1
|
Fučík J, Fučík S, Rexroth S, Sedlář M, Gargošová HZ, Mravcová L. Pharmaceutical metabolite identification in lettuce (Lactuca sativa) and earthworms (Eisenia fetida) using liquid chromatography coupled to high-resolution mass spectrometry and in silico spectral library. Anal Bioanal Chem 2024; 416:6291-6306. [PMID: 39251428 PMCID: PMC11541386 DOI: 10.1007/s00216-024-05515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Pharmaceuticals released into the aquatic and soil environments can be absorbed by plants and soil organisms, potentially leading to the formation of unknown metabolites that may negatively affect these organisms or contaminate the food chain. The aim of this study was to identify pharmaceutical metabolites through a triplet approach for metabolite structure prediction (software-based predictions, literature review, and known common metabolic pathways), followed by generating in silico mass spectral libraries and applying various mass spectrometry modes for untargeted LC-qTOF analysis. Therefore, Eisenia fetida and Lactuca sativa were exposed to a pharmaceutical mixture (atenolol, enrofloxacin, erythromycin, ketoprofen, sulfametoxazole, tetracycline) under hydroponic and soil conditions at environmentally relevant concentrations. Samples collected at different time points were extracted using QuEChERS and analyzed with LC-qTOF in data-dependent (DDA) and data-independent (DIA) acquisition modes, applying both positive and negative electrospray ionization. The triplet approach for metabolite structure prediction yielded a total of 3762 pharmaceutical metabolites, and an in silico mass spectral library was created based on these predicted metabolites. This approach resulted in the identification of 26 statistically significant metabolites (p < 0.05), with DDA + and DDA - outperforming DIA modes by successfully detecting 56/67 sample type:metabolite combinations. Lettuce roots had the highest metabolite count (26), followed by leaves (6) and earthworms (2). Despite the lower metabolite count, earthworms showed the highest peak intensities, closely followed by roots, with leaves displaying the lowest intensities. Common metabolic reactions observed included hydroxylation, decarboxylation, acetylation, and glucosidation, with ketoprofen-related metabolites being the most prevalent, totaling 12 distinct metabolites. In conclusion, we developed a high-throughput workflow combining open-source software with LC-HRMS for identifying unknown metabolites across various sample types.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Stanislav Fučík
- Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3058/10, 616 00, Brno, Czech Republic
| | - Sascha Rexroth
- Shimadzu Europa GmbH, Albert-Hahn-Straße 6, 472 69, Duisburg, Germany
| | - Marian Sedlář
- CEITEC Brno University of Technology, Purkyňova 656/123, 612 00, Brno, Czech Republic
| | - Helena Zlámalová Gargošová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
2
|
Zhu L, Meng S, Fang L, Li Z, Yang R, Qiu L, Zhong L, Song C. Intra-species differences shape differences of enrofloxacin residues and its degradation products in tilapia: A precise risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135151. [PMID: 39002484 DOI: 10.1016/j.jhazmat.2024.135151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
The increasing use and abuse of antibiotics in agriculture and aquaculture necessitates a more thorough risk assessment. We first advocate a precise assessment that subdivides the assessment scope from interspecies to intraspecific levels. Differences in ENR residues and degradation within the intraspecific category were simultaneously explored. This study chose red and GIFT tilapia, both belonging to the intra-specific category of tilapia, for an enrofloxacin (ENR) exposure experiment. Red tilapia had a lower area under the curve (AUC) representing drug accumulation, indicating a notably shorter withdrawal period (7 days) compared to GIFT tilapia (31.4 days) in the edible parts. While four potential transformation pathways were proposed for ENR in tilapia, red tilapia had fewer detected degradation products (6 items) than GIFT tilapia (10 items), indicating a simpler transformation pathway in red tilapia. Predictive assessments using the Toxtree model revealed that of the four extra degradation products in GIFT tilapia, two may possess carcinogenic and mutagenic properties. Overall, differences were observed in ENR residues and degradation within the intraspecific category, with red tilapia presenting lower risks than GIFT tilapia. This work suggests a new strategy to perfect the methodology for antibiotic risk assessment and facilitate systematic antibiotic administration management in the future.
Collapse
Affiliation(s)
- Lei Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100141 Beijing, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100141 Beijing, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Zhonghua Li
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Ruonan Yang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100141 Beijing, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Liqiang Zhong
- Freshwater Fisheries Research Institute of Jiangsu Province, 210017 Nanjing, China.
| | - Chao Song
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100141 Beijing, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China.
| |
Collapse
|
3
|
Fučík J, Amrichová A, Brabcová K, Karpíšková R, Koláčková I, Pokludová L, Poláková Š, Mravcová L. Fate of fluoroquinolones in field soil environment after incorporation of poultry litter from a farm with enrofloxacin administration via drinking water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20017-20032. [PMID: 38367114 PMCID: PMC10927849 DOI: 10.1007/s11356-024-32492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The practice of incorporating animal manure into soil is supported within the European Circular economy as a possible substitute for mineral fertilizers and will become crucial for the sustainability of agriculture. However, this practice may indirectly contribute to the dissemination of antibiotics, resistance bacteria, and resistance genes. In this study, medicated drinking water and poultry litter samples were obtained from a broiler-chick farm. The obtained poultry litter was incorporated into the soil at the experimental field site. The objectives of this research project were first to develop analytical methods able to quantify fluoroquinolones (FQs) in medicated drinking water, poultry litter, and soil samples by LC-MS; second to study the fate of these FQs in the soil environment after incorporation of poultry litter from flock medicated by enrofloxacin (ENR); and third to screen the occurrence of selected fluoroquinolone resistance encoding genes in poultry litter and soil samples (PCR analysis). FQs were quantified in the broiler farm's medicated drinking water (41.0 ± 0.3 mg∙L-1 of ENR) and poultry litter (up to 70 mg∙kg-1 of FQs). The persistence of FQs in the soil environment over 112 days was monitored and evaluated (ENR concentrations ranged from 36 μg∙kg-1 to 9 μg∙kg-1 after 100 days). The presence of resistance genes was confirmed in both poultry litter and soil samples, in agreement with the risk assessment for the selection of AMR in soil based on ENR concentrations. This work provides a new, comprehensive perspective on the entry and long-term fate of antimicrobials in the terrestrial environment and their consequences after the incorporation of poultry litter into agricultural fields.
Collapse
Affiliation(s)
- Jan Fučík
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic.
| | - Anna Amrichová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Kristýna Brabcová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
- Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Renata Karpíšková
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Ivana Koláčková
- Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucie Pokludová
- Institute for State Control of Veterinary Biologicals and Medicines (ISCVBM), Hudcova 56 A, Brno, Czech Republic
| | - Šárka Poláková
- Central Institute for Supervising and Testing in Agriculture (ÚKZÚZ), Hroznová 63/2, 603 00, Brno, Czech Republic
| | - Ludmila Mravcová
- Institute of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00, Brno, Czech Republic
| |
Collapse
|
4
|
Xi F. The enrofloxacin pollution control from fish to environment. MARINE POLLUTION BULLETIN 2024; 199:115923. [PMID: 38145585 DOI: 10.1016/j.marpolbul.2023.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/03/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Enrofloxacin (ENR) is used to prevent and treat fish diseases widely. However, its pollution is increasing public concern on human health and aquatic ecosystem safety. This review aims to find its pollution mechanisms and control way. It is found: (1) The excessive ENR administration is the main source, the sediment ENR escaping from photolysis is the secondary ENR pollution source; (2) The ENR-rich fishes were benthic lipid-rich fishes which can simultaneously absorb administration ENR and sediment ENR, the ENR bioaccumulation is positively related to the fish habitats ENR level and fish lipids content; (3) The ENR t1/2 varies with fish age, body weight, feedstuff lipids and crude fiber level, temperature, salinity, administration mode and dose; Consequently, the first control way is to conduct the minimum inhibitory concentration ENR, combining herbal medicines with antibacterial and detoxification functions. The second way is to develop the enrichment and removal techniques for sediment ENR.
Collapse
Affiliation(s)
- Feng Xi
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China; Engineering Research Centre of Eel Modern Industrial Technology, Ministry of Education, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
5
|
Dai J, Wang Y, Lin H, Sun Y, Pan Y, Qiao JQ, Lian HZ, Xu CX. Residue screening and analysis of enrofloxacin and its metabolites in real aquatic products based on ultrahigh-performance liquid chromatography coupled with high resolution mass spectrometry. Food Chem 2023; 404:134757. [DOI: 10.1016/j.foodchem.2022.134757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/11/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
6
|
Improved LC/MS/MS Quantification Using Dual Deuterated Isomers as the Surrogates: A Case Analysis of Enrofloxacin Residue in Aquatic Products. Foods 2023; 12:foods12010224. [PMID: 36613439 PMCID: PMC9818688 DOI: 10.3390/foods12010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
Extensive and high residue variations in enrofloxacin (ENR) exist in different aquatic products. A novel quantitative method for measuring ENR using high-performance liquid chromatography-tandem mass spectrometry was developed employing enrofloxacin-d5 (ENR-d5) and enrofloxacin-d3 (ENR-d3) as isotope surrogates. This reduced the deviation of detected values, which results from the overpass of the linear range and/or the large difference in the residue between the isotope standard and ENR, from the actual content. Furthermore, high residue levels of ENR can be directly diluted and re-calibrated by the corresponding curve with the addition of high levels of another internal surrogate without repeated sample preparation, avoiding the overflow of the instrument response. The validation results demonstrated that the method can simultaneously determine ENR residues from MQL (2 µg/kg) to 5000 × MQL (method quantification limit) with recoveries between 97.1 and 106%, and intra-precision of no more than 2.14%. This method realized a wide linear calibration range with dual deuterated isomers, which has not been previously reported in the literature. The developed method was successfully applied to the analysis of ENR in different aquatic products, with ENR residue levels varying from 108 to 4340 μg/kg and an interval of precision in the range of 0.175~6.72%. These results demonstrate that batch samples with a high variation in ENR residues (over the linear range with a single isotope standard) can be detected by the dual isotope surrogates method in a single sample preparation process.
Collapse
|
7
|
Lopes ES, Parente CET, Picão RC, Seldin L. Irrigation Ponds as Sources of Antimicrobial-Resistant Bacteria in Agricultural Areas with Intensive Use of Poultry Litter. Antibiotics (Basel) 2022; 11:1650. [PMID: 36421294 PMCID: PMC9686582 DOI: 10.3390/antibiotics11111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 10/17/2023] Open
Abstract
Poultry litter is widely used worldwide as an organic fertilizer in agriculture. However, poultry litter may contain high concentrations of antibiotics and/or antimicrobial-resistant bacteria (ARB), which can be mobilized through soil erosion to water bodies, contributing to the spread of antimicrobial resistance genes (ARGs) in the environment. To better comprehend this kind of mobilization, the bacterial communities of four ponds used for irrigation in agricultural and poultry production areas were determined in two periods of the year: at the beginning (low volume of rainfall) and at the end of the rainy season (high volume of rainfall). 16S rRNA gene sequencing revealed not only significantly different bacterial community structures and compositions among the four ponds but also between the samplings. When the DNA obtained from the water samples was PCR amplified using primers for ARGs, those encoding integrases (intI1) and resistance to sulfonamides (sul1 and sul2) and β-lactams (blaGES, blaTEM and blaSHV) were detected in three ponds. Moreover, bacterial strains were isolated from CHROMagar plates supplemented with sulfamethoxazole, ceftriaxone or ciprofloxacin and identified as belonging to clinically important Enterobacteriaceae. The results presented here indicate a potential risk of spreading ARB through water resources in agricultural areas with extensive fertilization with poultry litter.
Collapse
Affiliation(s)
- Eliene S. Lopes
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Cláudio E. T. Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Renata C. Picão
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Lucy Seldin
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
8
|
Stando K, Korzeniewska E, Felis E, Harnisz M, Buta-Hubeny M, Bajkacz S. Determination of antimicrobial agents and their transformation products in an agricultural water-soil system modified with manure. Sci Rep 2022; 12:17529. [PMID: 36266434 PMCID: PMC9584908 DOI: 10.1038/s41598-022-22440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/14/2022] [Indexed: 01/13/2023] Open
Abstract
Manure fertilization is the primary source of veterinary antimicrobials in the water-soil system. The research gap is the fate of antimicrobials after their release into the environment. This study aimed to provide a detailed and multi-faceted examination of fertilized cultivated fields using two types of manure (poultry and bovine) enriched with selected antimicrobials. The research focused on assessing the mobility and stability of antimicrobials in the water-soil system. Additionally, transformation products of antimicrobials in the environment were identified. The extraction (solid-phase extraction and/or solid-liquid extraction) and LC-MS/MS analysis procedures were developed to determine 14 antimicrobials in the soil and pore water samples. Ten out of fourteen antimicrobials were detected in manure-amended soil and pore water samples. The highest concentration in the soil was 109.1 ng g-1 (doxycycline), while in pore water, it was 186.6 ng L-1 (ciprofloxacin). Sixteen transformation products of antimicrobials were identified in the soil and soil-related pore water. The same transformation products were detected in both soil and soil pore water extracts, with significantly higher signal intensities observed in soil extracts than in water. Transformation products were formed in oxidation, carbonylation, and ring-opening reactions.
Collapse
Affiliation(s)
- Klaudia Stando
- grid.6979.10000 0001 2335 3149Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
| | - Ewa Korzeniewska
- grid.412607.60000 0001 2149 6795Department of Engineering of Water Protection and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Ewa Felis
- grid.6979.10000 0001 2335 3149The Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland ,grid.6979.10000 0001 2335 3149Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Monika Harnisz
- grid.412607.60000 0001 2149 6795Department of Engineering of Water Protection and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Martyna Buta-Hubeny
- grid.412607.60000 0001 2149 6795Department of Engineering of Water Protection and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland
| | - Sylwia Bajkacz
- grid.6979.10000 0001 2335 3149Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland ,grid.6979.10000 0001 2335 3149The Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland
| |
Collapse
|
9
|
In vitro oxidation promoted by sarafloxacin antibiotic residues on myosin and chicken meat proteins. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Junza A, Saurina J, Minguillón C, Barrón D. Metabolites in Milk after Enrofloxacin Treatment and Their Persistence to Temperature. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8441-8450. [PMID: 35776853 PMCID: PMC9880995 DOI: 10.1021/acs.jafc.2c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, metabolomic profile changes in milk from cows affected by mastitis and treated with enrofloxacin (ENR) have been studied using LC-HRMS techniques. Principal component analysis was applied to the obtained results, and the interest was focused on changes affecting compounds without a structural relationship to ENR. Most of the compounds, whose concentrations were modified as a result of the pharmacological treatment and/or the pathological status, were related to amino acids and peptides. Compounds that may become possible biomarkers for either disease or treatment have been detected. Additionally, the alterations caused by thermal processes, such as those applied to milk before consumption, on the identified metabolites have also been considered.
Collapse
Affiliation(s)
- Alexandra Junza
- Department
de Enginyeria Química i Química Analí́tica, Universitat de Barcelona, Martí i Franquès, 1-11, Barcelona 08028, Spain
| | - Javier Saurina
- Department
de Enginyeria Química i Química Analí́tica, Universitat de Barcelona, Martí i Franquès, 1-11, Barcelona 08028, Spain
- Institut
de Recerca en Nutrició i Seguretat Alimentària de la
Universitat de Barcelona (INSA-UB), Barcelona 08007, Spain
| | - Cristina Minguillón
- Department
de Nutrició, Ciències de l’alimentació
i Gastronomia, Universitat de Barcelona, Avda. Prat de la Riba, 171, Sta.
Coloma de Gramenet, Barcelona 08921, Spain
| | - Dolores Barrón
- Department
de Nutrició, Ciències de l’alimentació
i Gastronomia, Universitat de Barcelona, Avda. Prat de la Riba, 171, Sta.
Coloma de Gramenet, Barcelona 08921, Spain
- Institut
de Recerca en Nutrició i Seguretat Alimentària de la
Universitat de Barcelona (INSA-UB), Barcelona 08007, Spain
| |
Collapse
|
11
|
Stando K, Korzeniewska E, Felis E, Harnisz M, Bajkacz S. Uptake of Pharmaceutical Pollutants and Their Metabolites from Soil Fertilized with Manure to Parsley Tissues. Molecules 2022; 27:molecules27144378. [PMID: 35889250 PMCID: PMC9317704 DOI: 10.3390/molecules27144378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
Manure is a major source of soil and plant contamination with veterinary drugs residues. The aim of this study was to evaluate the uptake of 14 veterinary pharmaceuticals by parsley from soil fertilized with manure. Pharmaceutical content was determined in roots and leaves. Liquid chromatography coupled with tandem mass spectrometry was used for targeted analysis. Screening analysis was performed to identify transformation products in the parsley tissues. A solid-liquid extraction procedure was developed combined with solid-phase extraction, providing recoveries of 61.9–97.1% for leaves and 51.7–95.6% for roots. Four analytes were detected in parsley: enrofloxacin, tylosin, sulfamethoxazole, and doxycycline. Enrofloxacin was detected at the highest concentrations (13.4–26.3 ng g−1). Doxycycline accumulated mainly in the roots, tylosin in the leaves, and sulfamethoxazole was found in both tissues. 14 transformation products were identified and their distribution were determined. This study provides important data on the uptake and transformation of pharmaceuticals in plant tissues.
Collapse
Affiliation(s)
- Klaudia Stando
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Correspondence: (K.S.); (S.B.)
| | - Ewa Korzeniewska
- Department of Engineering of Water Protection and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland; (E.K.); (M.H.)
| | - Ewa Felis
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
- Environmental Biotechnology Department, Faculty of Power and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Monika Harnisz
- Department of Engineering of Water Protection and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-720 Olsztyn, Poland; (E.K.); (M.H.)
| | - Sylwia Bajkacz
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
- Correspondence: (K.S.); (S.B.)
| |
Collapse
|
12
|
Kokoszka K, Zieliński W, Korzeniewska E, Felis E, Harnisz M, Bajkacz S. Suspect screening of antimicrobial agents transformation products in environmental samples development of LC-QTrap method running in pseudo MRM transitions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152114. [PMID: 34864028 DOI: 10.1016/j.scitotenv.2021.152114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
The aim of the work was to develop a new HPLC-MS/MS method that allows for the simultaneous detection of antimicrobials agents (targeted analysis) and their transformation products (non-targeted analysis), which enabled the elucidation of their transformation pathways in the environment. Targeted analysis was performed for 16 selected antimicrobials agents (AMs) in wastewater collected at different stages of the treatment process and river water from sections before and after wastewater discharge. The samples were collected in the Łyna sewage treatment plant (Olsztyn, Poland) in three measuring periods at different seasons. Analytes were selected from tetracyclines, fluoroquinolones, β-lactams, macrolides, glycopeptides, lincosamides and synthetic antibiotics. As a part of the targeted analysis, 13 AMs were detected in wastewater samples, and 7 of them in river water samples. However, their presence and concentrations were closely related to the type of the sample and the season in which the sample was taken. The highest concentrations of AMs were detected in samples collected in September (max. 1643.7 ng L-1 TRI), while the lowest AMs concentrations were found in samples collected in June (max. 136.1 ng L-1 CLR). The total content of AMs in untreated wastewater was in the range of 1.42-1644 ng L-1, while in the river water was for upstream 1.22-48.73 ng L-1 and for downstream 2.24-149 ng L-1. In the non-target analysis, 33 degradation products of the selected AMs were identified, and the transformation pathways of their degradation were speculated. In the course of the research, it was found that as a result of the processes taking place in wastewater treatment plant, the parent substances are transformed into a number of stable transformation products. Transformation products resulted from hydroxylation, ring opening, oxidation, methylation or demethylation, carboxylation, or cleavage of the CN bond of the parent AMs.
Collapse
Affiliation(s)
- Klaudia Kokoszka
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, 6 B. Krzywoustego Str., 44-100 Gliwice, Poland
| | - Wiktor Zieliński
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, 1 Prawocheńskiego Str., 10-720 Olsztyn, Poland
| | - Ewa Korzeniewska
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, 1 Prawocheńskiego Str., 10-720 Olsztyn, Poland
| | - Ewa Felis
- Silesian University of Technology, Centre for Biotechnology, 8 B. Krzywoustego Str., 44-100 Gliwice, Poland; Silesian University of Technology, Faculty of Power and Environmental Engineering, Environmental Biotechnology Department, 2 Akademicka Str., 44-100 Gliwice, Poland
| | - Monika Harnisz
- University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Department of Engineering of Water Protection and Environmental Microbiology, 1 Prawocheńskiego Str., 10-720 Olsztyn, Poland
| | - Sylwia Bajkacz
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic, Analytical Chemistry and Electrochemistry, 6 B. Krzywoustego Str., 44-100 Gliwice, Poland; Silesian University of Technology, Centre for Biotechnology, 8 B. Krzywoustego Str., 44-100 Gliwice, Poland.
| |
Collapse
|
13
|
Liesenfeld S, Steliopoulos P, Hamscher G. Comprehensive Metabolomics Analysis of Nontargeted LC-HRMS Data Provides Valuable Insights Regarding the Origin of Veterinary Drug Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12493-12502. [PMID: 33081472 DOI: 10.1021/acs.jafc.0c05163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) complements standard triple-quadrupole mass spectrometry in veterinary drug residue control. LC-HRMS offers the opportunity for nontargeted screening for metabolites and biomarkers representing metabolic changes. In this work, the feasibility of a nontargeted metabolomics approach based on LC-HRMS data (LC-Q-Orbitrap and LC-Q-TOF) to distinguish between porcine muscle tissue from infected animals and from healthy animals is demonstrated. The differences arise from various compounds associated with metabolic changes in infected animals. Two new biomarker candidates have been identified: tripeptide prolyphenylalanylglycine and a lysophosphatidylcholine derivative. For the first time, a bivariate data analysis procedure is described that may be used to evaluate whether the presence of antibiotic residues points to a therapeutic application or may be the result of a contamination during sampling and/or analysis.
Collapse
Affiliation(s)
- Sabrina Liesenfeld
- CVUA Karlsruhe, Department of Veterinary Drug Residue Analysis, Weissenburger Straße 3, 76187 Karlsruhe, Germany
- Justus Liebig University, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Panagiotis Steliopoulos
- CVUA Karlsruhe, Department of Veterinary Drug Residue Analysis, Weissenburger Straße 3, 76187 Karlsruhe, Germany
| | - Gerd Hamscher
- Justus Liebig University, Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
14
|
Zhu M, Wang Z, Chen J, Xie H, Zhao H, Yuan X. Bioaccumulation, Biotransformation, and Multicompartmental Toxicokinetic Model of Antibiotics in Sea Cucumber ( Apostichopus japonicus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13175-13185. [PMID: 32985863 DOI: 10.1021/acs.est.0c04421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extensive application of antibiotics leads to their ubiquitous occurrence in coastal aquatic environments. However, it remains largely unknown whether antibiotics can be bioaccumulated and biotransformed in major mariculture organisms such as sea cucumbers and toxicokinetic models for Echinodermata are lacking. In this study, laboratory exposure experiments on juvenile sea cucumber (Apostichopus japonicus) were performed for seven antibiotics (sulfadiazine, sulfamethoxazole, trimethoprim, enrofloxacin, ofloxacin, clarithromycin, and azithromycin). Field sea cucumber and surrounding seawater samples were also analyzed. Results show that the sea cucumbers tend to accumulate high concentrations of the antibiotics with kinetic bioconcentration factors (BCFs) up to 1719.7 L·kg-1 for ofloxacin. The BCFs determined in the laboratory agree well with those estimated from the field measurements. Seven biotransformation products (BTPs) of the antibiotics were identified, four of which were not reported previously in aquatic organisms. The BTPs were mainly found in the digestive tract, indicating its high capacity in the biotransformation. A multicompartmental toxicokinetic model based on the principles of passive diffusion was developed, which can successfully predict time-course concentrations of the antibiotics in different compartments of the juvenile sea cucumbers. The findings may offer a scientific basis for assessing health risks and guiding healthy mariculture of sea cucumbers.
Collapse
Affiliation(s)
- Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiutang Yuan
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
15
|
Zhang W, Sun R, Zhao X, Li Y. Environmental Conversion Path Inference of New Designed Fluoroquinolones and Their Potential Environmental Risk. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:310-328. [PMID: 31605151 DOI: 10.1007/s00244-019-00672-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
Fluoroquinolone (FQ) derivatives with environmental friendliness regarding photodegradation, bioconcentration, and genotoxicity were selected from our previous works so that their transformation pathways of biological metabolism, photodegradation, microbial degradation, and chlorination disinfection could be studied. The pathways of these molecules and their derivatives were simulated to investigate the genotoxicity of their transformation products. The results showed that the genotoxicity of the biological metabolites, photodegradation products, and microbial degradation products of the maternal FQ derivatives partially increased, whereas the disinfection by-products exhibited lower genotoxicity than their precursors. Some designed FQ molecular derivatives still had potential environmental risks in biological metabolism, photodegradation, and microbial degradation. This study demonstrated that it is necessary to take into account the potential environmental risks of the transformed products of the modified FQs molecules during biometabolism, photodegradation, microbial degradation, and chlorination processes when designing novel FQ molecules. In future studies, assessing the potential environmental risks during various artificial or natural processes can be applied to screen environmentally friendly novel FQ molecules to avoid and or reduce their threat to environmental and human health.
Collapse
Affiliation(s)
- Wenhui Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing, 102206, China
| | - Ruihao Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing, 102206, China
| | - Xiaohui Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
- The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing, 102206, China
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
- The State Key Laboratory of Regional Optimisation of Energy System, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
16
|
Chen M, Zhao H, Wang Y, Bekele TG, Liu W, Chen J. Uptake and depuration of eight fluoroquinolones (FQs) in common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:202-207. [PMID: 31096125 DOI: 10.1016/j.ecoenv.2019.04.075] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Fluoroquinolones (FQs) are extensively used in humans and animals, which have aroused wide attention due to the emergence of FQ resistant bacteria and frequent detection in water, sediment and organism. However, little information is available about the bioconcentration and tissue distribution of FQs in fish. In the present study, we investigated the uptake and depuration of eight FQs (balofloxacin (BAL), enoxacin (ENO), enrofloxacin (ENR), fleroxacin (FLE), lomefloxacin (LOM), moxifloxacin (MOX), ofloxacin (OFL), sparfloxacin (SPA)) in common carp under controlled laboratory conditions. The results showed that all target FQs could accumulate in fish tissues, and had a similar tendency over time during the whole uptake and depuration periods. The uptake rate constant (k1), depuration rate constant (k2) and half-lives (t1/2) were in the ranges of 0.007-3.599 L/(kg·d), 0.051-0.283 d-1 and 2.4-10.7 d, respectively. The ranges of bioconcentration factors (BCFs) were 0.24-39.55 L/kg, 0.21-24.97 L/kg and 0.04-1.07 L/kg in liver, kidney and muscle, respectively. BCFs of eight FQs decreased in the order: MOX > ENR > ENO ≈ BAL ≈ FLE ≈ OFL ≈ LOM ≈ SPA, which may be correlated with the substituents at positions 7 and 8 of the basic quinolone nucleus and the metabolic capacity. Besides, BCFs were relative with pH-adjusted distribution coefficient (log D), suggesting that molecular status of ionizable compounds strongly influenced the bioconcentration processes. The present study provides important insights for understanding the bioconcentration and tissues distribution of FQs.
Collapse
Affiliation(s)
- Mo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Tadiyose Girma Bekele
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Wanyu Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|
17
|
Parente CET, Azeredo A, Vollú RE, Zonta E, Azevedo-Silva CE, Brito EMS, Seldin L, Torres JPM, Meire RO, Malm O. Fluoroquinolones in agricultural soils: Multi-temporal variation and risks in Rio de Janeiro upland region. CHEMOSPHERE 2019; 219:409-417. [PMID: 30551107 DOI: 10.1016/j.chemosphere.2018.11.184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Our main goal was to investigate the potential accumulation of fluoroquinolones (FQs) in agricultural soils over extended periods of land use, predicting leaching and estimating risk quotients for soil microorganisms. Short to long-term of poultry litter fertilization (<1-30 years) were evaluated for enrofloxacin (ENR) and ciprofloxacin (CIP) input, in addition to the emergence of plasmid-mediated quinolone resistance (PMQR) genes. High FQs concentration (range 0.56-100 mg kg-1) were measured in poultry litter samples. In soils, FQs occurrence and risks have changed over the years. An accumulation trend was observed between short and medium-term fertilized soils (ST and MT soils), reaching a range of 330-6138 μg kg-1 ENR and 170-960 μg kg-1 CIP in MT soil, followed by decreased concentrations in long-term fertilized soils (LT soils). The environmental risk assessment showed a high ENR risk quotient (RQ ≥ 1) in ST and MT soils ranging (7-226) and high CIP risk (9-53) in LT soils. The detection of qnrS genes in the area with the lowest FQs concentration emphasizes the importance of a broader approach to environmental assessment, in which not only target compounds are considered. FQs soil-water migration model pointed out a high leaching risk in ST soil. To reduce risks, management measures to decrease antibiotic environmental load should be taken before poultry litter application. In addition, the high weathering of tropical soils contributing to possible fate of antibiotics to water resources through drainage basins should be considered.
Collapse
Affiliation(s)
- Cláudio E T Parente
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil.
| | - Antonio Azeredo
- Laboratório de Toxicologia, Instituto de Estudos em Saúde Coletiva, Universidade Federal do Rio de Janeiro, Av. Horácio Macedo, s/n, Rio de Janeiro, 21941-598, Brazil
| | - Renata E Vollú
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco I, Sala 60, Rio de Janeiro, 21941-902, Brazil
| | - Everaldo Zonta
- Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7. Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Claudio E Azevedo-Silva
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil
| | - Elcia M S Brito
- Ingenieria Ambiental, Div. Inginierías, Campus Guanajuato, Universidad de Guanajuato, Av. Juárez, 77; Zona Centro. Guanajuato, Gto, México, 36000, USA
| | - Lucy Seldin
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco I, Sala 60, Rio de Janeiro, 21941-902, Brazil
| | - João Paulo M Torres
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil
| | - Rodrigo O Meire
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil
| | - Olaf Malm
- Laboratório de Radioisótopos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
18
|
Beka L, Fullmer MS, Colston SM, Nelson MC, Talagrand-Reboul E, Walker P, Ford B, Whitaker IS, Lamy B, Gogarten JP, Graf J. Low-Level Antimicrobials in the Medicinal Leech Select for Resistant Pathogens That Spread to Patients. mBio 2018; 9:e01328-18. [PMID: 30042201 PMCID: PMC6058295 DOI: 10.1128/mbio.01328-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Fluoroquinolones (FQs) and ciprofloxacin (Cp) are important antimicrobials that pollute the environment in trace amounts. Although Cp has been recommended as prophylaxis for patients undergoing leech therapy to prevent infections by the leech gut symbiont Aeromonas, a puzzling rise in Cp-resistant (Cpr) Aeromonas infections has been reported. We report on the effects of subtherapeutic FQ concentrations on bacteria in an environmental reservoir, the medicinal leech, and describe the presence of multiple antibiotic resistance mutations and a gain-of-function resistance gene. We link the rise of CprAeromonas isolates to exposure of the leech microbiota to very low levels of Cp (0.01 to 0.04 µg/ml), <1/100 of the clinical resistance breakpoint for Aeromonas Using competition experiments and comparative genomics of 37 strains, we determined the mechanisms of resistance in clinical and leech-derived Aeromonas isolates, traced their origin, and determined that the presence of merely 0.01 µg/ml Cp provides a strong competitive advantage for Cpr strains. Deep-sequencing the Cpr-conferring region of gyrA enabled tracing of the mutation-harboring Aeromonas population in archived gut samples, and an increase in the frequency of the Cpr-conferring mutation in 2011 coincides with the initial reports of CprAeromonas infections in patients receiving leech therapy.IMPORTANCE The role of subtherapeutic antimicrobial contamination in selecting for resistant strains has received increasing attention and is an important clinical matter. This study describes the relationship of resistant bacteria from the medicinal leech, Hirudo verbana, with patient infections following leech therapy. While our results highlight the need for alternative antibiotic therapies, the rise of Cpr bacteria demonstrates the importance of restricting the exposure of animals to antibiotics approved for veterinary use. The shift to a more resistant community and the dispersion of Cpr-conferring mechanisms via mobile elements occurred in a natural setting due to the presence of very low levels of fluoroquinolones, revealing the challenges of controlling the spread of antibiotic-resistant bacteria and highlighting the importance of a holistic approach in the management of antibiotic use.
Collapse
Affiliation(s)
- Lidia Beka
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Matthew S Fullmer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sophie M Colston
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael C Nelson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de Montpellier, Montpellier, France
- Département d'Hygiène Hospitalière, CHRU de Montpellier, Montpellier, France
| | - Paul Walker
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Bradley Ford
- Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Iain S Whitaker
- Institute of Life Sciences, Swansea University College of Medicine, Swansea, Wales, United Kingdom
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de Montpellier, Montpellier, France
- Laboratoire de Bactériologie, CHRU de Montpellier, Montpellier, France
- INSERM U1065, C3M, Team 6, Nice, France
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
19
|
Pugajeva I, Avsejenko J, Judjallo E, Bērziņš A, Bartkiene E, Bartkevics V. High occurrence rates of enrofloxacin and ciprofloxacin residues in retail poultry meat revealed by an ultra-sensitive mass-spectrometric method, and antimicrobial resistance to fluoroquinolones in Campylobacter spp. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1107-1115. [DOI: 10.1080/19440049.2018.1432900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment ‘BIOR’, Riga, Latvia
| | - Jeļena Avsejenko
- Institute of Food Safety, Animal Health and Environment ‘BIOR’, Riga, Latvia
| | - Elza Judjallo
- Institute of Food Safety, Animal Health and Environment ‘BIOR’, Riga, Latvia
| | - Aivars Bērziņš
- Institute of Food Safety, Animal Health and Environment ‘BIOR’, Riga, Latvia
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment ‘BIOR’, Riga, Latvia
| |
Collapse
|
20
|
Saurina J, Sentellas S. Strategies for metabolite profiling based on liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:103-111. [DOI: 10.1016/j.jchromb.2017.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/17/2016] [Accepted: 01/08/2017] [Indexed: 02/06/2023]
|
21
|
Abdi-Hachesoo B, Asasi K, Sharifiyazdi H. Farm-level evaluation of enrofloxacin resistance in Escherichia coli isolated from broiler chickens during a rearing period. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s00580-017-2402-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
22
|
Metabolic profile modifications in milk after enrofloxacin administration studied by liquid chromatography coupled with high resolution mass spectrometry. J Chromatogr A 2016; 1460:92-9. [PMID: 27425761 DOI: 10.1016/j.chroma.2016.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 06/21/2016] [Accepted: 07/06/2016] [Indexed: 12/17/2022]
Abstract
High resolution accurate mass spectrometry (HRMS) operating in full scan MS mode was used in the search and identification of metabolites in raw milk from cows medicated with enrofloxacin. Data consisting of m/z features were taken throughout the entire chromatogram of milk samples from medicated animals and were compared with blank samples. Twenty six different compounds were identified. Some of them were attributed to structures related to enrofloxacin while others were dipeptides or tripeptides. Additionally, enrofloxacin was administered in a controlled treatment for three days. Milk was collected daily from the first day of treatment and until four days after in the search for the identified compounds. The obtained data were chemometrically treated by Principal Component Analysis. Samples were classified by this method into three different groups corresponding to days 1-2, day 3 and days 4-7 considering the different concentration profile evolution of metabolites during the days studied. Tentative metabolic pathways were designed to rationalize the presence of the newly identified compounds.
Collapse
|