1
|
Zhu H, Li L, Ma Y, Luo H, El-Sappah AH, Liu Y, Sun X, Pan S, Mehmood MA, Sun Y, Wang N. Volatilomics and Lipidomics revealed flavoring mechanism in baijiu brewed from diverse Sorghum varieties. Food Chem 2025; 485:144503. [PMID: 40319596 DOI: 10.1016/j.foodchem.2025.144503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Sorghum is crucial in Baijiu brewing. Previous studies have shown that glutinous sorghum (LS) and non-glutinous sorghum (FS) significantly affect Zaopei's lipid metabolism and lipids affect flavor perception. This study aimed to explore the quality differences in Baijiu brewed with different sorghum varieties and the effects of lipids. Sensory evaluation, volatilomics, and lipidomics were used to analyze differences in flavors and lipids. The results showed that significant differences in flavor existed between the two types of Baijiu. The aged flavor of LS was more pronounced and its mouthfeel was smoother. However, the FS showed a more intense aroma release. In addition, FA 18:1;O3 (fatty acyls), acetaldehyde, and ethyl caprylate contributed to the smoothness and softness of Baijiu. These results suggest that the lipid composition of Baijiu affects its aroma and taste, thus providing a reference basis for selecting suitable raw sorghum materials to enhance the quality of Baijiu.
Collapse
Affiliation(s)
- Hui Zhu
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Linjuan Li
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Yi Ma
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Huibo Luo
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China
| | - Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin 644000, China; Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ying Liu
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd, Yibin 644000, China
| | - Xiaoke Sun
- Sichuan Yibin Hengshengfu Liquor Industry Group Co., Ltd, Yibin 644000, China
| | - Shijiang Pan
- Yibin City Agricultural and Rural Bureau, Yibin 644000, China
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yong Sun
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Ning Wang
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Bioengineering, Sichuan University of Science and Engineering, Yibin 644000, China; Liquor Making Biotechnology and Intelligent Manufacturing of Key Laboratory of China National Light Industry, Yibin 644000, China.
| |
Collapse
|
2
|
Boban A, Vrhovsek U, Masuero D, Milanović V, Budić-Leto I. Effect of Indigenous Non- Saccharomyces Yeasts on Lipid Compositions of Maraština Wine. Foods 2025; 14:269. [PMID: 39856934 PMCID: PMC11765114 DOI: 10.3390/foods14020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
This study is the first to investigate the impact of indigenous non-Saccharomyces yeasts, including Hypopichia pseudoburtonii, Metschnikowia sinensis/shanxiensis, Metschnikowia chrysoperlae, Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum, Hanseniaspora guilliermondii, Hanseniaspora pseudoguilliermondii, Pichia kluyveri, and Starmerella apicola on the lipid composition of sterile Maraština grape juice and wines using the UHPLC-MS/MS method. Yeasts were tested in monoculture and sequential fermentations alongside commercial Saccharomyces cerevisiae. Indigenous non-Saccharomyces yeasts showed the potential to improve fermentation performance and enable the development of new wine styles through the biosynthesis of an unsaturated fatty acid pathway, which was identified as the most significant pathway. In monoculture fermentations, L. thermotolerans, H. uvarum, H. guilliermondii, H. pseudoguilliermondii, and P. kluyveri significantly reduced lignoceric acid, potentially influencing wine aroma through the formation of esters and higher alcohols. Hyp. pseudoburtonii, M. chrysoperlae, M. pulcherrima, P. kluyveri, and S. apicola increased the demand for lipids, such as stearic acid, which may help preserve membrane permeability by integrating into the membrane in response to ethanol shock. The most significant impact on free fatty esters was observed in fermentations with H. pseudoguilliermondii. Furthermore, L. thermotolerans in sequential fermentations significantly reduced arachidic, stearic, and palmitic acid. P. kluyveri reduced the content of erucic and linoleic acid.
Collapse
Affiliation(s)
- Ana Boban
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| | - Urska Vrhovsek
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Domenico Masuero
- Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (U.V.); (D.M.)
| | - Vesna Milanović
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Irena Budić-Leto
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia;
| |
Collapse
|
3
|
Courregelongue M, Pons A. Distribution and Sensory Impact of (2 E,4 E,6 Z)-nonatrienal and Trans-4,5-epoxy-( E)-2-decenal in Wines and Spirits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1244-1255. [PMID: 38170596 DOI: 10.1021/acs.jafc.3c06828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This study reports the distribution of (2E,4E,6Z)-nonatrienal (1) and trans-4,5-epoxy-(E)-2-decenal (2) in wines and spirits. We validated a quantification method using solid-phase extraction (SPE) and negative chemical ionization (NCI, NH3) gas chromatography-mass spectrometry (GC-MS) analysis. Both were identified for the first time in wines and spirits from different grape varieties and raw materials. Their olfactory detection thresholds (ODTs) were 16 and 60 ng/L, respectively. Analysis of 66 wines showed that the highest levels of (1) (441.3 ng/L) and (2) (386.5 ng/L) were found in red and white wines, respectively. At these levels, they modify the balance of the fruity expression of red (fresh to cooked fruits) and white (vegetal/green hazelnut nuance) wines. Similar quantitative and sensory analyses were conducted in spirits. With ODT estimated at 500 and 400 ng/L and concentrations ranging from trace amounts to 1.1 and 2.4 μg/L respectively, (1) and (2) can contribute directly to the aroma of spirits.
Collapse
Affiliation(s)
- Marie Courregelongue
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, F-33170 Gradignan, France
- Tonnellerie Seguin Moreau, 16100 Merpins, France
| | - Alexandre Pons
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
- Bordeaux Sciences Agro, F-33170 Gradignan, France
- Tonnellerie Seguin Moreau, 16100 Merpins, France
| |
Collapse
|
4
|
Piva GG, Casalta E, Legras JL, Sanchez I, Pradal M, Macna F, Ferreira D, Ortiz-Julien A, Galeote V, Mouret JR. Unveiling the power of adding sterols in wine: Optimizing alcoholic fermentation with strategic management. Int J Food Microbiol 2023; 406:110350. [PMID: 37659280 DOI: 10.1016/j.ijfoodmicro.2023.110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/21/2023] [Accepted: 07/30/2023] [Indexed: 09/04/2023]
Affiliation(s)
- Giovana Girardi Piva
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France; Lallemand SAS, 31702 Blagnac, France
| | - Erick Casalta
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Isabelle Sanchez
- MISTEA, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Faïza Macna
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | | | | | - Virginie Galeote
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France
| | - Jean-Roch Mouret
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, 34000 Montpellier, France.
| |
Collapse
|
5
|
Untargeted lipidomic profiling of grapes highlights the importance of modified lipid species beyond the traditional compound classes. Food Chem 2023; 410:135360. [PMID: 36628919 DOI: 10.1016/j.foodchem.2022.135360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/15/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
The aim of this paper is to provide a detailed characterisation of grape lipidome. To achieve this objective, it starts by describing a pipeline implemented in R software to allow the semi-automatic annotation of the detected lipid species. It also provides an extensive description of the different properties of each molecule (such as retention time dependencies, mass accuracy, adduct formation and fragmentation patterns), which allowed the annotations to be made more accurately. Most annotated lipids in the grape samples were (lyso)glycerophospholipids and glycerolipids, although a few free fatty acids, hydroxyceramides and sitosterol esters were also observed. The proposed pipeline also allowed the identification of a series of methylated glycerophosphates never previously observed in grapes. The current results highlight the importance of expanding chemical analyses beyond the classical lipid categories.
Collapse
|
6
|
Sherman E, Yvon M, Grab F, Zarate E, Green S, Bang KW, Pinu FR. Total Lipids and Fatty Acids in Major New Zealand Grape Varieties during Ripening, Prolonged Pomace Contacts and Ethanolic Extractions Mimicking Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Despite the important roles of lipids in winemaking, changes in lipids during grape ripening are largely unknown for New Zealand (NZ) varieties. Therefore, we aimed to determine the fatty acid profiles and total lipid content in two of NZ’s major grape varieties. Using gas chromatography–mass spectrometry, absolute quantification of 45 fatty acids was determined in Sauvignon blanc (SB) and Pinot noir (PN) grapes harvested at two different stages of ripeness. Lipid concentrations were as high as 0.4 g/g in seeds of both varieties, while pulp contained the least amount. Many unsaturated fatty acids were present, particularly in grape seeds, while skin contained relatively higher amounts of saturated fatty acids that increased throughout ripening. For both varieties, a significant increase in lipid concentration was observed in grapes harvested at the later stage of ripeness, indicating an association between lipids and grape maturity, and providing a novel insight about the use of total lipids as another parameter of grape ripeness. A variety-specific trend in the development and extraction of grape lipids was found from the analysis of the must and ethanolic extracts. Lipid extraction increased linearly with the ethanol concentration and with the extended pomace contact time. More lipids were extracted from the SB pomace to the must than PN within 144 h, suggesting a must matrix effect on lipid extraction. The knowledge generated here is relevant to both industry and academia and can be used to develop lipid diversification strategies to produce different wine styles.
Collapse
Affiliation(s)
- Emma Sherman
- Biological Chemistry and Bioactives Group, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Muriel Yvon
- Viticulture and Oenology Group, The New Zealand Institute for Plant and Food Research Limited, Blenheim 7201, New Zealand
| | - Franzi Grab
- Viticulture and Oenology Group, The New Zealand Institute for Plant and Food Research Limited, Blenheim 7201, New Zealand
| | - Erica Zarate
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Saras Green
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Kyung Whan Bang
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Farhana R. Pinu
- Biological Chemistry and Bioactives Group, The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| |
Collapse
|
7
|
Nutritional lipidomics for the characterization of lipids in food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516469 DOI: 10.1016/bs.afnr.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lipids represent one out of three major macronutrient classes in the human diet. It is estimated to account for about 15-20% of the total dietary intake. Triacylglycerides comprise the majority of them, estimated 90-95%. Other lipid classes include free fatty acids, phospholipids, cholesterol, and plant sterols as minor components. Various methods are used for the characterization of nutritional lipids, however, lipidomics approaches become increasingly attractive for this purpose due to their wide coverage, comprehensiveness and holistic view on composition. In this chapter, analytical methodologies and workflows utilized for lipidomics profiling of food samples are outlined with focus on mass spectrometry-based assays. The chapter describes common lipid extraction protocols, the distinct instrumental mass-spectrometry based analytical platforms for data acquisition, chromatographic and ion-mobility spectrometry methods for lipid separation, briefly mentions alternative methods such as gas chromatography for fatty acid profiling and mass spectrometry imaging. Critical issues of important steps of lipidomics workflows such as structural annotation and identification, quantification and quality assurance are discussed as well. Applications reported over the period of the last 5years are summarized covering the discovery of new lipids in foodstuff, differential profiling approaches for comparing samples from different origin, species, varieties, cultivars and breeds, and for food processing quality control. Lipidomics as a powerful tool for personalized nutrition and nutritional intervention studies is briefly discussed as well. It is expected that this field is significantly growing in the near future and this chapter gives a short insight into the power of nutritional lipidomics approaches.
Collapse
|
8
|
Girardi-Piva G, Casalta E, Legras JL, Nidelet T, Pradal M, Macna F, Ferreira D, Ortiz-Julien A, Tesnière C, Galeote V, Mouret JR. Influence of ergosterol and phytosterols on wine alcoholic fermentation with Saccharomyces cerevisiae strains. Front Microbiol 2022; 13:966245. [PMID: 36160262 PMCID: PMC9493300 DOI: 10.3389/fmicb.2022.966245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of cell membrane integrity and its good functionality. During alcoholic fermentation, they enhance yeast growth, metabolism and viability, as well as resistance to high sugar content and ethanol stress. Grape musts clarified in excess lead to the loss of solid particles rich in sterols, resulting in sluggish and stuck fermentations. Two sterol sources can help Saccharomyces cerevisiae yeasts to adapt to fermentation stress conditions: ergosterol (synthesized by yeast under aerobic conditions) and phytosterols (plant sterols imported by yeast cells from grape musts under anaerobiosis). Little is known about the physiological impact of phytosterols assimilation in comparison with ergosterol and the influence of sterol type on fermentation kinetics parameters. Moreover, studies to date have analyzed a limited number of yeast strains. Thus, the aim of this work was to compare the performances of a set of Saccharomyces cerevisiae wine strains that represent the diversity of industrial wine yeast, fermenting with phytosterols or ergosterol under two conditions: sterol limitation (sterol starvation) and high sugar content (the most common stress during fermentation). Results indicated that yeast cell viability was negatively impacted by both stressful conditions, resulting in sluggish and stuck fermentations. This study revealed the huge phenotype diversity of the S. cerevisiae strains tested, in particular in terms of cell viability. Indeed, strains with better viability maintenance completed fermentation earlier. Interestingly, we showed for the first time that sterol type differently affects a wide variety of phenotype, such as viability, biomass, fermentation kinetics parameters and biosynthesis of carbon central metabolism (CCM) metabolites. Ergosterol allowed preserving more viable cells at the end of fermentation and, as a consequence, a better completion of fermentation in both conditions tested, even if phytosterols also enabled the completion of alcoholic fermentation for almost all strains. These results highlighted the essential role of sterols during wine alcoholic fermentation to ensure yeast growth and avoid sluggish or stuck fermentations. Finally, this study emphasizes the importance of taking into account sterol types available during wine fermentation.
Collapse
Affiliation(s)
| | - Erick Casalta
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Jean-Luc Legras
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Thibault Nidelet
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Martine Pradal
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Faïza Macna
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | | | | | - Catherine Tesnière
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Virginie Galeote
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
| | - Jean-Roch Mouret
- SPO, Univ Montpellier, INRAE, Institut Agro Montpellier, Montpellier, France
- *Correspondence: Jean-Roch Mouret,
| |
Collapse
|
9
|
Mbuyane LL, Bauer FF, Bloem A, Camarasa C, Ortiz-Julien A, Divol B. Species-Dependent Metabolic Response to Lipid Mixtures in Wine Yeasts. Front Microbiol 2022; 13:823581. [PMID: 35677913 PMCID: PMC9168537 DOI: 10.3389/fmicb.2022.823581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Lipids are essential energy storage compounds and are the core structural elements of all biological membranes. During wine alcoholic fermentation, the ability of yeasts to adjust the lipid composition of the plasma membrane partly determines their ability to cope with various fermentation-related stresses, including elevated levels of ethanol and the presence of weak acids. In addition, the lipid composition of grape juice also impacts the production of many wine-relevant aromatic compounds. Several studies have evaluated the impact of lipids and of their metabolism on fermentation performance and aroma production in the dominant wine yeast Saccharomyces cerevisiae, but limited information is available on other yeast species. Thus, the aim of this study was to evaluate the influence of specific fatty acid and sterol mixtures on various non-Saccharomyces yeast fermentation rates and the production of primary fermentation metabolites. The data show that the response to different lipid mixtures is species-dependent. For Metschnikowia pulcherrima, a slight increase in carbon dioxide production was observed in media enriched with unsaturated fatty acids whereas Kluyveromyces marxianus fermented significantly better in synthetic media containing a higher concentration of polyunsaturated fatty acids than monounsaturated fatty acids. Torulaspora delbrueckii fermentation rate increased in media supplemented with lipids present at an equimolar concentration. The data indicate that these different responses may be linked to variations in the lipid profile of these yeasts and divergent metabolic activities, in particular the regulation of acetyl-CoA metabolism. Finally, the results suggest that the yeast metabolic footprint and ultimately the wine organoleptic properties could be optimized via species-specific lipid adjustments.
Collapse
Affiliation(s)
- Lethiwe L Mbuyane
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | - Florian F Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| | - Audrey Bloem
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | - Carole Camarasa
- UMR SPO, INRA, SupAgroM, Université de Montpellier, Montpellier, France
| | | | - Benoit Divol
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
10
|
Characterization and Role of Sterols in Saccharomyces cerevisiae during White Wine Alcoholic Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Responsible for plasma membrane structure maintenance in eukaryotic organisms, sterols are essential for yeast development. The role of two sterol sources in Saccharomyces cerevisiae during wine fermentation is highlighted in this review: ergosterol (yeast sterol produced by yeast cells under aerobic conditions) and phytosterols (plant sterols imported by yeast cells from grape musts in the absence of oxygen). These compounds are responsible for the maintenance of yeast cell viability during white wine fermentation under stress conditions, such as ethanol stress and sterol starvation, to avoid sluggish and stuck fermentations.
Collapse
|
11
|
Grape Lipidomics: An Extensive Profiling thorough UHPLC-MS/MS Method. Metabolites 2021; 11:metabo11120827. [PMID: 34940585 PMCID: PMC8706896 DOI: 10.3390/metabo11120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Lipids play many essential roles in living organisms, which accounts for the great diversity of these amphiphilic molecules within the individual lipid classes, while their composition depends on intrinsic and extrinsic factors. Recent developments in mass spectrometric methods have significantly contributed to the widespread application of the liquid chromatography-mass spectrometry (LC-MS) approach to the analysis of plant lipids. However, only a few investigators have studied the extensive composition of grape lipids. The present work describes the development of an ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method that includes 8098 MRM; the method has been validated using a reference sample of grapes at maturity with a successful analysis and semi-quantification of 412 compounds. The aforementioned method was subsequently applied also to the analysis of the lipid profile variation during the Ribolla Gialla cv. grape maturation process. The partial least squares (PLS) regression model fitted to our experimental data showed that a higher proportion of certain glycerophospholipids (i.e., glycerophosphoethanolamines, PE and glycerophosphoglycerols, PG) and of some hydrolysates from those groups (i.e., lyso-glycerophosphocholines, LPC and lyso-glycerophosphoethanolamines, LPE) can be positively associated with the increasing °Brix rate, while a negative association was found for ceramides (CER) and galactolipids digalactosyldiacylglycerols (DGDG). The validated method has proven to be robust and informative for profiling grape lipids, with the possibility of application to other studies and matrices.
Collapse
|
12
|
A Gas Chromatography-Mass Spectrometry Method for the Determination of Fatty Acids and Sterols in Yeast and Grape Juice. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipids are essential components of all living cells. In an oenological context, the supply of unsaturated lipids in grape juice allows the yeasts to grow and ferment, despite very low levels of oxygen. The current study proposes a systematic optimization procedure for the analysis of fatty acids and sterols relevant to the grape fermentation process, including both extracellular and intracellular (i.e., yeast cells) lipids. Even though it was extensive, the sample preparation yielded reproducible results for all compounds of interest. The stability of the analyzed compounds was also tested to offer some implementation flexibility for the extensive procedure. The performance parameters (i.e., selectivity, linearity, limit of detection and quantitation, accuracy, and precision) indicated that the method was suitable for future practical implementation. The proof of concept also suggests that the list of compounds of interest can be expanded if additional peaks are identified. Given the large variation in concentrations, the dilution of the matrix needs to be carefully considered in order to ensure that the lipids of interest are still within the dynamic range and not below the limit of detection and/or quantification.
Collapse
|
13
|
Phan Q, Tomasino E. Untargeted lipidomic approach in studying pinot noir wine lipids and predicting wine origin. Food Chem 2021; 355:129409. [PMID: 33799257 DOI: 10.1016/j.foodchem.2021.129409] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
An untargeted lipidomic profiling approach based on ultra - performance liquid chromatography - time-of-flight tandem mass spectrometry (UPLC-TOF-MS/MS) was successfully used to study the origin of commercial Pinot noir wines. The total wine lipids were extracted using a modified Bligh-Dyer method. In all wine samples, the total lipids were less than 0.1% (w/w) of wine. The wines analyzed consisted of 222 lipids from 11 different classes. 48 commercial Pinot noir wine samples were collected from producers in Burgundy, California, Oregon, and New Zealand. Lipidomic data was studied using advanced multivariate analysis methods, random forest, k-nearest neighbor (k-NN), and linear discriminant analysis. The overall classification accuracy was 97.5% for random forest and 90% for k-NN. Wine lipids showed a strong potential for classifying wines by origin, with the top 58 lipids contributing to the discrimination. This information could potentially be used for further study of the impacts of lipids on wine characteristics and authenticity.
Collapse
Affiliation(s)
- Quynh Phan
- Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, OR 97331, United States
| | - Elizabeth Tomasino
- Department of Food Science and Technology, Oregon State University, 100 Wiegand Hall, Corvallis, OR 97331, United States.
| |
Collapse
|
14
|
Mbuyane LL, Bauer FF, Divol B. The metabolism of lipids in yeasts and applications in oenology. Food Res Int 2021; 141:110142. [PMID: 33642009 DOI: 10.1016/j.foodres.2021.110142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/14/2022]
Abstract
Lipids are valuable compounds present in all living organisms, which display an array of functions related to compartmentalization, energy storage and enzyme activation. Furthermore, these compounds are an integral part of the plasma membrane which is responsible for maintaining structure, facilitating the transport of solutes in and out of the cell and cellular signalling necessary for cell survival. The lipid composition of the yeast Saccharomyces cerevisiae has been extensively investigated and the impact of lipids on S. cerevisiae cellular functions during wine alcoholic fermentation is well documented. Although other yeast species are currently used in various industries and are receiving increasing attention in winemaking, little is known about their lipid metabolism. This review article provides an extensive and critical evaluation of our knowledge on the biosynthesis, accumulation, metabolism and regulation of fatty acids and sterols in yeasts. The implications of the yeast lipid content on stress resistance as well as performance during alcoholic fermentation are discussed and a particular emphasis is given on non-Saccharomyces yeasts. Understanding lipid requirements and metabolism in non-Saccharomyces yeasts may lead to a better management of these yeast to enhance their contributions to wine properties.
Collapse
Affiliation(s)
- Lethiwe Lynett Mbuyane
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
15
|
Goufo P, Cortez I. A Lipidomic Analysis of Leaves of Esca-Affected Grapevine Suggests a Role for Galactolipids in the Defense Response and Appearance of Foliar Symptoms. BIOLOGY 2020; 9:E268. [PMID: 32899845 PMCID: PMC7563498 DOI: 10.3390/biology9090268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 01/19/2023]
Abstract
Both qualitative and quantitative changes occur in the lipid composition of Vitis vinifera L. tissues, which may compromise the defense response against Esca complex disease, a widespread and damaging trunk disease. In this study, a lipidomic analysis of grapevine leaves is conducted to assess how lipid membrane remodeling relates to the emergence and progression of Esca foliar symptoms. In total, 208 molecular species (including lipids, four hormones, and some other compounds of the metabolism of lipids) were detected. Lipid species were readily assigned to the classes fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenol lipids. Using different clustering analyses, distinct metabolic pathways stimulated at different stages of disease development were characterized. These analyses revealed consistent changes in the abundance of 13 galactolipids and two diacylglycerolipids. Overall, the observations indicated an increment in the levels of these lipid species in leaves of asymptomatic vines and a progressive drop with increasing foliar symptom severity in symptomatic vines. Five fatty acids also appear to exert a central role in the etiopathogenesis of Esca complex disease because of their accumulation in leaves of asymptomatic vines, namely, heptadecanoic, linoleic, γ-linolenic, arachidonic, and stearic acids. Symptomatic leaves were characterized by high levels of all lipid classes, except for galactolipids, lyso-galactolipids, and compounds relevant to the biosynthesis of chlorophylls and carotenoids, that exhibited decreased levels. The data also suggested a jasmonic acid-associated signaling mechanism activation upon the invasion of woods by Esca-associated fungi, compared with abscisic and salicylic acids. Further research is required for validation of these results with additional molecular analyses using more vine cultivars.
Collapse
Affiliation(s)
- Piebiep Goufo
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Departamento de Agronomia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Isabel Cortez
- Centre for the Research and Technology of Agro-Environment and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
- Departamento de Agronomia, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| |
Collapse
|
16
|
Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts. Food Res Int 2019; 121:835-844. [PMID: 31108815 DOI: 10.1016/j.foodres.2019.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/15/2022]
Abstract
Fatty acids play important roles in the maintenance of cell membrane, viability and overall metabolism of wine yeasts (particularly Saccharomyces cerevisiae) during adverse winemaking conditions. We previously showed that linoleic acid supplementation markedly affect aroma compound production of S. cerevisiae wine strains. However, very little is known about how other commonly found fatty acids in grape juice modulate the growth and metabolism of S. cerevisiae. We aimed to determine the individual effect of five fatty acids on fermentation patterns and metabolism of two wine yeast strains (S. cerevisiae EC1118 and X5). Microvinification was performed at 15 °C by supplementing a grape juice (individually) with three different concentrations of saturated (palmitic acid), unsaturated (oleic, linoleic and γ-linolenic acids) and short-chain (hexanoic acid) fatty acids. Metabolite profiles of the resulting wines were determined using Gas-chromatography coupled to Mass-spectrometry (GC-MS). Our data show that the addition of γ-linolenic acid to the juice caused the production of higher amounts of amino and organic acids (except isoleucine and 2-oxoglutaric acid) in wines when fermented by EC1118, while palmitic acid supplementation showed similar trends when fermented by X5. The effect of linoleic acid was independent of yeast strains and we observed a global reduction of amino and organic acids (except pyruvic acid) while increased production of most of the fatty acids other than the supplemented ones. Our data clearly suggest that pre-fermentative supplementation of different fatty acids indeed influenced the growth and metabolism of wine yeasts in a different way. Thus, attention needs to be paid not only to the wine yeast strain used during the winemaking but also to the overall grape juice composition, including fatty acids, to obtain the desired wine characteristics.
Collapse
|
17
|
Liu PT, Yu KJ, Li YT, Duan CQ, Yan GL. The content of linoleic acid in grape must influences the aromatic effect of branched-chain amino acids addition on red wine. Food Res Int 2018; 114:214-222. [DOI: 10.1016/j.foodres.2018.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022]
|
18
|
Grape and Wine Metabolomics to Develop New Insights Using Untargeted and Targeted Approaches. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4040092] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemical analysis of grape juice and wine has been performed for over 50 years in a targeted manner to determine a limited number of compounds using Gas Chromatography, Mass-Spectrometry (GC-MS) and High Pressure Liquid Chromatography (HPLC). Therefore, it only allowed the determination of metabolites that are present in high concentration, including major sugars, amino acids and some important carboxylic acids. Thus, the roles of many significant but less concentrated metabolites during wine making process are still not known. This is where metabolomics shows its enormous potential, mainly because of its capability in analyzing over 1000 metabolites in a single run due to the recent advancements of high resolution and sensitive analytical instruments. Metabolomics has predominantly been adopted by many wine scientists as a hypothesis-generating tool in an unbiased and non-targeted way to address various issues, including characterization of geographical origin (terroir) and wine yeast metabolic traits, determination of biomarkers for aroma compounds, and the monitoring of growth developments of grape vines and grapes. The aim of this review is to explore the published literature that made use of both targeted and untargeted metabolomics to study grapes and wines and also the fermentation process. In addition, insights are also provided into many other possible avenues where metabolomics shows tremendous potential as a question-driven approach in grape and wine research.
Collapse
|
19
|
Casu F, Pinu FR, Stefanello E, Greenwood DR, Villas-Bôas SG. The fate of linoleic acid on Saccharomyces cerevisiae metabolism under aerobic and anaerobic conditions. Metabolomics 2018; 14:103. [PMID: 30830379 DOI: 10.1007/s11306-018-1399-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/18/2018] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Saccharomyces cerevisiae has been widely used for fermenting food and beverages for over thousands years. Its metabolism together with the substrate composition play an important role in determining the characteristics of the final fermented products. We previously showed that the polyunsaturated fatty acid, linoleic acid, which is present in the grape juice at trace levels, significantly affected the development of aroma compounds of the wines. However, the effect of linoleic acid on the overall cell metabolism of S. cerevisiae is still not clear. Therefore, we aimed to unlock the metabolic response of S. cerevisiae to linoleic acid using metabolomics and isotope labelling experiments. METHODS We cultured the cells on a minimal mineral medium supplementing them with linoleic acid isomers and 13C-linoleic acid. Both intracellular and extracellular metabolite profiles were determined using gas chromatography coupled to mass spectrometry (GC-MS) to investigate which S. cerevisiae pathways were affected by linoleic acid supplementation. RESULTS The utilisation of linoleic acid by S. cerevisiae had a significant impact on the primary carbon metabolism increasing the glucose consumption and the ethanol production under anaerobic condition. The energetic state of the cell was, therefore, affected and the glycolytic pathway, the TCA cycle and the amino acid production were up-regulated. We also observed that linoleic acid was transported into the cell and converted into other fatty acids affecting their profile even under anaerobic condition. CONCLUSION Our data clearly shows that linoleic acid supplementation in growth medium increased glucose consumption and ethanol production by S. cerevisiae under anaerobic condition. We also suggest that S. cerevisiae might be able to perform an alternative anaerobic pathway to β-oxidation, which has not been reported yet.
Collapse
Affiliation(s)
- Francesca Casu
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
- The University of Auckland, 49 Symonds Street, Auckland, 1010, New Zealand
| | - Farhana R Pinu
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Rd, Sandringham, Auckland, 1025, New Zealand.
| | - Eliezer Stefanello
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, São Paulo, SP, 748, Brazil
| | - David R Greenwood
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Rd, Sandringham, Auckland, 1025, New Zealand
| | - Silas G Villas-Bôas
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
20
|
Fermentation-Guided Natural Products Isolation of a Grape Berry Triacylglyceride that Enhances Ethyl Ester Production. Molecules 2018; 23:molecules23010152. [PMID: 29329227 PMCID: PMC6017315 DOI: 10.3390/molecules23010152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 11/17/2022] Open
Abstract
A full understanding of the origin, formation and degradation of volatile compounds that contribute to wine aroma is required before wine style can be effectively managed. Fractionation of grapes represents a convenient and robust method to simplify the grape matrix to enhance our understanding of the grape contribution to volatile compound production during yeast fermentation. In this study, acetone extracts of both Riesling and Cabernet Sauvignon grape berries were fractionated and model wines produced by spiking aliquots of these grape fractions into model grape juice must and fermented. Non-targeted SPME-GCMS analyses of the wines showed that several medium chain fatty acid ethyl esters were more abundant in wines made by fermenting model musts spiked with certain fractions. Further fractionation of the non-polar fractions and fermentation of model must after addition of these fractions led to the identification of a mixture of polyunsaturated triacylglycerides that, when added to fermenting model must, increase the concentration of medium chain fatty acid ethyl esters in wines. Dosage-response fermentation studies with commercially-available trilinolein revealed that the concentration of medium chain fatty acid ethyl esters can be increased by the addition of this triacylglyceride to model musts. This work suggests that grape triacylglycerides can enhance the production of fermentation-derived ethyl esters and show that this fractionation method is effective in segregating precursors or factors involved in altering the concentration of fermentation volatiles.
Collapse
|
21
|
Comprehensive and comparative lipidome analysis of Vitis vinifera L. cv. Pinot Noir and Japanese indigenous V. vinifera L. cv. Koshu grape berries. PLoS One 2017; 12:e0186952. [PMID: 29053756 PMCID: PMC5650187 DOI: 10.1371/journal.pone.0186952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 01/30/2023] Open
Abstract
Vitis vinifera cv. Koshu is an indigenous grape cultivar that has been cultivated for more than a thousand years in Japan and one of the most important cultivars in white winemaking. To improve Koshu wine quality, it is necessary to identify the metabolites in Koshu berry. We conducted a comprehensive and comparative lipidome analysis of Koshu and Pinot Noir berries cultivated in the same location in Japan using GC-MS/MS for fatty acids and LC-MS for glycerolipids and glycerophospholipids. Koshu skins and juices contained 22 and 19 fatty acids, respectively, whereas 23 and 20 fatty acids were detected in Pinot Noir skins and juices. C22:6n3 and C24:0 contents in Koshu skins were two and three times higher than those in Pinot Noir skins. C24:0 content in Koshu juices was also higher than that in Pinot Noir juices. Forty-nine lipid components (six digalactosyldiacylglycerols, one monogalactosyldiacylglycerol, 10 phosphatidylcholines, 12 phosphatidylethanolamines, and 20 triglycerides) were detected in Pinot Noir and Koshu skins. Strong peaks were observed for MGDG 36:6, DGDG 36:6, PC 34:2, PC 36:5, TG 54:6, TG 54:7, and TG 54:8 in Koshu skins. The contents of 36 of the 49 lipid components were significantly higher in Pinot Noir skins than Koshu skins. Pinot Noir skins contained more lipids whose alkyl chains have more than 18 carbons than Koshu skins. Further analysis of both lipid profiles revealed that the number of double bonds in a fatty acid molecule in Pinot Noir skins and juices was significantly larger than that in Koshu skins and juices. A strong relationship exists between the heat requirement of grapevine cultivars and the level of fatty acid desaturation. C18-fatty acids were the major components in Koshu and Pinot Noir berries. The expression levels of C18-fatty acid desaturases regulated the accumulation of C18-unsaturated fatty acids in berry skins. The loss of C18:3 in Koshu berries at the end of ripening was observed. Koshu might effectively convert C18:3 into (Z)-hex-3-enal for the production of C6-aroma compounds. These findings by the lipidome analysis are expected to contribute to the improvement of Koshu wine aroma and breeding strategies of cold-tolerant Koshu grapevines.
Collapse
|
22
|
Ruocco S, Stefanini M, Stanstrup J, Perenzoni D, Mattivi F, Vrhovsek U. The metabolomic profile of red non-V. vinifera genotypes. Food Res Int 2017; 98:10-19. [PMID: 28610726 DOI: 10.1016/j.foodres.2017.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/24/2017] [Accepted: 01/27/2017] [Indexed: 11/16/2022]
Abstract
Wild American genotypes represent an important part of the Vitis germplasm in relation to grape improvement. Today, these genotypes are currently involved in breeding programmes in order to introgress traits resistant to pests and diseases in V. vinifera cultivars. Nevertheless, the metabolic composition of their grapes has not been widely investigated. This study aimed to explore in detail the metabolomic profile in terms of simple phenolic, proanthocyanidin, anthocyanin and lipid compounds in two hybrids and five American genotypes. The results were compared with those of two V. vinifera cultivars. A multi-targeted metabolomics approach using a combination of LC-MS and LC-DAD methods was used to identify and quantify 124 selected metabolites. The genotypes studied showed considerable variability in the metabolomic profile according to the grape composition of V. vinifera and other Vitis genotypes. As regards the composition of anthocyanins, not all wild genotypes contained both mono- and di-glucoside derivatives. Wild genotype 41B and V. vinifera cultivars contained only monoglucoside anthocyanins. The proanthocyanidins of non-V. vinifera genotypes were mainly rich in oligomers and short-chain polymers. The analysis of lipids in wild Vitis genotypes, here reported for the first time, showed the existence of a certain diversity in their composition suggesting a strong influence of the environmental conditions on the general lipid pattern.
Collapse
Affiliation(s)
- Silvia Ruocco
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy; Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 208, 33100 Udine, Italy
| | - Marco Stefanini
- Department of Genomics and Biology of Fruit Crop, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Jan Stanstrup
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Daniele Perenzoni
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Fulvio Mattivi
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Urska Vrhovsek
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy.
| |
Collapse
|
23
|
Casu F, Pinu FR, Fedrizzi B, Greenwood DR, Villas-Boas SG. The effect of linoleic acid on the Sauvignon blanc fermentation by different wine yeast strains. FEMS Yeast Res 2016; 16:fow050. [PMID: 27364827 DOI: 10.1093/femsyr/fow050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2016] [Indexed: 11/13/2022] Open
Abstract
The level of linoleic acid in the Sauvignon blanc (SB) grape juice affects the development of different aroma compounds during fermentation by Saccharomyces cerevisiae EC1118, including key varietal thiols such as 3-mercaptohexanol (3MH) and 3-mercaptohexyl acetate (3MHA). However, it is still unknown if linoleic acid would affect in a similar way other commonly used S. cerevisiae wine strains. Here we investigated the effect of grape juice linoleic acid on the development of aroma compounds and other metabolites of SB wines using different wine yeast strains: EC1118, AWRI796 and VIN13. Linoleic acid clearly affected the levels of acetylated aroma compounds, several amino acids, and antioxidant molecules, independent of yeast strain, but the production of 3MH was affected by linoleic acid in a strain-specific manner. Moreover, the supplementation of deuterium-labelled 3MH also affected the production of varietal thiols in a strain-specific way. Linoleic acid reduced the acetylation process probably by inhibiting an acetyltransferase, an effect that was independent of the yeast strain. However, regulation of the 3MH biosynthesis is strain-specific, which suggests a mindful consideration not only towards the wine yeast but also to the linoleic acid concentration in the grape juice in order to obtain the desired wine aroma characteristics.
Collapse
Affiliation(s)
- Francesca Casu
- School of Biological Sciences, the University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Farhana R Pinu
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Rd, Sandringham, Auckland 1025, New Zealand
| | - Bruno Fedrizzi
- School of Chemical Sciences, the University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - David R Greenwood
- School of Biological Sciences, the University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Rd, Sandringham, Auckland 1025, New Zealand
| | - Silas G Villas-Boas
- School of Biological Sciences, the University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
24
|
Hillyer KE, Tumanov S, Villas-Bôas S, Davy SK. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis. ACTA ACUST UNITED AC 2015; 219:516-27. [PMID: 26685173 DOI: 10.1242/jeb.128660] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/25/2015] [Indexed: 02/03/2023]
Abstract
Bleaching (dinoflagellate symbiont loss) is one of the greatest threats facing coral reefs. The functional cnidarian-dinoflagellate symbiosis, which forms coral reefs, is based on the bi-directional exchange of nutrients. During thermal stress this exchange breaks down; however, major gaps remain in our understanding of the roles of free metabolite pools in symbiosis and homeostasis. In this study we applied gas chromatography-mass spectrometry (GC-MS) to explore thermally induced changes in intracellular pools of amino and non-amino organic acids in each partner of the model sea anemone Aiptasia sp. and its dinoflagellate symbiont. Elevated temperatures (32 °C for 6 days) resulted in symbiont photoinhibition and bleaching. Thermal stress induced distinct changes in the metabolite profiles of both partners, associated with alterations to central metabolism, oxidative state, cell structure, biosynthesis and signalling. Principally, we detected elevated pools of polyunsaturated fatty acids (PUFAs) in the symbiont, indicative of modifications to lipogenesis/lysis, membrane structure and nitrogen assimilation. In contrast, reductions of multiple PUFAs were detected in host pools, indicative of increased metabolism, peroxidation and/or reduced translocation of these groups. Accumulations of glycolysis intermediates were also observed in both partners, associated with photoinhibition and downstream reductions in carbohydrate metabolism. Correspondingly, we detected accumulations of amino acids and intermediate groups in both partners, with roles in gluconeogenesis and acclimation responses to oxidative stress. These data further our understanding of cellular responses to thermal stress in the symbiosis and generate hypotheses relating to the secondary roles of a number of compounds in homeostasis and heat-stress resistance.
Collapse
Affiliation(s)
- Katie E Hillyer
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | - Sergey Tumanov
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Silas Villas-Bôas
- Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019 Auckland Mail Centre, Auckland 1142, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| |
Collapse
|