1
|
Surti PV, Kim MW, Phan LMT, Kailasa SK, Mungray AK, Park JP, Park TJ. Progress on dot-blot assay as a promising analytical tool: Detection from molecules to cells. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
2
|
Rolling Circle Amplification as an Efficient Analytical Tool for Rapid Detection of Contaminants in Aqueous Environments. BIOSENSORS-BASEL 2021; 11:bios11100352. [PMID: 34677308 PMCID: PMC8533700 DOI: 10.3390/bios11100352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Environmental contaminants are a global concern, and an effective strategy for remediation is to develop a rapid, on-site, and affordable monitoring method. However, this remains challenging, especially with regard to the detection of various contaminants in complex water environments. The application of molecular methods has recently attracted increasing attention; for example, rolling circle amplification (RCA) is an isothermal enzymatic process in which a short nucleic acid primer is amplified to form a long single-stranded nucleic acid using a circular template and special nucleic acid polymerases. Furthermore, this approach can be further engineered into a device for point-of-need monitoring of environmental pollutants. In this paper, we describe the fundamental principles of RCA and the advantages and disadvantages of RCA assays. Then, we discuss the recently developed RCA-based tools for environmental analysis to determine various targets, including heavy metals, organic small molecules, nucleic acids, peptides, proteins, and even microorganisms in aqueous environments. Finally, we summarize the challenges and outline strategies for the advancement of this technique for application in contaminant monitoring.
Collapse
|
3
|
Zhang C, Chen G, Wang Y, Zhou J, Li C. Establishment and application of hyperbranched rolling circle amplification coupled with lateral flow dipstick for the sensitive detection of Karenia mikimotoi. HARMFUL ALGAE 2019; 84:151-160. [PMID: 31128799 DOI: 10.1016/j.hal.2019.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
The dinoflagellate Karenia mikimotoi is a noxious and harmful algal bloom (HAB)-forming microalga. Establishing a rapid, accurate, and sensitive method of detecting this harmful alga is necessary to provide warnings of imminent HABs through field monitoring. Here, an isothermal amplification technique combined with a rapid analytical method for nucleic acid-based amplified products, i.e., hyperbranched rolling circle amplification (HRCA) coupled with lateral flow dipstick (LFD), hereafter denoted as HRCA-LFD, was established to detect K. mikimotoi. The HRCA-LFD assay relied on a padlock probe (PLP) targeting DNA template and an LFD probe targeting PLP. The sequenced internal transcribed spacer of K. mikimotoi through molecular cloning was used as the target of PLP. The optimized HRCA conditions was determined to be as follows: PLP concentration, 20 pM; ligation temperature, 65 °C; ligation time, 10 min; amplification temperature, 61 °C; and amplification time, 30 min. The developed HRCA-LFD assay was specific for K. mikimotoi, displaying no cross-reactivity with other common microalgae. Sensitivity-comparison tests indicated that HRCA-LFD assay was 100-fold more sensitive than PCR, with a detection limit of 0.1 cell mL-1 when used to analyze spiked field samples. The analysis with field samples also indicated that HRCA-LFD assay was suitable for samples with a target cell density range of 1-1000 cells mL-1. All of these results suggested that HRCA-LFD assay is an alternative method for the sensitive and reliable detection of K. mikimotoi from marine water samples.
Collapse
Affiliation(s)
- Chunyun Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China; School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jin Zhou
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Chenghua Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
4
|
Loo J, But GWC, Kwok HC, Lau PM, Kong SK, Ho HP, Shaw PC. A rapid sample-to-answer analytical detection of genetically modified papaya using loop-mediated isothermal amplification assay on lab-on-a-disc for field use. Food Chem 2019; 274:822-830. [PMID: 30373016 DOI: 10.1016/j.foodchem.2018.09.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 09/01/2018] [Accepted: 09/09/2018] [Indexed: 11/30/2022]
Abstract
With genetically modified (GM) food circulating on the market, a rapid transgenic food screening method is needed to protect consumer rights. The on-site screening efficiency of GM food testing is low. We report rapid sample-to-answer detection of GM papayas with loop-mediated isothermal amplification (LAMP) and a compact, portable, integrated microfluidic platform using microfluidic lab-on-a-disc (LOAD). GM samples were differentiated from non-GM papaya, based on the detection of a specific GM (P-35S (Cauliflower mosaic virus 35S promoter)) and non-GM DNA marker (papain) in 15 min. The detection limits for DNA and juice from papaya were 10 pg/µL and 0.02 µL, respectively. Our LOAD platform is a simple and robust solution for GM screening, which is anticipated to be a foundation for on-site testing of transgenic food.
Collapse
Affiliation(s)
- Jacky Loo
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | | | - Ho-Chin Kwok
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Pui-Man Lau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Siu-Kai Kong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine and Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Zhang C, Chen G, Wang Y, Sun R, Nie X, Zhou J. MHBMDAA: Membrane-based DNA array with high resolution and sensitivity for toxic microalgae monitoring. HARMFUL ALGAE 2018; 80:107-116. [PMID: 30502803 DOI: 10.1016/j.hal.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Harmful algal blooms (HAB) involving toxic microalgae have posed a serious threat to the marine industry and environment in the past several decades. Efficient techniques are required to monitor the marine environment to provide an effective warning of imminent HAB. Sequenced the partial large subunit rDNA (D1-D2) sequences of eight toxic harmful algae that are commonly distributed along the Chinese coast were cloned. Specific padlock probes (PLP) that contain linker regions composed of universal primer binding sites and Zip sequences were designed from the obtained target DNA. Taxonomic probes complementary to the Zip sequences were tailed and spotted onto a nylon membrane to prepare a DNA array. An optimized multiplex hyperbranched rolling circle amplification (MHRCA) was used to produce biotin-labeled amplified products. Heat-denatured MHRCA products were used to hybridize with DNA array, followed by dot coloration. An MHRCA-based membrane DNA array assay (MHBMDAA) for detecting toxic microalgae was developed. The specificity of the MHBMDAA was confirmed by double cross-reactivity tests of PLP and taxonomic probes. The MHBMDAA was competent for detecting the simulated samples with 103 to 10-1 cells mL-1, which is 10-fold more sensitive than a multiplex PCR-based membrane DNA array. The effectiveness of the MHBMDAA was also validated by testing with natural samples from the East China Sea. Results indicated that the MHBMDAA provides a valuable tool for the sensitive and reliable detection of toxic microalgae for early warning and research purposes.
Collapse
Affiliation(s)
- Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Rui Sun
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Xiaoli Nie
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China
| | - Jin Zhou
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, PR China.
| |
Collapse
|
6
|
Xu J, Zheng T, Le J, Jia L. Stepwise nanoassembly of a single hairpin probe and its biosensing. Talanta 2018; 187:272-278. [PMID: 29853047 DOI: 10.1016/j.talanta.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 01/06/2023]
Abstract
Herein, we describe a novel trigger-induced DNA nanoassembly method using only one loop-stem shaped hairpin probe (HP) that consists of three different functional regions as a single building unit. The Region I is designed complementary to the trigger, while the Region II and Region III are projected to complementary with each other. When hybridized with the trigger, a toehold mediated strand displacement (TMSD) occurred on the strand of Region I, leading to the release of Region III for further hybridization with the Region II on another HP molecule and in turn inducing a stepwise growth of HP with the aid of polymerase. Unlike the conventional assembly approaches that rely on the sophisticated sequence design and complex operation, the single-HP nanoassembly is easy and fast. Moreover, because many HPs are opened during the assembly process, we exemplified the nanoassembly strategy by re-designing a new labeled hairpin probe to analyze the Kras oncogene with a high sensitivity and specificity. The present study demonstrated a novel promising DNA nanoassembly strategy for biological applications.
Collapse
Affiliation(s)
- Jianguo Xu
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China; School of Food Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Tingting Zheng
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China
| | - Jingqing Le
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry; Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116 China.
| |
Collapse
|
7
|
Determination of bacterial DNA based on catalytic oxidation of cysteine by G-quadruplex DNAzyme generated from asymmetric PCR: Application to the colorimetric detection of Staphylococcus aureus. Mikrochim Acta 2018; 185:410. [DOI: 10.1007/s00604-018-2935-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/23/2018] [Indexed: 02/01/2023]
|
8
|
Zhang C, Wang Y, Guo C, Chen G, Kan G, Cai P, Zhou J. Comparison of loop-mediated isothermal amplification with hyperbranched rolling circle amplification as a simple detection method for Heterosigma akashiwo. HARMFUL ALGAE 2018; 73:1-11. [PMID: 29602497 DOI: 10.1016/j.hal.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 06/08/2023]
Abstract
The fish-killing alga Heterosigma akashiwo is a globally distributed, toxic, and bloom-forming raphidophyte that has caused great losses to the fishing industry in many coastal countries. Therefore, rapid and sensitive detection methods should be developed to present timely warning of harmful algal blooms. In this study, hyperbranched rolling circle amplification (HRCA) was established for the detection of H. akashiwo and compared with loop-mediated isothermal amplification (LAMP) in terms of specificity and sensitivity. The partial D1-D2 sequence of the large subunit (LSU) of rDNA of H. akashiwo was used to design a specific padlock probe for HRCA and two pairs of specific primers for LAMP. The parameters for HRCA were optimized. Cross-reactivity tests showed that the specificity of the developed HRCA for H. akashiwo was greater than that of LAMP in this study. The sensitivities of HRCA and LAMP were comparable and were 10-fold higher than that of regular PCR. These methods also yielded a detection limit of 20 fg/μL for the recombinant plasmid containing the target LSU D1-D2 and 1 cell for target species. The test with the simulated field samples indicated that the developed HRCA obtained a detection limit of 5 cells mL-1, which was lower than the warning cell density (100 cells mL-1) of H. akashiwo. The visual detection of positive HRCA could be achieved via coloration reaction with the addition of fluorescent SYBR Green I dye to the amplification products. The developed HRCA was also efficient for field samples with target cell densities ranging from 10 cells mL-1 to 1000 cells mL-1. Therefore, the proposed HRCA detection protocols are possibly applicable to the field monitoring of H. akashiwo.
Collapse
Affiliation(s)
- Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Changlu Guo
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Guangfeng Kan
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Panpan Cai
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jin Zhou
- Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|
9
|
|
10
|
Çakir Ö, Meriç S, Meriç S, Ari Ş. GMO Analysis Methods for Food: From Today to Tomorrow. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
11
|
Droplet digital PCR for routine analysis of genetically modified foods (GMO) – A comparison with real-time quantitative PCR. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.04.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Moura-Melo S, Miranda-Castro R, de-Los-Santos-Álvarez N, Miranda-Ordieres AJ, Dos Santos Junior JR, da Silva Fonseca RA, Lobo-Castañón MJ. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms. Anal Chem 2015. [PMID: 26198403 DOI: 10.1021/acs.analchem.5b02271] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cultivation of genetically modified organisms (GMOs) and their use in food and feed is constantly expanding; thus, the question of informing consumers about their presence in food has proven of significant interest. The development of sensitive, rapid, robust, and reliable methods for the detection of GMOs is crucial for proper food labeling. In response, we have experimentally characterized the helicase-dependent isothermal amplification (HDA) and sequence-specific detection of a transgene from the Cauliflower Mosaic Virus 35S Promoter (CaMV35S), inserted into most transgenic plants. HDA is one of the simplest approaches for DNA amplification, emulating the bacterial replication machinery, and resembling PCR but under isothermal conditions. However, it usually suffers from a lack of selectivity, which is due to the accumulation of spurious amplification products. To improve the selectivity of HDA, which makes the detection of amplification products more reliable, we have developed an electrochemical platform targeting the central sequence of HDA copies of the transgene. A binary monolayer architecture is built onto a thin gold film where, upon the formation of perfect nucleic acid duplexes with the amplification products, these are enzyme-labeled and electrochemically transduced. The resulting combined system increases genosensor detectability up to 10(6)-fold, allowing Yes/No detection of GMOs with a limit of detection of ∼30 copies of the CaMV35S genomic DNA. A set of general utility rules in the design of genosensors for detection of HDA amplicons, which may assist in the development of point-of-care tests, is also included. The method provides a versatile tool for detecting nucleic acids with extremely low abundance not only for food safety control but also in the diagnostics and environmental control areas.
Collapse
Affiliation(s)
- Suely Moura-Melo
- †Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain.,‡Departamento de Química, Centro de Ciências da Natureza. Universidade Federal do Piauí, Teresina, 64049-550 PI, Brasil
| | - Rebeca Miranda-Castro
- †Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain
| | | | | | - J Ribeiro Dos Santos Junior
- ‡Departamento de Química, Centro de Ciências da Natureza. Universidade Federal do Piauí, Teresina, 64049-550 PI, Brasil
| | | | | |
Collapse
|