optimized HA-PT-Cas NPs (HA/casein of 3:1) were obtained with a mean size of 235.3 nm and entrapment efficiency of 93.1%. HA-PT-Cas exhibited satisfactory stability at 4 °C for 12 days and 37 °C for 3 h; paclitaxel was retained at rates of 81.4% and 64.7%, respectively, significantly higher than those of PT-Cas (only 27.8% at 4 °C after 16 h and 20.3% at 37 °C after 3 h). HA-PT-Cas exhibited high efficiency (61.3%) in inhibiting A375 tumor owing to the enhanced stability of HA oligosaccharides barrier, which was comparable with that of 10 μg/mL cis-platinum (64.9%). Mice experiments showed the 74.6% tumor inhibition of HA-PT-Cas by intravenously administration, significantly higher than that of PT-casein (39.8%). Therefore, this work provides an effective carrier for drug delivery via HA oligomers-coated modification.
Collapse
|
6
|
Yun Z, Qin D, Wei F, Xiaobing L. Application of antibacterial nanoparticles in orthodontic materials. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
During the orthodontic process, increased microbial colonization and dental plaque formation on the orthodontic appliances and auxiliaries are major complications, causing oral infectious diseases, such as dental caries and periodontal diseases. To reduce plaque accumulation, antimicrobial materials are increasingly being investigated and applied to orthodontic appliances and auxiliaries by various methods. Through the development of nanotechnology, nanoparticles (NPs) have been reported to exhibit excellent antibacterial properties and have been applied in orthodontic materials to decrease dental plaque accumulation. In this review, we present the current development, antibacterial mechanisms, biocompatibility, and application of antibacterial NPs in orthodontic materials.
Collapse
Affiliation(s)
- Zhang Yun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| | - Du Qin
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Fei Wei
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China , Chengdu , 610072 , China
| | - Li Xiaobing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University , Chengdu , Sichuan 610041 , China
| |
Collapse
|
7
|
Ercin E, Kecel-Gunduz S, Gok B, Aydin T, Budama-Kilinc Y, Kartal M. Laurus nobilis L. Essential Oil-Loaded PLGA as a Nanoformulation Candidate for Cancer Treatment. Molecules 2022; 27:1899. [PMID: 35335262 PMCID: PMC8951774 DOI: 10.3390/molecules27061899] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to obtain essential oil (LNEO) from the Laurus nobilis L. plant, and to prepare LNEO-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) as an approach in cancer treatment. The components of the obtained LNEO were analyzed using GC-MS. The LNEO-NPs were synthesized by the single-emulsion method. The LNEO-NPs were characterized using UV-Vis spectrometry, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and a DNA binding assay, which was performed via the UV-Vis titration method. According to the results, the LNEO-NPs had a 211.4 ± 4.031 nm average particle size, 0.068 ± 0.016 PdI, and -7.87 ± 1.15 mV zeta potential. The encapsulation efficiency and loading capacity were calculated as 59.25% and 25.65%, respectively, and the in vitro drug release study showed an LNEO release of 93.97 ± 3.78% over the 72 h period. Moreover, the LNEO was intercalatively bound to CT-DNA. In addition, the mechanism of action of LNEO on a dual PI3K/mTOR inhibitor was predicted, and its antiproliferative activity and mechanism were determined using molecular docking analysis. It was concluded that LNEO-loaded PLGA NPs may be used for cancer treatment as a novel phytotherapeutic agent-based controlled-release system.
Collapse
Affiliation(s)
- Esin Ercin
- Department of Pharmacognosy and Natural Product Chemistry, Institute of Health Sciences, Bezmialem Vakıf University, Istanbul 34093, Turkey; (E.E.); (T.A.)
| | - Serda Kecel-Gunduz
- Department of Physics, Faculty of Science, Istanbul University, Istanbul 34134, Turkey;
| | - Bahar Gok
- Department of Bioengineering, Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Tugba Aydin
- Department of Pharmacognosy and Natural Product Chemistry, Institute of Health Sciences, Bezmialem Vakıf University, Istanbul 34093, Turkey; (E.E.); (T.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Istinye University, Istanbul 34010, Turkey
| | - Yasemin Budama-Kilinc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey
| | - Murat Kartal
- Department of Pharmacognosy, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul 34093, Turkey;
| |
Collapse
|
8
|
Melo AMD, Barbi RCT, Costa BP, Ikeda M, Carpiné D, Ribani RH. Valorization of the agro-industrial by-products of bacupari (Garcinia brasiliensis (Mart.)) through production of flour with bioactive properties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics 2021; 13:pharmaceutics13020230. [PMID: 33562128 PMCID: PMC7915176 DOI: 10.3390/pharmaceutics13020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Site-Specific release of active molecules with antimicrobial activity spurred the interest in the development of innovative polymeric nanocarriers. In the preparation of polymeric devices, nanotechnologies usually overcome the inconvenience frequently related to other synthetic strategies. High performing nanocarriers were synthesized using a wide range of starting polymer structures, with tailored features and great chemical versatility. Over the last decade, many antimicrobial substances originating from plants, herbs, and agro-food waste by-products were deeply investigated, significantly catching the interest of the scientific community. In this review, the most innovative strategies to synthesize nanodevices able to release antimicrobial natural extracts were discussed. In this regard, the properties and structure of the starting polymers, either synthetic or natural, as well as the antimicrobial activity of the biomolecules were deeply investigated, outlining the right combination able to inhibit pathogens in specific biological compartments.
Collapse
|
10
|
Upadhyay N, Singh VK, Dwivedy AK, Chaudhari AK, Dubey NK. Assessment of nanoencapsulated Cananga odorata essential oil in chitosan nanopolymer as a green approach to boost the antifungal, antioxidant and in situ efficacy. Int J Biol Macromol 2021; 171:480-490. [PMID: 33428956 DOI: 10.1016/j.ijbiomac.2021.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 01/18/2023]
Abstract
In this study, a comparative efficacy of Cananga odorata EO (CoEO) and its nanoencapsulated formulation into chitosan nanoemulsion (CoEO-CsNe) against a toxigenic strain of Aspergillus flavus (AF-M-K5) were investigated for the first time in order to determine its efficacy in preservation of stored food from fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation. GC and GC-MS analysis of CoEO revealed the presence of linalool (24.56%) and benzyl acetate (22.43%) as the major components. CoEO was encapsulated into chitosan nanoemulsion (CsNe) through ionic-gelation technique and characterized by High Resolution-Scanning Electron Microscopy (HR-SEM), Fourier Transform Infrared spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis. The CoEO-CsNe during in vitro investigation against A. flavus completely inhibited the growth and AFB1 production at 1.0 μL/mL and 0.75 μL/mL, respectively. Additionally, CoEO-CsNe showed improved antioxidant activity against DPPH• and ABTS•+ with IC50 value 0.93 and 0.72 μL/mL, respectively. Further, CoEO-CsNe suppressed fungal growth, AFB1 secretion and lipid peroxidation in Arachis hypogea L. during in situ investigation without causing any adverse effect on seed germination. Overall results demonstrated that the CoEO-CsNe has potential of being utilized as a suitable plant based antifungal agent to improve the shelf-life of stored food against AFB1 and lipid peroxidation mediated biodeterioration.
Collapse
Affiliation(s)
- Neha Upadhyay
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Anand Kumar Chaudhari
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
11
|
Asensio CM, Quiroga PR, Al-Gburi A, Huang Q, Grosso NR. Rheological Behavior, Antimicrobial and Quorum Sensig Inhibition Study of an Argentinean Oregano Essential Oil Nanoemulsion. Front Nutr 2020; 7:569913. [PMID: 33163506 PMCID: PMC7583633 DOI: 10.3389/fnut.2020.569913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
In this study, Argentinean oregano essential oil (OEO) nanoemulsions (NEs) were developed. Four NEs were prepared: a control (CNE), EONE1 (10.6 mg EO/g NE), EONE2 (106 mg EO/ g NE), and EONE3 (160 mg EO/g NE) and tested for antimicrobial activity against Staphylococcus aureus ATCC 13565, Listeria monocytogenes Scott A, Pseudomonas aeruginosa ATCC 14213, and Escherichia coli O157:H7 using a broth microdilution assay and quorum sensing inhibition in a model using Chromobacterium violaceum ATCC 12472, where the production of violacein was quantified. The chemical composition of the EO was determined by gas chromatography-mass spectrometry. The average particle size (nm) and polydispersity index were monitored over 14 days at two different storage temperatures (4 and 23°C). A rheological behavior study was carried out using a dynamic shear rheometer, and flow curves, as well as viscoelastic properties, were determined. E. coli and L. monocytogenes were the most sensitive microorganisms to EONE (MIC of 2 and 5 mg/ml for EOEN3). Sub-MICs for NE were found at lower concentrations than those for pure EO. A significant reduction in violet pigment intensity and colorless coloration (p < 0.05) were observed at different NE concentrations concerning the control sample. The flow behavior index (n) decreased, and the consistency index (k) increased when the EO concentration was increased. CNE, EONE1, and EONE2 showed liquid-like behavior (G' < G″) in the low-frequency region, whereas a solid-like behavior (G' > G″) was observed in the high-frequency region, presenting a viscoelastic behavior, appearing as a wormlike micellar solution. For EONE3, a strong increase in both moduli was observed with increasing OEO concentration. The G' was about one order of magnitude higher than the G″ over the whole frequency range, indicating the presence of a gel-like structure. The incorporation of EOs into an NE increased their stability, lowering the particle size, leading to a wormlike micelle with higher viscosity. Moreover, this NE had good antimicrobial activity and novel quorum-sensing inhibition activity. The results of this study indicated that Argentinean OEO NE could be used in a food system as a natural and stable antimicrobial agent.
Collapse
Affiliation(s)
- Claudia Mariana Asensio
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, NJ, United States
| | - Patricia Raquel Quiroga
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ammar Al-Gburi
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, NJ, United States
| | - Quingron Huang
- Department of Food Science, School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, NJ, United States
| | - Nelson Rubén Grosso
- Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba (UNC), Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
12
|
Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative. Food Chem Toxicol 2020; 143:111536. [DOI: 10.1016/j.fct.2020.111536] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
|
13
|
Greene AC, Acharya AP, Lee SB, Gottardi R, Zaleski E, Little SR. Cranberry extract-based formulations for preventing bacterial biofilms. Drug Deliv Transl Res 2020; 11:1144-1155. [PMID: 32783154 DOI: 10.1007/s13346-020-00837-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Generating formulations for the delivery of a mixture of natural compounds extracted from natural sources is a challenge because of unknown active and inactive ingredients and possible interactions between them. As one example, natural cranberry extracts have been proposed for the prevention of biofilm formation on dental pellicle or teeth. However, such extracts may contain phenolic acids, flavonol glycosides along with other constituents like coumaroyl iridoid glycosides, flavonoids, alpha-linolenic acid, n-6 (or n-3) fatty acids, and crude fiber. Due to the presence of a variety of compounds, determining which molecules (and how many molecules) are essential for preventing biofilm growth is nontrivial to ascertain. Therefore, a formulation that could contain natural, unrefined, cranberry extract (with all its constituent compounds) at high loading would be ideal. Accordingly, we have generated several candidate formulations including poly(lactic-co-glycolic) acid (PLGA)-based microencapsulation of cranberry extract (CE15) as well as formulations including stearic acid along with polyvinylpyrrolidone (PVP) or Ethyl lauroyl arginate (LAE) complexed with cranberry extracts (CE15). We found that stearic acid in combination with PVP or LAE as excipients led to higher loading of the active and inactive compounds in CE15 as compared with a PLGA microencapsulation and also sustained release of CE15 in a tunable manner. Using this method, we have been able to generate two successful formulations (one preventative based, one treatment based) that effectively inhibit biofilm growth when incubated with saliva. In addition to cranberry extract, this technique could also be a promising candidate for other natural extracts to form controlled release systems.Graphical abstract.
Collapse
Affiliation(s)
- Ashlee C Greene
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Abhinav P Acharya
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Department of Chemical Engineering, Arizona State University, Tempe, AZ, 85284, USA
| | - Sang B Lee
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Riccardo Gottardi
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Center for Cellular and Molecular Engineering, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA.,Ri.MED Foundation, 90133, Palermo, Italy
| | - Erin Zaleski
- Johnson & Johnson Consumer Health, Skillman, NJ, 08558, USA
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA. .,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,Department of Pediatrics, Division of Pulmonary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Falsafi SR, Rostamabadi H, Assadpour E, Jafari SM. Morphology and microstructural analysis of bioactive-loaded micro/nanocarriers via microscopy techniques; CLSM/SEM/TEM/AFM. Adv Colloid Interface Sci 2020; 280:102166. [PMID: 32387755 DOI: 10.1016/j.cis.2020.102166] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
Efficient characterization of the physicochemical attributes of bioactive-loaded micro/nano-vehicles is crucial for the successful product development. The introduction of outstanding science-based strategies and techniques makes it possible to realize how the characteristics of the formulation ingredients affect the structural and (bio)functional properties of the final bioactive-loaded carriers. The important points to be solved, at a microscopic level, are investigating how the features of the formulation ingredients affect the morphology, surface, size, dispersity, as well as the particulate interactions within bioactive-comprising nano/micro-delivery systems. This review presents a detailed description concerning the application of advanced microscopy techniques, i.e., confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) in characterizing the attributes of nano/microcarriers for the efficient delivery of bioactive compounds. Furthermore, the fundamental principles of these approaches, instrumentation, specific applications, and the strategy to choose the most proper technique for different carriers has been discussed.
Collapse
|
15
|
Aguilar‐Veloz LM, Calderón‐Santoyo M, Vázquez González Y, Ragazzo‐Sánchez JA. Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Sci Nutr 2020; 8:2555-2568. [PMID: 32566173 PMCID: PMC7300048 DOI: 10.1002/fsn3.1437] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 11/07/2022] Open
Abstract
The use of natural antimicrobial agents is an attractive ecological alternative to the synthetic fungicides applied to control pathogens during postharvest. In order to improve industrial production systems, postharvest research has evolved toward integration with science and technology aspects. Thus, the present review aims to draw attention to the achieved advances and challenges must be overcome, to promote application of essential oils and polyphenols as antimicrobial agents, against phytopathogens and foodborne microorganisms during postharvest. Besides that, it attempts to highlight the use of coating and encapsulation techniques as emerging methods that improve their effectiveness. The integral knowledge about the vegetable systems, molecular mechanisms of pathogens and mechanisms of these substances would ensure more efficient in vitro and in vivo experiences. Finally, the cost-benefit, toxicity, and ecotoxicity evaluation will be guaranteed the successful implementation and commercialization of these technologies, as a sustainable alternative to minimize production losses of vegetable commodities.
Collapse
Affiliation(s)
- Laura Maryoris Aguilar‐Veloz
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| | - Montserrat Calderón‐Santoyo
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| | - Yuliana Vázquez González
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| | - Juan Arturo Ragazzo‐Sánchez
- Laboratorio Integral de Investigación en AlimentosTecnológico Nacional de México ‐ Instituto Tecnológico de TepicTepicMéxico
| |
Collapse
|
16
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
17
|
Beconcini D, Felice F, Fabiano A, Sarmento B, Zambito Y, Di Stefano R. Antioxidant and Anti-Inflammatory Properties of Cherry Extract: Nanosystems-Based Strategies to Improve Endothelial Function and Intestinal Absorption. Foods 2020; 9:E207. [PMID: 32079234 PMCID: PMC7074069 DOI: 10.3390/foods9020207] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cherry fruit has a high content in flavonoids. These are important diet components protecting against oxidative stress, inflammation, and endothelial dysfunction, which are all involved in the pathogenesis of atherosclerosis, which is the major cause of cardiovascular diseases (CVD). Since the seasonal availability of fresh fruit is limited, research has been focused on cherry extract (CE), which also possesses a high nutraceutical potential. Many clinical studies have demonstrated the nutraceutical efficacy of fresh cherries, but only a few studies on CE antioxidant and anti-inflammatory activities have been carried out. Here, the results concerning the antioxidant and anti-inflammatory activities of CE are reviewed. These were obtained by an in vitro model based on Human Umbilical Vein Endothelial Cells (HUVEC). To clarify the CE mechanism of action, cells were stressed to induce inflammation and endothelial dysfunction. Considering that antioxidants' polyphenol compounds are easily degraded in the gastrointestinal tract, recent strategies to reduce the degradation and improve the bioavailability of CE are also presented and discussed. In particular, we report on results obtained with nanoparticles (NP) based on chitosan derivatives (Ch-der), which improved the mucoadhesive properties of the chitosan polymers, as well as their positive charge, to favor high cellular interaction and polyphenols intestinal absorption, compared with a non-mucoadhesive negative surface charged poly(lactic-co-glycolic) acid NP. The advantages and safety of different nanosystems loaded with natural CE or other nutraceuticals are also discussed.
Collapse
Affiliation(s)
- Denise Beconcini
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
- Cardiovascular Research Laboratory, Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, via Paradisa 2, 56100 Pisa, Italy;
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56100 Pisa, Italy; (A.F.); (Y.Z.)
| | - Francesca Felice
- Cardiovascular Research Laboratory, Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, via Paradisa 2, 56100 Pisa, Italy;
| | - Angela Fabiano
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56100 Pisa, Italy; (A.F.); (Y.Z.)
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-153 Porto, Portugal;
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, via Bonanno 33, 56100 Pisa, Italy; (A.F.); (Y.Z.)
- Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, via Borghetto 80, 56100 Pisa, Italy
| | - Rossella Di Stefano
- Cardiovascular Research Laboratory, Department of Surgery, Medical, Molecular, and Critical Area Pathology, University of Pisa, via Paradisa 2, 56100 Pisa, Italy;
- Interdepartmental Research Center Nutraceuticals and Food for Health, University of Pisa, via Borghetto 80, 56100 Pisa, Italy
| |
Collapse
|
18
|
Villacís-Chiriboga J, Elst K, Van Camp J, Vera E, Ruales J. Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Compr Rev Food Sci Food Saf 2020; 19:405-447. [PMID: 33325169 DOI: 10.1111/1541-4337.12542] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Tropical fruits represent one of the most important crops in the world. The continuously growing global market for the main tropical fruits is currently estimated at 84 million tons, of which approximately half is lost or wasted throughout the whole processing chain. Developing novel processes for the conversion of these byproducts into value-added products could provide a viable way to manage this waste problem, aiming at the same time to create a sustainable economic growth within a bio-economy perspective. Given the ever-increasing concern about sustainability, complete valorization through a bio-refinery approach, that is, zero waste concept, as well as the use of green techniques is therefore of utmost importance. This paper aims to report the status on the valorization of tropical fruit byproducts within a bio-refinery frame, via the application of traditional methodologies, and with specific attention to the extraction of phenolics and carotenoids as bioactive compounds. The different types of byproducts, and their content of bioactives is reviewed, with a special emphasis on the lesser-known tropical fruits. Moreover, the bioactivity of the different types of extracts and their possible application as a resource for different sectors (food, pharmaceutical, and environmental sciences) is discussed. Consequently, this review presents the concepts of tropical fruit biorefineries, and the potential applications of the isolated fractions.
Collapse
Affiliation(s)
- José Villacís-Chiriboga
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium.,Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Kathy Elst
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Edwin Vera
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| |
Collapse
|
19
|
Ahmadi H, Haddadi-Asl V, Ghafari HA, Ghorbanzadeh R, Mazlum Y, Bahador A. Shear bond strength, adhesive remnant index, and anti-biofilm effects of a photoexcited modified orthodontic adhesive containing curcumin doped poly lactic-co-glycolic acid nanoparticles: An ex-vivo biofilm model of S. mutans on the enamel slab bonded brackets. Photodiagnosis Photodyn Ther 2020; 30:101674. [PMID: 31996322 DOI: 10.1016/j.pdpdt.2020.101674] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Potential complications during fixed orthodontic procedures are white spot lesions (WSLs) and tooth decay. This study evaluated the anti-biofilm activity of an orthodontic adhesive (OA) incorporating curcumin (Cur) doped Poly lactic-co-glycolic acid nanoparticles (Cur-PLGA-NPs), which can have the highest concentration of Cur-PLGA-NPs and shear bond strength (SBS) value simultaneously, against cariogenic bacteria i.e., Streptococcus mutans. MATERIALS AND METHODS Following synthesis and confirmation of Cur-PLGA-NPs, SBS and adhesive remnant index (ARI) of the modified orthodontic adhesives (MOA) containing Cur-PLGA-NPs (3, 5, 7, and 10 % wt.) were measured using universal testing machine and stereomicroscope, respectively. After artificial aging (continuously rinsed up to 180 days), the residual anti-biofilm ability of MOA which can have the highest concentration of Cur-PLGA-NPs and SBS value simultaneously were determined by anti-biofilm assay following photoexcited enamel slab bonded brackets by MOA containing Cur-PLGA-NPs against S. mutans biofilms using crystal violet assay. RESULTS Adhesive with 7 % wt. Cur-PLGA-NPs revealed the highest concentration of Cur-PLGA-NPs and SBS value (16.19 ± 2.69 MPa, P < 0.05) simultaneously. No statistically significant difference in ARI scores was observed between the MOA and control (Transbond XT without the Cur-PLGA-NPs). On days 15, 30, 60, 90 and 120 there was a considerable decrease in optical density (OD) of preformed S. mutans biofilms on photoexcited enamel slab bonded brackets using MOA containing 7 % wt. Cur-PLGA-NPs, to 94.1 %, 79.6 %, 69.6 %, 69.4 %, and, 55.1 % respectively in comparison to the control group (all, P < 0.05). From days 150 onwards, microbial biofilm formation was progressively increased on enamel slab bonded brackets using MOA containing 7 % wt. Cur-PLGA-NPs compared to the control group (OA). Although chlorhexidine (2 %; as positive control) showed significant activity against pre-formed S. mutans biofilms on enamel slab bonded brackets using OA (99.1 % biofilm reduction; P = 0.001), its activity was slightly higher but not significant than photoexcited enamel slab bonded brackets using MOA containing 7 % wt. Cur-PLGA-NPs on the days 15 and 30 (both, P > 0.05). CONCLUSIONS The 7 % wt. Cur-PLGA-NPs can serve as an orthodontic adhesive antimicrobial additive as exposure to blue laser provides an acceptable antimicrobial effect against cariogenic bacteria for a considerable time.
Collapse
Affiliation(s)
- Hanie Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Hassan-Ali Ghafari
- Department of Orthodontics, School of Dentistry, Shahed University, Tehran, Iran
| | | | - Yasaman Mazlum
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
de Mélo Silva IS, do Amorim Costa Gaspar LM, Rocha AMO, da Costa LP, Tada DB, Franceschi E, Padilha FF. Encapsulation of Red Propolis in Polymer Nanoparticles for the Destruction of Pathogenic Biofilms. AAPS PharmSciTech 2020; 21:49. [PMID: 31900606 DOI: 10.1208/s12249-019-1576-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Microbial biofilms, structured communities of microorganisms, have been often associated to the infection and bacterial multiresistance problem. Conventional treatment of infection involves the use of antibiotics, being an alternative approach is the use of red propolis, a natural product, to prepare polymer nanoparticles. The aim of the present study was to encapsulate red propolis extract in poly(lactic-co-glycolic acid) (PLGA) nanoparticles for destruction in vitro of pathogenic biofilms. Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) containing red propolis hydroethanolic extract (2 mg/mL) were produced by emulsification solvent diffusion method. The extract and developed nanoparticles were analyzed for antimicrobial activity and inhibition of bacterial biofilm formation in vitro against Staphylococcus aureus and Pseudomonas aeruginosa. Transmission electron microscopy images confirmed spherical nanoparticles in the range size from 42.4 nm (PLGA NPs) to 69.2 nm (HERP PLGA NPs), with encapsulation efficiencies of 96.99%. The free extract and encapsulated in polymer nanoparticle presented antimicrobial potential, with a minimum inhibitory concentration from 15.6 to 125 μg mL-1 and from 100 to 1560 μg mL-1 to inhibit biofilm formation for the Staphylococcus aureus and Pseudomonas aeruginosa, respectively.
Collapse
|
21
|
Enhanced Antifungal Activities of Eugenol-Entrapped Casein Nanoparticles against Anthracnose in Postharvest Fruits. NANOMATERIALS 2019; 9:nano9121777. [PMID: 31847287 PMCID: PMC6956159 DOI: 10.3390/nano9121777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023]
Abstract
This study aims to improve the antifungal effects of eugenol through low-energy self-assembly fabrication and optimization of eugenol-casein nanoparticles (EC-NPs). Optimized EC-NPs (eugenol/casein ratio of 1:5) were obtained with a mean size of 307.4 ± 2.5 nm and entrapment efficiency of 86.3% ± 0.2%, and showed high stability under incubated at 20 and 37 °C for 48 h. EC-NPs exhibited satisfactory sustained-release effect at 20 °C or 37 °C, with remaining eugenols amounts of 79.51% and 53.41% after 72 h incubation, respectively, which were significantly higher than that of native eugenol (only 26.40% and 19.82% after the first 12 h). EC-NPs exhibited a greater antifungal activity (>95.7%) against spore germination of fungus that was greater than that of native eugenol, showed 100% inhibition of the anthracnose incidence in postharvest pear after 7 d. EC-NPs is potential as an environmental-friendly preservatives in the food industry.
Collapse
|
22
|
Gigliobianco MR, Di Martino P, Deng S, Casadidio C, Censi R. New Advanced Strategies for the Treatment of Lysosomal Diseases Affecting the Central Nervous System. Curr Pharm Des 2019; 25:1933-1950. [DOI: 10.2174/1381612825666190708213159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
Lysosomal Storage Disorders (LSDs), also known as lysosomal diseases (LDs) are a group of serious genetic diseases characterized by not only the accumulation of non-catabolized compounds in the lysosomes due to the deficiency of specific enzymes which usually eliminate these compounds, but also by trafficking, calcium changes and acidification. LDs mainly affect the central nervous system (CNS), which is difficult to reach for drugs and biological molecules due to the presence of the blood-brain barrier (BBB). While some therapies have proven highly effective in treating peripheral disorders in LD patients, they fail to overcome the BBB. Researchers have developed many strategies to circumvent this problem, for example, by creating carriers for enzyme delivery, which improve the enzyme’s half-life and the overexpression of receptors and transporters in the luminal or abluminal membranes of the BBB. This review aims to successfully examine the strategies developed during the last decade for the treatment of LDs, which mainly affect the CNS. Among the LD treatments, enzyme-replacement therapy (ERT) and gene therapy have proven effective, while nanoparticle, fusion protein, and small molecule-based therapies seem to offer considerable promise to treat the CNS pathology. This work also analyzed the challenges of the study to design new drug delivery systems for the effective treatment of LDs. Polymeric nanoparticles and liposomes are explored from their technological point of view and for the most relevant preclinical studies showing that they are excellent choices to protect active molecules and transport them through the BBB to target specific brain substrates for the treatment of LDs.
Collapse
Affiliation(s)
- Maria R. Gigliobianco
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Siyuan Deng
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Cristina Casadidio
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Via A. D'Accoiso, 16, 62032, Camerino MC, Italy
| |
Collapse
|
23
|
Pattnaik S, Barik S, Muralitharan G, Busi S. Ferulic acid encapsulated chitosan-tripolyphosphate nanoparticles attenuate quorum sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa PAO1. IET Nanobiotechnol 2019; 12:1056-1061. [PMID: 30964013 DOI: 10.1049/iet-nbt.2018.5114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic nosocomial pathogenic microorganism causing majority of acute hospital-acquired infections and poses a serious public health concern. The persistence of bacterial infection can be attributed to the highly synchronised cell-to-cell communication phenomenon, quorum sensing (QS) which regulates the expression of a number of virulence factors and biofilm formation which eventually imparts resistance to the conventional antimicrobial therapy. In this study, the anti-quorum sensing and anti-biofilm potential of ferulic acid encapsulated chitosan-tripolyphosphate nanoparticles (FANPs) was investigated against P. aeruginosa PAO1 and compared with native ferulic acid. Dynamic light scattering and transmission electron microscopic analysis confirmed the synthesis of FANPs with mean diameter of 215.55 nm. FANPs showed significant anti-quorum sensing activity by downregulating QS-regulated virulence factors. In addition, FANPs also significantly attenuate the swimming and swarming motility of P. aeruginosa PAO1. The anti-biofilm efficacy of FANPs as compared to native ferulic acid was established by light and confocal laser scanning microscopic analysis. The promising results of FANPs in attenuating QS highlighted the slow and sustained release of ferulic acid at the target sites with greater efficacy suggesting its application towards the development of anti-infective agents.
Collapse
Affiliation(s)
- Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry-605 014, India
| | - Subhashree Barik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry-605 014, India
| | - Gangatharan Muralitharan
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirappali-620 024, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry-605 014, India.
| |
Collapse
|
24
|
Peng Q, Cheng J, Lu S, Li Y. Electrospun hyperbranched polylactic acid–modified cellulose nanocrystals/polylactic acid for shape memory membranes with high mechanical properties. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4743] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qingyuan Peng
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and EngineeringGuilin University of Technology Guilin China
| | - Jingzhen Cheng
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and EngineeringGuilin University of Technology Guilin China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and EngineeringGuilin University of Technology Guilin China
| | - Yuqi Li
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and EngineeringGuilin University of Technology Guilin China
| |
Collapse
|
25
|
Phenolic Compound–Loaded Nanosystems: Artificial Neural Network Modeling to Predict Particle Size, Polydispersity Index, and Encapsulation Efficiency. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02298-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Kaderides K, Goula AM. Encapsulation of pomegranate peel extract with a new carrier material from orange juice by-products. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2019.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Milea AȘ, Vasile AM, Cîrciumaru A, Dumitrașcu L, Barbu V, Râpeanu G, Bahrim GE, Stănciuc N. Valorizations of Sweet Cherries Skins Phytochemicals by Extraction, Microencapsulation and Development of Value-Added Food Products. Foods 2019; 8:foods8060188. [PMID: 31159360 PMCID: PMC6617110 DOI: 10.3390/foods8060188] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/28/2023] Open
Abstract
Sweet cherries are processed in various ways, leading to significant amounts of underutilized by-products that can potentially be used as a source of bioactive compounds, including antioxidants. The present study focuses on identifying ways to exploit bioactive compounds from sweet cherry skins, namely the extraction, microencapsulation, and functionalizing of some food product to obtain added value. The anthocyanins from skins were extracted and encapsulated in a combination of whey proteins isolate and chitosan by freeze-drying, with an encapsulation efficiency of 77.68 ± 2.57%. The powder showed a satisfactory content in polyphenols, of which anthocyanins content was 14.48 ± 1.17 mg cyanidin 3-glucoside/100 g dry weight (D.W.) and antioxidant activity of 85.37 ± 1.18 µM Trolox/100 g D.W. The powder was morphologically analyzed, revealing the presence of coacervates, ranging in size from 12–54 μm, forming large spheresomes (up to 200 μm). The powder was used as a functional ingredient to develop two value-added food products, namely yoghurt and marshmallows. The powder was tested for its prebiotic effect on L. casei 431® in the yoghurt samples during 21 days at 4 °C, when a decrease in viability was found, up to 6 log CFU·g−1. The anthocyanins and antioxidant activity decreased in yoghurt and increased in marshmallows during storage time. The obtained results support the potential use of extracts from underutilized sources in the development of functional ingredients and value-added food products.
Collapse
Affiliation(s)
- Adelina Ștefania Milea
- Dunărea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania.
| | - Aida Mihaela Vasile
- Dunărea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania.
| | - Adrian Cîrciumaru
- Dunărea de Jos University of Galati, Cross-Border Faculty of Humanities, Economics and Engineering, Domnească Street 47, 800201 Galati, Romania, Romania.
| | - Loredana Dumitrașcu
- Dunărea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania.
| | - Vasilica Barbu
- Dunărea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania.
| | - Gabriela Râpeanu
- Dunărea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania.
| | - Gabriela Elena Bahrim
- Dunărea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania.
| | - Nicoleta Stănciuc
- Dunărea de Jos University of Galati, Faculty of Food Science and Engineering, Domnească Street 111, 800201 Galati, Romania.
| |
Collapse
|
28
|
Pola CC, Moraes ARF, Medeiros EAA, Teófilo RF, Soares NFF, Gomes CL. Development and optimization of pH-responsive PLGA-chitosan nanoparticles for triggered release of antimicrobials. Food Chem 2019; 295:671-679. [PMID: 31174811 DOI: 10.1016/j.foodchem.2019.05.165] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/27/2019] [Accepted: 05/23/2019] [Indexed: 02/03/2023]
Abstract
The aim of this work was to develop and optimize a pH-responsive nanoparticle based on poly(D,L-lactide-co-glycolide) (PLGA) and chitosan (CHIT) for delivery of natural antimicrobial using trans-cinnamaldehyde (TCIN) as a model compound. The optimization was performed using a central composite design and the desirability function approach. The optimized levels of variables considering all significant responses were 4% (w/w) of TCIN and 6.75% (w/w) of CHIT. After, optimized nanoparticles were produced and characterized according to their physicochemical properties and their antimicrobial activity against Salmonella Typhimurium and Staphylococcus aureus. Optimized nanoparticles characterization indicated a satisfactory TCIN encapsulation (33.20 ± 0.85%), spherical shape, pH-responsive controlled release, with faster release in the presence of CHIT at low pH, and enhanced antimicrobial activity against both pathogens. TCIN encapsulation using PLGA coated with CHIT enhanced its antimicrobial activity and generated a delivery system with pH-sensitivity for controlled release with promising properties for food safety applications.
Collapse
Affiliation(s)
- Cícero C Pola
- Department of Food Technology, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil; Department of Biological & Agricultural Engineering, Texas A&M University, College Station, TX 77843-2117, United States.
| | - Allan R F Moraes
- Agricultural Science Institute, Federal University of Viçosa, Rio Paranaíba, MG 38810-000, Brazil.
| | - Eber A A Medeiros
- Department of Food Technology, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Reinaldo F Teófilo
- Department of Chemistry, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Nilda F F Soares
- Department of Food Technology, Federal University of Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Carmen L Gomes
- Department of Biological & Agricultural Engineering, Texas A&M University, College Station, TX 77843-2117, United States.
| |
Collapse
|
29
|
Liu C, Zhang S, McClements DJ, Wang D, Xu Y. Design of Astaxanthin-Loaded Core-Shell Nanoparticles Consisting of Chitosan Oligosaccharides and Poly(lactic- co-glycolic acid): Enhancement of Water Solubility, Stability, and Bioavailability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5113-5121. [PMID: 31013074 DOI: 10.1021/acs.jafc.8b06963] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Astaxanthin, a hydrophobic carotenoid found in marine plants and animals, is claimed to exhibit various beneficial biological activities. Its use as a nutraceutical in foods, however, is currently limited by its low water-solubility and poor bioavailability. The goal of this paper was to fabricate astaxanthin-loaded colloidal particles to overcome these challenges. Astaxanthin was encapsulated in poly(lactic- co-glycolic acid) (PLGA) nanoparticles coated with chitosan oligosaccharides (COS). The properties of the loaded nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. The influence of PLGA properties on the loading capacity, water solubility, stability, and release of the astaxanthin were determined. The nanoparticles were smooth spheres with mean particle diameters around 150 nm and positive surface potentials (ζ = +30 mV). The encapsulation efficiency (>85%) and loading capacity (>15%) of the astaxanthin in the nanoparticles was relatively high. X-ray analysis suggested that the encapsulated astaxanthin was in an amorphous form. The nanoparticles had good dispersibility and stability in aqueous solutions, as well as high cytocompatibility. In vitro studies showed that the astaxanthin was released from the nanoparticles under simulated gastric and small intestinal conditions. Overall, our results suggest the core-shell nanoparticles developed in this study may be suitable for encapsulating this important nutraceutical in functional foods and cosmetics.
Collapse
Affiliation(s)
- Chengzhen Liu
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Shinan District, Qingdao , Shandong Province 266003 , China
| | - Shuaizhong Zhang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Shinan District, Qingdao , Shandong Province 266003 , China
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - Dongfeng Wang
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Shinan District, Qingdao , Shandong Province 266003 , China
| | - Ying Xu
- College of Food Science and Engineering , Ocean University of China , 5 Yushan Road , Shinan District, Qingdao , Shandong Province 266003 , China
| |
Collapse
|
30
|
Cherry Extract from Prunus avium L. to Improve the Resistance of Endothelial Cells to Oxidative Stress: Mucoadhesive Chitosan vs. Poly(lactic- co-glycolic acid) Nanoparticles. Int J Mol Sci 2019; 20:ijms20071759. [PMID: 30974730 PMCID: PMC6480209 DOI: 10.3390/ijms20071759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
Polyphenolic compounds contained in cherry extract (CE) are well known for their antioxidant and anti-inflammatory properties. Unfortunately, most of these natural compounds have low oral bioavailability, reducing their widespread use. Here, different concentrations of polyphenol-rich CE from Tuscany (Italy), encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), were compared with those encapsulated in two NP types, different from each other in terms of mucoadhesivity, obtained with chitosan derivatives (Ch-der), regarding CE gastrointestinal (GI) permeability and protective effect on oxidative stress. Different NP systems were physico-chemically characterized, and the antioxidant GI permeability was evaluated in a triple-cell co-culture model (Caco-2/HT29-MTX/Raji B), resembling the intestine. PLGA NPs efficiently entrapped CE (up to 840 µg gallic acid equivalent (GAE)/mL) without altering size (210 nm), polydispersity index (0.05), or zeta potential (−10.7 mV). Such NPs promoted permeation of encapsulated CE at a CE polyphenolic concentration of at least 2 µg GAE/mL. More mucoadhesive NPs from Ch-der, coded quaternary ammonium S-protected thiolated chitosan (QA-Ch-S-pro) NP, promoted CE GI permeation of 0.5 µg GAE/mL. At higher concentrations of Ch-der polymers, the resulting NPs containing CE were toxic toward Caco-2 and HT29-MTX cells. CE protected human umbilical vein endothelial cells (HUVECs) from oxidative stress and maintained its activity when entrapped in PLGA NPs. CE encapsulated in QA-Ch-S-pro NP protected HUVECs from oxidative stress, even more effectively than non-encapsulated CE. Furthermore, mucoadhesive NPs from Ch-der were more effective antioxidant protectors than PLGA NPs, but less cytotoxic PLGA NPs could be more useful when comparatively high therapeutic antioxidant doses are needed.
Collapse
|
31
|
Zhu Z, Min T, Zhang X, Wen Y. Microencapsulation of Thymol in Poly(lactide-co-glycolide) (PLGA): Physical and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1133. [PMID: 30959946 PMCID: PMC6480635 DOI: 10.3390/ma12071133] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022]
Abstract
Thymol has been shown to be a safe and effective broad-spectrum antimicrobial agent that can be used as a food preservative. However, its volatile characteristics and strong odor limit its use in food products. The microencapsulation of this essential oil in biopolymers could overcome these disadvantages. In this work, thymol-loaded poly(lactide-co-glycolide) (PLGA) microparticles were successfully prepared and the optimal encapsulation efficiency was obtained at 20% (w/w) thymol. Microparticles containing thymol presented a spherical shape and smooth surface. Microencapsulation significantly improved the thermal and storage stability of thymol. In vitro release profiles demonstrated an initial fast release followed by a slow and sustained release. Thymol-loaded microparticles had strong antibacterial activity against Escherichia coli and Staphylococcus aureus, and the effectiveness of their antibacterial properties was confirmed in a milk test. Therefore, the thymol-loaded microparticles show great potential for use as an antimicrobial and as preservation additives in food.
Collapse
Affiliation(s)
- Zhu Zhu
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Tiantian Min
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Xueji Zhang
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, China.
| |
Collapse
|
32
|
Younas M, Noreen A, Sharif A, Majeed A, Hassan A, Tabasum S, Mohammadi A, Zia KM. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. Int J Biol Macromol 2019; 124:591-626. [PMID: 30447361 DOI: 10.1016/j.ijbiomac.2018.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Cellulose is world's most abundant, renewable and recyclable polysaccharide on earth. Cellulose is composed of both amorphous and crystalline regions. Cellulose nanocrystals (CNCs) are extracted from crystalline region of cellulose. The most attractive feature of CNC is that it can be used as nanofiller to reinforce several synthetic and natural polymers. In this article, a comprehensive overview of modification of several natural and synthetic polymers using CNCs as reinforcer in respective polymer matrix is given. The immense activities of CNCs are successfully utilized to enhance the mechanical properties and to broaden the field of application of respective polymer. All the technical scientific issues have been discussed highlighting the recent advancement in biomedical and packaging field.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqsa Sharif
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Ayesha Majeed
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abida Hassan
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abbas Mohammadi
- Department of Polymer Chemistry, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
33
|
Zhang Y, Zhang Y, Zhu Z, Jiao X, Shang Y, Wen Y. Encapsulation of Thymol in Biodegradable Nanofiber via Coaxial Eletrospinning and Applications in Fruit Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1736-1741. [PMID: 30676718 DOI: 10.1021/acs.jafc.8b06362] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The application of the nanofiber film in the field of food preservation was an emerging research direction in recent years. With the functionalization of nanofibers, the quality and safety of food can be better guaranteed. In the present work, thymol as an antibacterial agent was encapsulated into poly(lactide- co-glycolide) to form core-shell nanofibers by coaxial electrospinning. With such a core-shell nanofiber film, thymol can be slowly released to headspace between food and the nanofiber film, inhibiting the growth of bacteria on the surface of food. The morphology and core-shell structure of nanofibers were confirmed by scanning electron microscopy and transmission electron microscopy. The antibacterial and fruit preservation abilities of the nanofiber film were tested on strawberries. Studies have shown that it can effectively inhibit the growth of bacteria, fungi, and yeast and extend the shelf life of fruit. This novel antibacterial packaging material with excellent biocompatibility, biodegradability, and good sustained release performance would have a broad application prospect in the field of food preservation.
Collapse
Affiliation(s)
- Yibo Zhang
- College of Chemistry and Environmental Science , Hebei University , Baoding , Hebei 071002 , People's Republic of China
| | - Ye Zhang
- College of Chemistry and Environmental Science , Hebei University , Baoding , Hebei 071002 , People's Republic of China
| | - Zhu Zhu
- School of Chemistry and Bioengineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Xiangyu Jiao
- School of Chemistry and Bioengineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| | - Yanli Shang
- College of Chemistry and Environmental Science , Hebei University , Baoding , Hebei 071002 , People's Republic of China
| | - Yongqiang Wen
- School of Chemistry and Bioengineering , University of Science and Technology Beijing , Beijing 100083 , People's Republic of China
| |
Collapse
|
34
|
Enrico C. Nanotechnology-Based Drug Delivery of Natural Compounds and Phytochemicals for the Treatment of Cancer and Other Diseases. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64185-4.00003-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Todisco KM, Janzantti NS, Santos AB, Galli FS, Mauro MA. Effects of temperature and pectin edible coatings with guava by-products on the drying kinetics and quality of dried red guava. Journal of Food Science and Technology 2018; 55:4735-4746. [PMID: 30482969 DOI: 10.1007/s13197-018-3369-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 11/25/2022]
Abstract
With the objective of utilizing agro-industrial by-products and enhancing the quality attributes of dehydrated fruits, this study evaluated the effects of edible pectin-based coatings containing disintegrated guava by-products (up to 50% concentration) and drying temperatures (46-74 °C) on the drying kinetics and nutritional properties of dried red guava. Coatings were applied to guava slices prior to hot-air drying. A central composite rotatable design was used to optimize carotenoid and phenolic compound retention. The effects of the edible coating compositions combined with the drying temperatures affected the effectiveness of the film as a barrier to carotenoid oxidation. Total phenolic compound retention, however, was affected only by temperature. Responses were simultaneously optimized, and high carotenoid and total phenolic retentions were obtained at approximately 60 °C with 25% by-product concentration. The effective water diffusivities were mainly affected by temperature. Consequently, the coatings improved nutritional quality without having a major impact on drying times.
Collapse
Affiliation(s)
- Katieli Martins Todisco
- 1Department of Food Engineering and Technology, Institute of Biosciences, Language, and Physical Sciences (IBILCE), UNESP, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000 Brazil
| | - Natália Soares Janzantti
- 1Department of Food Engineering and Technology, Institute of Biosciences, Language, and Physical Sciences (IBILCE), UNESP, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000 Brazil
| | - Adriana Barbosa Santos
- 2Department of Computer Science and Statistic, Institute of Biosciences, Language, and Physical Sciences (IBILCE), UNESP, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000 Brazil
| | - Felipe Sestari Galli
- 1Department of Food Engineering and Technology, Institute of Biosciences, Language, and Physical Sciences (IBILCE), UNESP, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000 Brazil
| | - Maria Aparecida Mauro
- 1Department of Food Engineering and Technology, Institute of Biosciences, Language, and Physical Sciences (IBILCE), UNESP, São Paulo State University, Rua Cristóvão Colombo, 2265, São José do Rio Preto, São Paulo 15054-000 Brazil
| |
Collapse
|
36
|
Nascimento TS, Silva ISM, Alves MCMA, Gouveia BB, Barbosa LMR, Macedo TJS, Santos JMS, Monte APO, Matos MHT, Padilha FF, Lima-Verde IB. Effect of red propolis extract isolated or encapsulated in nanoparticles on the in vitro culture of sheep preantral follicle: Impacts on antrum formation, mitochondrial activity and glutathione levels. Reprod Domest Anim 2018; 54:31-38. [DOI: 10.1111/rda.13347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/08/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Bruna B. Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development; Federal University of São Francisco Valley; Petrolina-PE Brazil
| | - Lara Mariane R. Barbosa
- Nucleus of Biotechnology Applied to Ovarian Follicle Development; Federal University of São Francisco Valley; Petrolina-PE Brazil
| | - Taís J. S. Macedo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development; Federal University of São Francisco Valley; Petrolina-PE Brazil
| | - Jamile M. S. Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development; Federal University of São Francisco Valley; Petrolina-PE Brazil
| | - Alane P. O. Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development; Federal University of São Francisco Valley; Petrolina-PE Brazil
| | - Maria Helena T. Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development; Federal University of São Francisco Valley; Petrolina-PE Brazil
| | | | | |
Collapse
|
37
|
Subhaswaraj P, Barik S, Macha C, Chiranjeevi PV, Siddhardha B. Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
38
|
Ephrem E, Najjar A, Charcosset C, Greige-Gerges H. Encapsulation of natural active compounds, enzymes, and probiotics for fruit juice fortification, preservation, and processing: An overview. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Mlalila N, Hilonga A, Swai H, Devlieghere F, Ragaert P. Antimicrobial packaging based on starch, poly(3-hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.01.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Pereira MC, Oliveira DA, Hill LE, Zambiazi RC, Borges CD, Vizzotto M, Mertens-Talcott S, Talcott S, Gomes CL. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chem 2018; 240:396-404. [DOI: 10.1016/j.foodchem.2017.07.144] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
|
41
|
Esmaili Z, Bayrami S, Dorkoosh FA, Akbari Javar H, Seyedjafari E, Zargarian SS, Haddadi-Asl V. Development and characterization of electrosprayed nanoparticles for encapsulation of Curcumin. J Biomed Mater Res A 2017; 106:285-292. [DOI: 10.1002/jbm.a.36233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/12/2017] [Accepted: 09/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Esmaili
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Samaneh Bayrami
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Hamid Akbari Javar
- Department of Pharmaceutics, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science; University of Tehran; Tehran Iran
| | - Seyed Shahrooz Zargarian
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
42
|
Oliveira D, Mezzomo N, Gomes C, Ferreira S. Encapsulation of passion fruit seed oil by means of supercritical antisolvent process. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2017.02.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Mota AH, Rijo P, Molpeceres J, Reis CP. Broad overview of engineering of functional nanosystems for skin delivery. Int J Pharm 2017; 532:710-728. [DOI: 10.1016/j.ijpharm.2017.07.078] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
|
44
|
Nanoformulation and characterization of nomilin with different poly (lactic-co-glycolic acid) resomers and surfactants for the enhanced inhibition of α-amylase and angiotensin-converting-enzyme. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
45
|
Oliveira DA, Angonese M, Ferreira SR, Gomes CL. Nanoencapsulation of passion fruit by-products extracts for enhanced antimicrobial activity. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
46
|
ARASOĞLU T, DERMAN S, MANSUROĞLU B, UZUNOĞLU D, KOÇYİĞİT B, GÜMÜŞ B, ACAR T, TUNCER B. Preparation, characterization, and enhanced antimicrobial activity: quercetin-loaded PLGA nanoparticles against foodborne pathogens. Turk J Biol 2017. [DOI: 10.3906/biy-1604-80] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
47
|
Mezzomo N, Oliveira DA, Comim SRR, Ferreira SRS. ENCAPSULATION OF EXTRACT FROM WINERY INDUSTRY RESIDUE USING THE SUPERCRITICAL ANTI-SOLVENT TECHNIQUE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2016. [DOI: 10.1590/0104-6632.20160333s20150051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- N. Mezzomo
- Universidade Federal de Santa Catarina, Brazil; Catarinense Federal Institute, Brazil
| | | | | | | |
Collapse
|
48
|
Zhang HY, Firempong CK, Wang YW, Xu WQ, Wang MM, Cao X, Zhu Y, Tong SS, Yu JN, Xu XM. Ergosterol-loaded poly(lactide-co-glycolide) nanoparticles with enhanced in vitro antitumor activity and oral bioavailability. Acta Pharmacol Sin 2016; 37:834-44. [PMID: 27133301 PMCID: PMC4954769 DOI: 10.1038/aps.2016.37] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/15/2016] [Indexed: 01/23/2023]
Abstract
AIM Ergosterol is a plant sterol with anti-tumor and anti-angiogenic activities, but is poorly soluble. In this study, we attempted to enhance its anti-tumor action and oral bioavailability via poly(lactide-co-glycolide) (PLGA) nanoparticle encapsulation. METHODS Ergosterol-loaded PLGA nanoparticles (NPs/Erg) were prepared using the emulsion/solvent evaporation technique. Their physicochemical properties were characterized, and their cytotoxicity against human cancer cell lines was evaluated with MTT assay. The pharmacokinetics and tissue distribution of NPs/Erg were investigated in rats and mice, respectively. RESULTS NPs/Erg were spherical in shape with a particle size of 156.9±4.8 nm and a Zeta potential of -19.27±1.13 mV, and had acceptable encapsulation efficiency and loading capacity. NPs/Erg exerted much stronger cytotoxicity against human cancer cells than the free ergosterol, and showed significantly reduced IC50 values (14.69±0.48 μg/mL in glioma U251 cells; 9.43±0.52 μg/mL in breast cancer MCF-7 cells; 4.70±0.41 μg/mL in hepatoma HepG2 cells). After oral administration of a single dose in rats, NPs/Erg displayed a prolonged plasma circulation with a 4.9-fold increase of oral bioavailability compared with the free ergosterol. After mice received NPs/Erg, the ergosterol in NPs/Erg was rapidly distributed in stomach, kidneys, liver, brain, spleen, and virtually non-existent in heart and lungs. The presence of NPs/Erg in brain was particularly improved compared with the free ergosterol. CONCLUSION The PLGA nanoparticles serve as a promising carrier for the poorly soluble ergosterol and significantly improve its bioavailability, biodistribution and in vitro anti-tumor activities.
Collapse
Affiliation(s)
- Hui-Yun Zhang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Caleb Kesse Firempong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Yuan-Wen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen-Qian Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miao-Miao Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Shan Tong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiang-Nan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xi-Ming Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
49
|
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10:6055-74. [PMID: 26451111 PMCID: PMC4592057 DOI: 10.2147/ijn.s92162] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds’ low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications.
Collapse
Affiliation(s)
- Rebekah Watkins
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Program in Nanoscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ling Wu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chenming Zhang
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Richey M Davis
- Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Institute for Critical Technology and Applied Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bin Xu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA ; Center for Drug Discovery, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
50
|
Nanoencapsulation of hydrophobic phytochemicals using poly (dl-lactide-co-glycolide) (PLGA) for antioxidant and antimicrobial delivery applications: Guabiroba fruit (Campomanesia xanthocarpa O. Berg) study. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.062] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|