1
|
Rojas-Villalta D, Rojas-Rodríguez D, Villanueva-Ilama M, Guillén-Watson R, Murillo-Vega F, Gómez-Espinoza O, Núñez-Montero K. Exploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications. BIOLOGY 2024; 13:712. [PMID: 39336139 PMCID: PMC11428398 DOI: 10.3390/biology13090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - David Rojas-Rodríguez
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Melany Villanueva-Ilama
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Rossy Guillén-Watson
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francinie Murillo-Vega
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Olman Gómez-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| |
Collapse
|
2
|
Manai-Djebali H, Yeddes W, Hammami M, Nait-Mohamed S, Msaada K, Ben Youssef N. Enhancing antioxidant and antibacterial properties of olive oil through garlic enrichment: a comprehensive study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2661-2673. [PMID: 37820709 DOI: 10.1080/09603123.2023.2266393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
The amalgamation of garlic's antibacterial potency with olive oil's nutritional benefits provides a natural, effective way to boost health and counters microbial threats. This study explored the antioxidant and antibacterial traits of garlic-enriched virgin olive oil (VOO) samples, focusing on various garlic forms (fresh, oven-dried, freeze-dried). Comparative analysis revealed fresh garlic's highest total phenolic content, flavonoid content, and strongest DPPH scavenging activity. GC/MS analysis unveiled distinct volatile profiles. Fresh garlic oil contained elevated allyl-methy-sulfide, diallyl-trisulfide, methyl-propyl-disulfide levels. Antibacterial evaluation displayed substantial inhibition zones, especially fresh garlic oil against E. coli, and oven-dried/freeze-dried garlic oils against P. aeruginosa. Lower Minimal Inhibitory Concentration (MIC) values for fresh garlic oil and freeze-dried garlic oil against both Gram-negative and Gram-positive bacteria signify potent antibacterial activity of garlic-enriched VOO. These findings underscore garlic-enriched VOO's potential as natural antibacterial agents, fortified with antioxidant traits, while emphasizing drying methods' role in shaping volatile compounds.
Collapse
Affiliation(s)
- Hedia Manai-Djebali
- Laboratory of Olive Biotechnology, Biotechnology Center of Borj-Cedria, BP. 901, Hammam-Lif, 2050, Tunisia
| | - Walid Yeddes
- Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP. 901, Hammam-Lif, 2050, Tunisia
| | - Majdi Hammami
- Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP. 901, Hammam-Lif, 2050, Tunisia
| | - Salma Nait-Mohamed
- Laboratory of Olive Biotechnology, Biotechnology Center of Borj-Cedria, BP. 901, Hammam-Lif, 2050, Tunisia
| | - Kamel Msaada
- Laboratory of Medicinal and Aromatic Plants, Biotechnology Center of Borj-Cedria, BP. 901, Hammam-Lif, 2050, Tunisia
| | - Nabil Ben Youssef
- Laboratory of Olive Biotechnology, Biotechnology Center of Borj-Cedria, BP. 901, Hammam-Lif, 2050, Tunisia
| |
Collapse
|
3
|
Cecchi L, Balli D, Urciuoli S, Urciuolo A, Bordiga M, Travaglia F, Zanoni B, Mulinacci N. Co-milling of sound olives with fresh chili peppers improves the volatile compound, capsaicinoid and sensory profiles of flavoured olive oil with respect to the typical infusion. Food Chem 2023; 404:134696. [DOI: 10.1016/j.foodchem.2022.134696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
|
4
|
Murillo‐Cruz MC, Rodrigues N, Dias MI, Bermejo‐Román R, Veloso ACA, Pereira JA, Peres AM. Monovarietal olive oils fortified with carotenoids: Physicochemical and sensory trends and taste sensor evaluation. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mª Carmen Murillo‐Cruz
- Department of Physical and Analytical Chemistry, Linares High Polytechnic School Jaén University Linares Spain
| | - Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| | - Ruperto Bermejo‐Román
- Department of Physical and Analytical Chemistry, Linares High Polytechnic School Jaén University Linares Spain
| | - Ana C. A. Veloso
- Instituto Politécnico de Coimbra, ISEC, DEQB Coimbra Portugal
- CEB ‐ Centre of Biological Engineering University of Minho, Campus de Gualtar Braga Portugal
- LABBELS – Associate Laboratory Braga/Guimarães Portugal
| | - José Alberto Pereira
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| | - António M. Peres
- Centro de Investigação de Montanha (CIMO) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Região de Montanha (SusTEC) Instituto Politécnico de Bragança, Campus de Santa Apolónia Bragança Portugal
| |
Collapse
|
5
|
Murillo M, García A, Lafarga T, Melgosa M, Bermejo R. Color of extra virgin olive oils enriched with carotenoids from microalgae: influence of ultraviolet exposure and heating. GRASAS Y ACEITES 2022. [DOI: 10.3989/gya.0104211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A carotenoid-rich extract containing 2.5 mg/mL of lutein and 3.3 mg/mL of β-carotene from the microalga Scenedesmus almeriensis was added to ten extra virgin olive oils from four Spanish cultivars with differing degrees of ripeness, obtaining carotenoid enriched oils with lutein and β-carotene concentrations of 0.082 and 0.11 mg/mL, respectively. Extra virgin olive oils enriched with carotenoids from microalgae were studied by analyzing the effect on color of three different treatments: ultraviolet exposure, microwave heating and immersion bath heating. The methodology was designed to simulate, in controlled laboratory conditions, the effects of household treatments. Spectrophotometric color measurements were then performed to monitor color changes in the enriched and non-enriched extra virgin olive oil samples. Enriched oils are much more chromatic, darker and redder than natural oils. After 55 days UV irradiation, 40 min microwave heating, and 72 hours thermostatic heating, the average color differences for natural/enriched extra virgin olive oils were 98/117, 15/9 and 57/28 CIELAB units, respectively. In general, increasing temperature and ultraviolet exposure produced higher CIELAB color differences in the non-enriched samples. The addition of microalga extracts to extra virgin olive oils was found to induce some color stability and may constitute a future way of increasing the daily intake of beneficial bioactive compounds such as carotenoids.
Collapse
|
6
|
Lamas S, Rodrigues N, Peres AM, Pereira JA. Flavoured and fortified olive oils - Pros and cons. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Demets R, Van Broekhoven S, Gheysen L, Van Loey A, Foubert I. The Potential of Phaeodactylum as a Natural Source of Antioxidants for Fish Oil Stabilization. Foods 2022; 11:foods11101461. [PMID: 35627032 PMCID: PMC9140547 DOI: 10.3390/foods11101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
Worldwide, fish oil is an important and rich source of the health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). It is, however, troubled by its high susceptibility towards lipid oxidation. This can be prevented by the addition of (preferably natural) antioxidants. The current research investigates the potential of Phaeodactylum carotenoids in this regard. The oxidative stability of fish oil and fish oil with Phaeodactylum addition is evaluated by analyzing both primary (PV) and secondary (volatiles) oxidation products in an accelerated storage experiment (37 °C). A first experimental set-up shows that the addition of 2.5% (w/w) Phaeodactylum biomass is not capable of inhibiting oxidation. Although carotenoids from the Phaeodactylum biomass are measured in the fish oil phase, their presence does not suffice. In a second, more elucidating experimental set-up, fish oil is mixed in different proportions with a Phaeodactylum total lipid extract, and oxidative stability is again evaluated. It was shown that the amount of carotenoids relative to the n-3 LC-PUFA content determined oxidative stability. Systems with a fucoxanthin/n-3 LC-PUFA ratio ≥ 0.101 shows extreme oxidative stability, while systems with a fucoxanthin/n-3 LC-PUFA ratio ≤ 0.0078 are extremely oxidatively unstable. This explains why the Phaeodactylum biomass addition did not induce oxidative stability.
Collapse
Affiliation(s)
- Robbe Demets
- Research Unit Food & Lipids, Campus KULAK, KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (R.D.); (S.V.B.); (L.G.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
| | - Simon Van Broekhoven
- Research Unit Food & Lipids, Campus KULAK, KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (R.D.); (S.V.B.); (L.G.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
| | - Lore Gheysen
- Research Unit Food & Lipids, Campus KULAK, KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (R.D.); (S.V.B.); (L.G.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
| | - Ann Van Loey
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
- Centre for Food and Microbial Technology, Laboratory of Food Technology, KU Leuven, Kasteelpark Arenberg 22, 3001 Leuven, Belgium
| | - Imogen Foubert
- Research Unit Food & Lipids, Campus KULAK, KU Leuven, E. Sabbelaan 53, 8500 Kortrijk, Belgium; (R.D.); (S.V.B.); (L.G.)
- Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium;
- Correspondence: ; Tel.: +32-56-24-61-73
| |
Collapse
|
8
|
Hamam M, Di Vita G, Zanchini R, Spina D, Raimondo M, Pilato M, D’Amico M. Consumers' Attitudes and Purchase Intention for a Vitamin-Enriched Extra Virgin Olive Oil. Nutrients 2022; 14:nu14081658. [PMID: 35458217 PMCID: PMC9027912 DOI: 10.3390/nu14081658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023] Open
Abstract
This study aims to examine Italian consumer preferences for extra virgin olive oil (EVOO) enriched with vitamins and to analyze the key drivers that affect consumer choices for this product. Specifically, we assessed consumers' intention to purchase the enriched product compared to the conventional one. The methodology adopted inferential and multivariate statistical techniques: (1) exploratory factor analysis (EFA), (2) ordinary least squares regression (OLS) and (3) non-hierarchical clustering. This study appears to be the first research project related to exploring consumers' interest in an extra virgin olive oil enhanced with vitamins, thereby providing preliminary indications. The main results represent a significant starting point for the development of new marketing strategies for the food industry.
Collapse
Affiliation(s)
- Manal Hamam
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy; (M.H.); (M.D.)
| | - Giuseppe Di Vita
- Department of Agricultural, Forest and Food Science (Disafa), University of Turin, Largo Braccini, 10095 Grugliasco, Italy; (G.D.V.); (R.Z.)
| | - Raffaele Zanchini
- Department of Agricultural, Forest and Food Science (Disafa), University of Turin, Largo Braccini, 10095 Grugliasco, Italy; (G.D.V.); (R.Z.)
| | - Daniela Spina
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy; (M.H.); (M.D.)
- Correspondence:
| | - Maria Raimondo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Manuela Pilato
- Department of Marketing, Events Management, and Project Management, University of Winchester, Winchester SO22 5HT, UK;
| | - Mario D’Amico
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy; (M.H.); (M.D.)
| |
Collapse
|
9
|
An electronic tongue as a tool for assessing the impact of carotenoids’ fortification on cv. Arbequina olive oils. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Lafarga T, Sánchez‐Zurano A, Morillas‐España A, Acién‐Fernández FG. Extremophile microalgae as feedstock for high‐value carotenoids: A review. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tomás Lafarga
- Department of Chemical Engineering University of Almería Almería 04120 Spain
| | - Ana Sánchez‐Zurano
- Department of Chemical Engineering University of Almería Almería 04120 Spain
| | | | | |
Collapse
|
11
|
Murillo-Cruz MC, García-Ruíz AB, Chova-Martínez M, Bermejo-Román R. Improvement of Physico-chemical Properties of Arbequina Extra Virgin Olive Oil Enriched with β-Carotene from Fungi. J Oleo Sci 2021; 70:459-469. [PMID: 33692234 DOI: 10.5650/jos.ess20195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nowadays the consumption of essential carotenoids is reduced due to the lower intake of fruits and vegetables, being humans not capable of synthesizing these molecules. β-carotene is one of the most important carotenoids possessing anti-oxidation, anti-inflammation and anti-cancer properties. The aim of this work consists of preparing virgin olive oils enriched in β-carotene from fungi at different concentrations (0.041 and 0.082 mg/mL) in order to obtain new functional foods. Values of quality parameters (free acidity, peroxide value, coefficients of specific extinction and p-anisidine) have been obtained, showing that quality of olive oils was improved. Furthermore, the effect of β-carotene was evaluated as possible oxidative stabilizer during microwave heating and ultra violet-light exposure of the oils. As expected, the enrichment process brought changes in olive oils color, turning them orange-reddish. The use of natural antioxidants, in particular β-carotene could be an effective way to protect virgin olive oils from degradation and is a good strategy also to enhance the consumption of bioactive compounds improving olive oils shelf-life and nutritional value.
Collapse
Affiliation(s)
- Mª Carmen Murillo-Cruz
- Department of Physical and Analytical Chemistry, Jaén University, Linares High Polytechnic School (EPSL)
| | - Ana Belén García-Ruíz
- Department of Physical and Analytical Chemistry, Jaén University, Linares High Polytechnic School (EPSL)
| | | | - Ruperto Bermejo-Román
- Department of Physical and Analytical Chemistry, Jaén University, Linares High Polytechnic School (EPSL)
| |
Collapse
|
12
|
Murillo‐Cruz MC, Chova M, Bermejo‐Román R. Effect of adding fungal β‐carotene to picual extra virgin olive oils on their physical and chemical properties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mª Carmen Murillo‐Cruz
- Department of Physical and Analytical Chemistry Jaén UniversityLinares High Polytechnic School (EPSL) Linares Spain
| | - Mariela Chova
- Cortijo de la Loma S.L. (Castillo de Canena Olive Juice) Jaén Spain
| | - Ruperto Bermejo‐Román
- Department of Physical and Analytical Chemistry Jaén UniversityLinares High Polytechnic School (EPSL) Linares Spain
| |
Collapse
|
13
|
Montesano D, Rocchetti G, Cossignani L, Senizza B, Pollini L, Lucini L, Blasi F. Untargeted Metabolomics to Evaluate the Stability of Extra-Virgin Olive Oil with Added Lycium barbarum Carotenoids during Storage. Foods 2019; 8:E179. [PMID: 31141920 PMCID: PMC6616970 DOI: 10.3390/foods8060179] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 01/02/2023] Open
Abstract
A carotenoid-rich extract from Lycium barbarum L. was added to extra virgin olive oil (EVOO), obtaining a carotenoid-enriched oil (EVOOCar). The oxidative stability of EVOO and EVOOCar was evaluated during long-term storage of 28 weeks at room temperature, by measuring some classical parameters (acidity and peroxide values, spectrophotometric coefficients, fatty acid composition) and the content of minor compounds (i.e., α-tocopherol and lutein). At the end of the storage, higher content (p < 0.01) of α-tocopherol in EVOOCar in respect to EVOO were observed. Zeaxanthin dipalmitate, the most abundant carotenoid compound of Goji berries, decreased slightly (p < 0.05) in EVOOCar until the end of the storage. In regard to polyphenols, an ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS) using untargeted metabolomics was carried out. This latter approach discriminated the two oil samples during long-term storage, allowing to identify also the phenolic classes most exposed to significant variations during storage (i.e., mainly lignans and flavones). Besides, the addition of Goji carotenoids preserved the stability of tyrosol equivalents in EVOOCar during long-term storage. These results highlighted that the enrichment of EVOO with a carotenoid-rich extract can improve the shelf-life and nutritional value of added-oil, protecting EVOO natural antioxidants during long-term storage.
Collapse
Affiliation(s)
- Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 06126 Perugia, Italy.
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Lina Cossignani
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 06126 Perugia, Italy.
| | - Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Luna Pollini
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 06126 Perugia, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Francesca Blasi
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 06126 Perugia, Italy.
| |
Collapse
|
14
|
|
15
|
Symbiotic Co-Culture of Scenedesmus sp. and Azospirillum brasilense on N-Deficient Media with Biomass Production for Biofuels. SUSTAINABILITY 2019. [DOI: 10.3390/su11030707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of nitrogen-deficient agriculture wastewater, arising from the vegetable and fruit processing, is a significant problem that limits the efficiency of its biological treatment. This study evaluates the effectiveness of the symbiotic co-culture of Azospirillum brasilense and Scenedesmus sp., under two nitrogen levels (8.23 mg L−1 and 41.17 mg L−1) and mixing systems (aeration and magnetic stirring), aiming to simultaneously use the N-deficient media for their growth while producing biomass for biofuels. Microalgae growth and biomass composition, in terms of protein, carbohydrate and fatty acid contents, were evaluated at the end of the exponential growth phase (15 days after inoculation). Results show that the symbiotic co-culture of microalgae-bacteria can be effectively performed on nitrogen-deficient media and has the potential to enhance microalgae colony size and the fatty acid content of biomass for biofuels. The highest biomass concentration (103 ± 2 mg·L−1) was obtained under aeration, with low nitrogen concentration, in the presence of A. brasilense. In particular, aeration contributed to, on average, a higher fatty acid content (48 ± 7% dry weight (DW)) and higher colony size (164 ± 21 µm2) than mechanical stirring (with 39 ± 2% DW and 134 ± 21 µm2, respectively) because aeration contribute to better mass transfer of gases in the culture. Also, co-culturing contributed in average, to higher colony size (155 ± 21 µm2) than without A. brasilense (143 ± 21 µm2). Moreover, using nitrogen deficient wastewater as the culture media can contribute to decrease nitrogen and energy inputs. Additionally, A. brasilense is approved and already extensively used in agriculture and wastewater treatment, without known environmental or health issues, simplifying the biomass processing for the desired application.
Collapse
|
16
|
Rodrigues N, Marx ÍMG, Casal S, Dias LG, Veloso ACA, Pereira JA, Peres AM. Application of an electronic tongue as a single-run tool for olive oils' physicochemical and sensory simultaneous assessment. Talanta 2019; 197:363-373. [PMID: 30771949 DOI: 10.1016/j.talanta.2019.01.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Olive oil is highly appreciated due to its nutritional and organoleptic characteristics. However, a huge compositional variation is observed between olive oils, requiring the use of diverse analytical techniques for its classification including titration, spectrophotometry and chromatography, as well as sensory analysis. Chemical analysis is usually time-consuming, expensive and require skilled technicians, while the sensorial ones are dependent upon individual subjective evaluations, even if performed by trained panellists. This work evaluated and demonstrated the feasibility of using a potentiometric electronic tongue, comprising non-specific lipid polymeric and cross-sensitive sensor membranes, coupled with chemometric tools based on different sub-sets of sensors (from 11 to 14 sensors), to predict key quality parameters of olive oils based on single-run assays. The multivariate linear models established for 23 centenarian olive trees from different cultivars allowed predicting peroxide value, oxidative stability, total phenols and tocopherols contents, CIELAB scale parameters (L*, a* and b* values), as well as 11 gustatory-retronasal positive attributes (green, sweet, bitter, pungent, tomato and tomato leaves, apple, banana, cabbage, fresh herbs and dry fruits) with satisfactory accuracy (0.90 ± 0.07 ≤ R2 ≤ 0.98 ± 0.02 for the repeated K-fold-CV procedure, which ensured that 25% of the data was used for internal-validation purposes). The electronic tongue device had an accuracy statistically similar to that achieved with standard analytical techniques, pointing out the versatility of the device for the fast and simultaneous chemical and sensory analysis of olive oil.
Collapse
Affiliation(s)
- Nuno Rodrigues
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ítala M G Marx
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Susana Casal
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Luís G Dias
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ana C A Veloso
- Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - José A Pereira
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - António M Peres
- Centro de Investigação de Montanha (CIMO), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), ESA, Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
17
|
Unexplored olive cultivars from the Valencian Community (Spain): some chemical characteristics as a valorization strategy. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3164-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Blasi F, Rocchetti G, Montesano D, Lucini L, Chiodelli G, Ghisoni S, Baccolo G, Simonetti MS, Cossignani L. Changes in extra-virgin olive oil added with Lycium barbarum L. carotenoids during frying: Chemical analyses and metabolomic approach. Food Res Int 2017; 105:507-516. [PMID: 29433242 DOI: 10.1016/j.foodres.2017.11.061] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 01/07/2023]
Abstract
In this work, an Italian extra-virgin olive oil (EVOO) sample and the same sample added with a carotenoid-rich nutraceutical extract from Lycium barbarum L. (EVOOCar) were subjected to a frying process to comparatively assess chemical and physical changes and heat stability. Oxidation progress was monitored by measuring oil quality changes such as peroxide value, free acidity, K232, K268, and fatty acid composition as well as minor compound content, phenols, α-tocopherol, and carotenoids. An UHPLC/QTOF-MS metabolomics approach discriminated the two oil samples based on their chemical changes during frying, identifying also the phenolic classes most exposed to statistically significant variations. Partial least square discriminant analysis and volcano analysis were applied together to identify the most significant markers allowing group separation. The decrease in total phenolic content was lower in EVOOCar than in EVOO during frying. Monounsaturated and polyunsaturated fatty acids showed a significant percentage loss, 3.7% and 17.2%, respectively, in EVOO after 180min frying at 180°C, while they remained constant or slightly changed in EVOOCar. Zeaxanthin added to the oil rapidly decreased during the frying process. These findings showed that the addition of a carotenoid extract from L. barbarum can help to improve the oxidative stability of extra-virgin olive oil.
Collapse
Affiliation(s)
- F Blasi
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 06126 Perugia, Italy
| | - G Rocchetti
- Institute of Food Science and Nutrition, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - D Montesano
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 06126 Perugia, Italy.
| | - L Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - G Chiodelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - S Ghisoni
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - G Baccolo
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - M S Simonetti
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 06126 Perugia, Italy
| | - L Cossignani
- Department of Pharmaceutical Sciences, Section of Food Science and Nutrition, University of Perugia, via San Costanzo, 06126 Perugia, Italy
| |
Collapse
|
19
|
Alavi N, Golmakani MT. Improving oxidative stability of virgin olive oil by addition of microalga Chlorella vulgaris biomass. Journal of Food Science and Technology 2017; 54:2464-2473. [PMID: 28740304 DOI: 10.1007/s13197-017-2689-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/11/2017] [Accepted: 05/12/2017] [Indexed: 11/26/2022]
Abstract
Antioxidant activity of Chlorella (Chlorella vulgaris) was evaluated in virgin olive oil (VOO) at different concentrations of 0.5, 1.0, and 1.5% (w/w) under accelerated storage conditions. Antioxidant activity of Chlorella was compared with those of BHT and β-carotene. Chlorella samples significantly retarded the formation of primary, secondary, and total oxidation products in comparison with those of the control. The stability increased as concentrations of Chlorella increased. Samples containing 0.5, 1.0, and 1.5% Chlorella significantly improved VOO stability by 19.99, 28.83, and 33.14%, respectively. Observed effects can be related to the release in the assortment of bioactive compounds from Chlorella algae to the VOO. Among the different antioxidants evaluatedy, BHT exhibited the highest antioxidant activity. On the contrary, β-carotene had no preventive effect against the oxidation of VOO. It also proved incapable of limiting the progress of VOO oxidation and played role as pro-oxidant. In conclusion, Chlorella enhanced VOO oxidative stability. Thus it can be considered as a promising source of natural antioxidants.
Collapse
Affiliation(s)
- Nasireh Alavi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, P.O. Box 71441-65186, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, P.O. Box 71441-65186, Shiraz, Iran
| |
Collapse
|
20
|
Reboredo-Rodríguez P, Figueiredo-González M, González-Barreiro C, Simal-Gándara J, Salvador MD, Cancho-Grande B, Fregapane G. State of the Art on Functional Virgin Olive Oils Enriched with Bioactive Compounds and Their Properties. Int J Mol Sci 2017; 18:ijms18030668. [PMID: 28335517 PMCID: PMC5372680 DOI: 10.3390/ijms18030668] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 01/18/2023] Open
Abstract
Virgin olive oil, the main fat of the Mediterranean diet, is per se considered as a functional food—as stated by the European Food Safety Authority (EFSA)—due to its content in healthy compounds. The daily intake of endogenous bioactive phenolics from virgin olive oil is variable due to the influence of multiple agronomic and technological factors. Thus, a good strategy to ensure an optimal intake of polyphenols through habitual diet would be to produce enriched virgin olive oil with well-known bioactive polyphenols. Different sources of natural biological active substances can be potentially used to enrich virgin olive oil (e.g., raw materials derived from the same olive tree, mainly olive leaves and pomaces, and/or other compounds from plants and vegetables, mainly herbs and spices). The development of these functional olive oils may help in prevention of chronic diseases (such as cardiovascular diseases, immune frailty, ageing disorders and degenerative diseases) and improving the quality of life for many consumers reducing health care costs. In the present review, the most relevant scientific information related to the development of enriched virgin olive oil and their positive human health effects has been collected and discussed.
Collapse
Affiliation(s)
- Patricia Reboredo-Rodríguez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - María Figueiredo-González
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Carmen González-Barreiro
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Jesús Simal-Gándara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - María Desamparados Salvador
- Food Technology Department, Faculty of Chemistry, University of Castilla-La Mancha, Ciudad Real Campus, E-13071 Ciudad Real, Spain.
| | - Beatriz Cancho-Grande
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Giuseppe Fregapane
- Food Technology Department, Faculty of Chemistry, University of Castilla-La Mancha, Ciudad Real Campus, E-13071 Ciudad Real, Spain.
| |
Collapse
|
21
|
Dias JM, Almeida M, Adikevičius D, Andzevičius P, Alvarenga NB. Impact of olive oil usage on physical properties of chocolate fillings. GRASAS Y ACEITES 2016. [DOI: 10.3989/gya.0323161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Chen L, Zhang L, Liu T. Concurrent production of carotenoids and lipid by a filamentous microalga Trentepohlia arborum. BIORESOURCE TECHNOLOGY 2016; 214:567-573. [PMID: 27179952 DOI: 10.1016/j.biortech.2016.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 06/05/2023]
Abstract
During the study of Trentepohlia arborum it became clear that its cells are rich in lipids and carotenoids. Thus, lipid content, composition and fatty acids profiles in individual lipid classes, as well as pigment profiles, responding to different culture conditions, were further investigated. The results showed that the predominant carotenoids and lipid fraction in total lipid in this study was β-carotene and TAG, respectively. The lipid content increased significantly under high light while nitrogen-replete conditions induced the highest carotenoids content. However, only with a double stress of high light and nitrogen-deficiency it was possible to maximize the productivities of both carotenoids and lipids. Carotenoids (mainly β-carotene) accounted for ca. 5% of the microalgal lipid under the double stress. Data herein show the potential of T. arborum for the production of both lipids and carotenoids, and hence provide an appropriate way to produce different products from T. arborum.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lanlan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People's Republic of China; College of Food Science and Engineering Ocean University of China, Qingdao 266003, People's Republic of China
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People's Republic of China.
| |
Collapse
|
23
|
Aggoun M, Arhab R, Cornu A, Portelli J, Barkat M, Graulet B. Olive mill wastewater microconstituents composition according to olive variety and extraction process. Food Chem 2016; 209:72-80. [PMID: 27173536 DOI: 10.1016/j.foodchem.2016.04.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/07/2016] [Accepted: 04/12/2016] [Indexed: 11/15/2022]
Abstract
Olive oil production yields a considerable amount of wastewater, a powerful pollutant that is currently discarded but could be considered as a potential source of valuable natural products due to its content in phenolic compounds and other natural antioxidants. The aim of this work was to explore the variability in olive mill wastewater composition from Algerian olive oil mills considering extraction processes (traditional discontinuous press vs 3-phases centrifugal system) and olive varieties (Azerraj, Sigoise, Chemlal). Whereas pH, dry or organic matter content didn't vary, there was a significant difference in ash content according to extraction process and olive variety. Carotenoid content was 2.2-fold higher with 3-phases than with press systems whereas tocopherol content was not significantly different. Among the phenolic compounds quantified, tyrosol was usually the most abundant whereas oleuropein concentrations were highly variable. Differences in phenolic compound concentrations were more pronounced between olive varieties than between processes.
Collapse
Affiliation(s)
- Moufida Aggoun
- INRA, UMR1213 Herbivores, F-63122 St-Genès-Champanelle, France; Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000 Clermont-Ferrand, France
| | - Rabah Arhab
- Département des Sciences de la Nature et de la Vie, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria
| | - Agnès Cornu
- INRA, UMR1213 Herbivores, F-63122 St-Genès-Champanelle, France; Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000 Clermont-Ferrand, France
| | - Josiane Portelli
- INRA, UMR1213 Herbivores, F-63122 St-Genès-Champanelle, France; Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000 Clermont-Ferrand, France
| | - Malika Barkat
- Institut de la Nutrition, de l'Alimentation et des Technologies Agro-Alimentaires, INATAA, Université Frères Mentouri-Constantine, route de Ain El Bey, 25000 Constantine, Algeria
| | - Benoît Graulet
- INRA, UMR1213 Herbivores, F-63122 St-Genès-Champanelle, France; Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000 Clermont-Ferrand, France.
| |
Collapse
|