1
|
Bian Y, Zhang Y, Ruan LY, Feng XS. Phytosterols in Plant-Derived Foods: Recent Updates in Extraction and Analysis Methods. Crit Rev Anal Chem 2024:1-19. [PMID: 39556048 DOI: 10.1080/10408347.2024.2427128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The physiological and officinal functions of phytosterols are of great significance, and recent dietary guidelines have underscored the significance of incorporating them into a balanced diet. Furthermore, it exhibits inhibitory effects on tumor growth, stimulates cellular immunity, possesses anti-inflammatory, antioxidant, and antidiabetic properties. To gain a more comprehensive understanding of the role of phytosterols in public health, it is crucial to establish simple, rapid, eco-conscious, efficient, and highly sensitive techniques for their extraction and determination across various matrices. This review presents a thorough overview of various techniques used for extracting and analyzing phytosterols in diverse plant-derived foods, encompassing a range of advanced technologies like solid-phase extraction, microextraction, supercritical fluid extraction, QuEChERS, alongside traditional approaches. The detection techniques include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography, and other methodologies. Additionally, we conduct a thorough examination and comparison of various techniques while proposing future prospects.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ling-Yun Ruan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Khallouki F, Zennouhi W, Hajji L, Bourhia M, Benbacer L, El Bouhali B, Rezig L, Poirot M, Lizard G. Current advances in phytosterol free forms and esters: Classification, biosynthesis, chemistry, and detection. Steroids 2024; 212:109520. [PMID: 39378976 DOI: 10.1016/j.steroids.2024.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Phytosterols are plant sterols that are important secondary plant metabolites with significant pharmacological properties. Their presence in the plant kingdom concerns many unrelated botanical families such as oleageneous plants and cereals. The structures of phytosterols evoke those of cholesterol. These molecules are composed of a sterane ring, also known as perhydrocyclopentanophenanthrene, along with a methyl or ethyl group at C-24 in their side chains, a hydroxyl group at C-3 on ring A, and one or two double bonds in the B ring. Phytosterols display different oxidation degrees at the sterane ring and at the side chain as well as varying numbers of carbons with complex stereochemistries. Fats and water solubilities of phytosterols have been achieved by physical, chemical and enzymatic esterifications to favor their bioavailability and to improve the sensory quality of food, and the efficiency of pharmaceutic and cosmetic products. This review aims to provide comprehensive information starting from the definition and structural classification of phytosterols, and exposes an update of their biogenic relationships. Next, the synthesis of phytosterol esters and their applications as well as their effective roles as hormone precursors are discussed. Finally, a concise exploration of the latest advancements in phytosterol / oxyphytosterols analysis techniques is provided, with a particular focus on modern hyphenated techniques.
Collapse
Affiliation(s)
- Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco.
| | - Wafa Zennouhi
- Team of Ethnopharmacology and Pharmacognosy, Department of Biology, FSTE, Moulay Ismail University of Meknes, BP 609, 52000 Errachidia, Morocco
| | - Lhoussain Hajji
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Mohamed Bourhia
- Faculty of Medicine and Pharmacy, Ibn Zohr University, 70000 Laayoune, Morocco
| | - Laila Benbacer
- Unité de Biologie et Recherches Moléculaires Département Sciences du Vivant, Centre National de l'Energie, des Sciences et Techniques Nucléaires (CNESTEN), Rabat, Morocco
| | - Bachir El Bouhali
- Department of Biology, FSM, Moulay Ismail University of Meknes, Meknes, Morocco
| | - Leila Rezig
- University of Carthage, National Institute of Applied Sciences and Technology, LR11ES24, LIP-MB 'Laboratory of Protein Engineering and Bioactive Molecules', Tunis, Tunisia; High Institute of Food Industries, University of Carthage, Tunis, Tunisia
| | - Marc Poirot
- Cancer Research Center of Toulouse (CRCT), Inserm, CNRS, University of Toulouse III, Team INOV: "Cholesterol Metabolism and Therapeutic Innovations", Toulouse, France
| | - Gérard Lizard
- Laboratoiry Bio-PeroxIL / EA7270, Université de Bourgogne / Inserm, 21000 Dijon, France; PHYNOHA Consulting, 21121 Fontaine-lès-Dijon, France.
| |
Collapse
|
3
|
Guo Q, Wang D, Ma F, Fang M, Zhang L, Li P, Yu L. MOF-derived nanozyme CuOx@C and its application for cascade colorimetric detection of phytosterols. Mikrochim Acta 2024; 191:312. [PMID: 38717599 DOI: 10.1007/s00604-024-06389-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.
Collapse
Affiliation(s)
- Qi Guo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Mengxue Fang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
| | - Liangxiao Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China
- Hubei Hongshan Laboratory, Wuhan, 430070, People's Republic of China
- Zhejiang Xianghu Laboratory, Hangzhou, 311231, People's Republic of China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, People's Republic of China.
- National Reference Laboratory for Agricultural Testing (Biotoxin), Wuhan, 430062, People's Republic of China.
| |
Collapse
|
4
|
Aguilar JM, Gloss AD, Suzuki HC, Verster KI, Singhal M, Hoff J, Grebenok R, Nabity PD, Behmer ST, Whiteman NK. Insights into the evolution of herbivory from a leaf-mining fly. Ecosphere 2024; 15:e4764. [PMID: 39247255 PMCID: PMC11378976 DOI: 10.1002/ecs2.4764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024] Open
Abstract
Herbivorous insects and their host plants comprise most known species on Earth. Illuminating how herbivory repeatedly evolved in insects from non-herbivorous lineages is critical to understanding how this biodiversity is created and maintained. We characterized the trophic niche of Scaptomyza flava, a representative of a lineage nested within the Drosophila that transitioned to herbivory ~10-15 million years ago. We used natural history studies to determine if S. flava is a true herbivore or a cryptic microbe-feeder, given that the ancestral character state for the family Drosophilidae is likely microbe-feeding. Specifically, we quantified oviposition substrate choice and larval viability across food-types, trophic-related morphological traits, and nitrogen isotope and sterol profiles across putatively herbivorous and non-herbivorous drosophilids. The results of these studies show that S. flava is an obligate herbivore of living plants. Paired with its genetic model host, Arabidopsis thaliana, S. flava is a novel and powerful system for exploring mechanisms underlying the evolution of herbivory, a complex trait that enabled the exceptional diversification of insects.
Collapse
Affiliation(s)
- Jessica M. Aguilar
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Andrew D. Gloss
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Hiromu C. Suzuki
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Kirsten I. Verster
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Malvika Singhal
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Jordan Hoff
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Robert Grebenok
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - Paul D. Nabity
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Spencer T. Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Noah K. Whiteman
- Department of Integrative Biology, University of California-Berkeley, Berkeley, CA 94720, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Pereira JO, Oliveira D, Faustino M, Vidigal SSMP, Pereira AM, Ferreira CMH, Oliveira AS, Durão J, Rodríguez-Alcalá LM, Pintado ME, Madureira AR, Carvalho AP. Use of Various Sugarcane Byproducts to Produce Lipid Extracts with Bioactive Properties: Physicochemical and Biological Characterization. Biomolecules 2024; 14:233. [PMID: 38397470 PMCID: PMC10886787 DOI: 10.3390/biom14020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Sugarcane, a globally cultivated crop constituting nearly 80% of total sugar production, yields residues from harvesting and sugar production known for their renewable bioactive compounds with health-promoting properties. Despite previous studies, the intricate interplay of extracts from diverse sugarcane byproducts and their biological attributes remains underexplored. This study focused on extracting the lipid fraction from a blend of selected sugarcane byproducts (straw, bagasse, and filter cake) using ethanol. The resulting extract underwent comprehensive characterization, including physicochemical analysis (FT-IR, DSC, particle size distribution, and color) and chemical composition assessment (GC-MS). The biological properties were evaluated through antihypertensive (ACE), anticholesterolemic (HMG-CoA reductase), and antidiabetic (alpha-glucosidase and Dipeptidyl Peptidase-IV) assays, alongside in vitro biocompatibility assessments in Caco-2 and Hep G2 cells. The phytochemicals identified, such as β-sitosterol and 1-octacosanol, likely contribute to the extract's antidiabetic, anticholesterolemic, and antihypertensive potential, given their association with various beneficial bioactivities. The extract exhibited substantial antidiabetic effects, inhibiting α-glucosidase (5-60%) and DPP-IV activity (25-100%), anticholesterolemic potential with HMG-CoA reductase inhibition (11.4-63.2%), and antihypertensive properties through ACE inhibition (24.0-27.3%). These findings lay the groundwork for incorporating these ingredients into the development of food supplements or nutraceuticals, offering potential for preventing and managing metabolic syndrome-associated conditions.
Collapse
Affiliation(s)
- Joana Odila Pereira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Diana Oliveira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Margarida Faustino
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Susana S. M. P. Vidigal
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Ana Margarida Pereira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Carlos M. H. Ferreira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Ana Sofia Oliveira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Joana Durão
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
- Amyris Bio Products Portugal Unipessoal Lda, 4169-005 Porto, Portugal
| | - Luís M. Rodríguez-Alcalá
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Manuela E. Pintado
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Ana Raquel Madureira
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| | - Ana P. Carvalho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (D.O.); (M.F.); (S.S.M.P.V.); (A.M.P.); (C.M.H.F.); (A.S.O.); (J.D.); (L.M.R.-A.); (M.E.P.); (A.R.M.); (A.P.C.)
| |
Collapse
|
6
|
Buț MG, Jîtcă G, Imre S, Vari CE, Ősz BE, Jîtcă CM, Tero-Vescan A. The Lack of Standardization and Pharmacological Effect Limits the Potential Clinical Usefulness of Phytosterols in Benign Prostatic Hyperplasia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1722. [PMID: 37111945 PMCID: PMC10142909 DOI: 10.3390/plants12081722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of benign prostatic hyperplasia (BPH) markedly increases with age. Phytotherapeutic approaches have been developed over time owing to the adverse side effects of conventional medications such as 5-reductase inhibitors and α1-adrenergic receptor antagonists. Therefore, dietary supplements (DS) containing active compounds that benefit BPH are widely available. Phytosterols (PSs) are well recognized for their role in maintaining blood cholesterol levels; however, their potential in BPH treatment remains unexplored. This review aims to provide a general overview of the available data regarding the clinical evidence and a good understanding of the detailed pharmacological roles of PSs-induced activities at a molecular level in BPH. Furthermore, we will explore the authenticity of PSs content in DS used by patients with BPH compared to the current legislation and appropriate analytical methods for tracking DS containing PSs. The results showed that PSs might be a useful pharmacological treatment option for men with mild to moderate BPH, but the lack of standardized extracts linked with the regulation of DS containing PSs and experimental evidence to elucidate the mechanisms of action limit the use of PSs in BPH. Moreover, the results suggest multiple research directions in this field.
Collapse
Affiliation(s)
- Mădălina-Georgiana Buț
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - George Jîtcă
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Silvia Imre
- Department of Analytical Chemistry and Drug Analysis, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| | - Camil Eugen Vari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Bianca Eugenia Ősz
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (C.E.V.); (B.E.Ő.)
| | - Carmen-Maria Jîtcă
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania; (M.-G.B.); (C.-M.J.)
| | - Amelia Tero-Vescan
- Department of Biochemistry, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540139 Târgu Mures, Romania;
| |
Collapse
|
7
|
Santanatoglia A, Nzekoue FK, Sagratini G, Ricciutelli M, Vittori S, Caprioli G. Development and application of a novel analytical method for the determination of 8 plant sterols/stanols in 22 legumes samples. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Liu D, Pi J, Zhang B, Zeng H, Li C, Xiao Z, Fang F, Liu M, Deng N, Wang J. Phytosterol of lotus seed core powder alleviates hypercholesterolemia by regulating gut microbiota in high-cholesterol diet-induced C57BL/6J mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
9
|
High Levels of Policosanols and Phytosterols from Sugar Mill Waste by Subcritical Liquefied Dimethyl Ether. Foods 2022; 11:foods11192937. [PMID: 36230017 PMCID: PMC9564350 DOI: 10.3390/foods11192937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Extracting nutraceuticals with high value from bagasse, filter mud, and sugarcane leaves discarded as sugar mill by-products, is crucial for the development of a sustainable bio-economy. These by-products are important sources of policosanols and phytosterols, which have a cholesterol-lowering effect. This research focused on using a promising green technology, subcritical liquefied dimethyl ether extraction, with a low pressure of 0.8 MPa, to extract policosanols and phytosterols and on application of pretreatments to increase their contents. For direct extraction by subcritical liquefied dimethyl ether without sample pretreatment, the highest extraction yield (7.4%) and policosanol content were found in sugarcane leaves at 2888 mg/100 g, while the highest and lowest phytosterol contents were found in filter mud at 20,878.75 mg/100 g and sugarcane leaves at 10,147.75 mg/100 g, respectively. Pretreatment of filter mud by ultrasonication in hexane solution together with transesterification before the second subcritical liquefied dimethyl ether extraction successfully increased the policosanol content, with an extract purity of 60%, but failed to increase the phytosterol content.
Collapse
|
10
|
Simultaneous analysis of free phytosterols and phytosterol glycosides in rice bran by SPE/GC–MS. Food Chem 2022; 387:132742. [DOI: 10.1016/j.foodchem.2022.132742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022]
|
11
|
Xia X, Ren M, He WS, Jia C, Zhang X. The preparation of phytosteryl succinyl sucrose esters and improvement of their water solubility and emulsifying properties. Food Chem 2022; 373:131501. [PMID: 34763932 DOI: 10.1016/j.foodchem.2021.131501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/20/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Phytosterols have gained much attention due to their outstanding cholesterol-reducing effect, while the insolubility in water limits their application. The aim of this study was to synthesize a novel hydrophilic phytosteryl derivatives-phytosteryl succinyl sucrose esters (PSSEs) and investigated their water solubility and emulsifying properties. PSSEs were synthesized by esterifying phytosterol hemisuccinates with sucrose through a mild chemical reaction. PSSEs were characterized by fourier transform infrared spectroscopy, mass spectroscopy, and nuclear magnetic resonance spectroscopy. The yield of PSSEs exceeded 84% in N,N-dimethylformamide for 36 h of reaction under the selected conditions: 100 mmol/L phytosteryl hemisuccinates, 150 mmol/L sucrose, 110 mmol/L 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochlide, 10 mmol/L 4-dimethylaminopyridine and 10 mmol/L p-toluenesulfonic acid. The water insolubility of phytosterols was overcome and the water solubility of PSSEs achieved 2.13 mg/mL. The emulsifying activity of PSSEs was 2.5 times that of phytosterols, reaching 0.95 mg/mL. PSSEs with better water solubility and emulsification properties could facilitate the widespread use of phytosterols in foods.
Collapse
Affiliation(s)
- Xue Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingxing Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Wen-Sen He
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| | - Chengsheng Jia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Garcia-Llatas G, Alegría A, Barberá R, Cilla A. Current methodologies for phytosterol analysis in foods. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Han C, Zhou H, Wu W, Chen X, Li H, Li Y, Feng D. Development and Validation of a Method to Simultaneously Determine Multiple Sterols in Diversiform Food Substrates with UPLC-MS/MS. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Huang H, Belwal T, Li L, Wang Y, Aalim H, Luo Z. Effect of modified atmosphere packaging of different oxygen levels on cooking qualities and phytochemicals of brown rice during accelerated aging storage at 37 °C. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Feng S, Belwal T, Li L, Limwachiranon J, Liu X, Luo Z. Phytosterols and their derivatives: Potential health‐promoting uses against lipid metabolism and associated diseases, mechanism, and safety issues. Compr Rev Food Sci Food Saf 2020; 19:1243-1267. [DOI: 10.1111/1541-4337.12560] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Feng
- College of Food Science and TechnologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light IndustryZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Li Li
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Jarukitt Limwachiranon
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
| | - Xingquan Liu
- School of Agriculture and Food SciencesZhejiang Agriculture and Forestry University Hangzhou 311300 People's Republic of China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro‐Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri‐Food Processing, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang University Hangzhou 310058 People's Republic of China
- Ningbo Research InstituteZhejiang University Ningbo 315100 People's Republic of China
- Fuli Institute of Food ScienceZhejiang University Hangzhou 310058 People's Republic of China
| |
Collapse
|
16
|
Feng S, Wang L, Belwal T, Li L, Luo Z. Phytosterols extraction from hickory (Carya cathayensis Sarg.) husk with a green direct citric acid hydrolysis extraction method. Food Chem 2020; 315:126217. [PMID: 32007812 DOI: 10.1016/j.foodchem.2020.126217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
This study investigated the direct citric acid hydrolysis extraction method to optimize phytosterols extraction from hickory husk. Single factor experiments followed by a three-level three-factor Box-Behnken experiments were performed. The optimal extraction parameters were determined as: pH of 2.0, liquid-to-solid ratio of 17.12: 1 mL/g, and temperature of 55.81 °C. Practical experiments were carried out in triplicate, and subsequently yielded phytosterols of 912.452 ± 17.452 μg/g DW, in good consistence with the predicted extraction yield of 902.874 μg/g DW. The conductivity of the extract was also found to play effective role under direct citric acid hydrolysis and recorded 36.30 ± 1.08 μs/cm at optimum extraction condition. β-Sitosterol stigmasterol, campsterol, ergosterol and lupeol were detected as main PSs and triterpenoids in hickory husk using UPLC-Triple-TOF/MS. Finally, the comparison between direct hydrolysis extraction and traditional solvent extraction showed that this new method was more effective and eco-friendlier to extract both free and conjugated phytosterols.
Collapse
Affiliation(s)
- Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Lei Wang
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Li Li
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, People's Republic of China.
| |
Collapse
|
17
|
Identification and Quantification of β-Sitosterol β-d-Glucoside of an Ethanolic Extract Obtained by Microwave-Assisted Extraction from Agave angustifolia Haw. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24213926. [PMID: 31683500 PMCID: PMC6864453 DOI: 10.3390/molecules24213926] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
β-sitosterol β-d-glucoside (BSSG) was extracted from “piña” of the Agave angustifolia Haw plant by microwave-assisted extraction (MAE) with a KOH solution such as a catalyst and a conventional maceration method to determine the best technique in terms of yield, extraction time, and recovery. The quantification and characterization of BSSG were done by high-performance thin layer chromatography (HPTLC), Fourier-transform infrared spectroscopy (FT-IR), and high-performance liquid chromatography−electrospray ionization−mass spectrometry (HPLC-ESI-MS). With an extraction time of 5 s by MAE, a higher amount of BSSG (124.76 mg of β-sitosterol β-d-glucoside/g dry weight of the extract) than those for MAE extraction times of 10 and 15 s (106.19 and 103.97 mg/g dry weight respectively) was shown. The quantification of BSSG in the extract obtained by 48 h of conventional maceration was about 4–5 times less (26.67 mg/g dry weight of the extract) than the yields reached by the MAE treatments. MAE achieved the highest amount of BSSG, in the shortest extraction time while preserving the integrity of the compound’s structure.
Collapse
|
18
|
Hervé MR, Erb M. Distinct defense strategies allow different grassland species to cope with root herbivore attack. Oecologia 2019; 191:127-139. [PMID: 31367912 DOI: 10.1007/s00442-019-04479-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
Root-feeding insect herbivores are of substantial evolutionary, ecological and economical importance. Plants defend themselves against insect herbivores through a variety of tolerance and resistance strategies. To date, few studies have systematically assessed the prevalence and importance of these strategies for root-herbivore interactions across different plant species. Here, we characterize the defense strategies used by three different grassland species to cope with a generalist root herbivore, the larvae of the European cockchafer Melolontha melolontha. Our results reveal that the different plant species rely on distinct sets of defense strategies. The spotted knapweed (Centaurea stoebe) resists attack by dissuading the larvae through the release of repellent chemicals. White clover (Trifolium repens) does not repel the herbivore, but reduces feeding, most likely through structural defenses and low nutritional quality. Finally, the common dandelion (Taraxacum officinale) allows M. melolontha to feed abundantly but compensates for tissue loss through induced regrowth. Thus, three co-occurring plant species have evolved different solutions to defend themselves against attack by a generalist root herbivore. The different root defense strategies may reflect distinct defense syndromes.
Collapse
Affiliation(s)
- Maxime R Hervé
- University of Rennes, Inra, Agrocampus Ouest, IGEPP, UMR-A 1349, Campus Beaulieu, Avenue du Général Leclerc, 35000, Rennes, France.
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| |
Collapse
|
19
|
Cui B, Liu H, Yu H, Pang X, Yan H, Bai L. Monolithic Material Prepared with Nanodiamond as Monomer for the Enrichment of β-Sitosterol in Edible Oil. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1405-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Duong S, Strobel N, Buddhadasa S, Stockham K, Auldist MJ, Wales WJ, Moate PJ, Orbell JD, Cran MJ. Influence of acid hydrolysis, saponification and sample clean-up on the measurement of phytosterols in dairy cattle feed using GC-MS and GC with flame ionization detection. J Sep Sci 2018; 41:3467-3476. [DOI: 10.1002/jssc.201800484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Samantha Duong
- Institute for Sustainable Industries and Liveable Cities; Victoria University; Melbourne Australia
| | - Norbert Strobel
- Australian Government; National Measurement Institute; Port Melbourne Australia
| | - Saman Buddhadasa
- Australian Government; National Measurement Institute; Port Melbourne Australia
| | - Katherine Stockham
- Australian Government; National Measurement Institute; Port Melbourne Australia
| | - Martin J. Auldist
- Australian Government; Department of Economic Development, Jobs, Transport and Resources; Ellinbank Australia
| | - William J. Wales
- Australian Government; Department of Economic Development, Jobs, Transport and Resources; Ellinbank Australia
| | - Peter J. Moate
- Australian Government; Department of Economic Development, Jobs, Transport and Resources; Ellinbank Australia
| | - John D. Orbell
- Institute for Sustainable Industries and Liveable Cities; Victoria University; Melbourne Australia
| | - Marlene J. Cran
- Institute for Sustainable Industries and Liveable Cities; Victoria University; Melbourne Australia
| |
Collapse
|
21
|
Lu X, Fang M, Dai Y, Yang Y, Fan A, Xu J, Qin Z, Lu Y, Zhao D, Chen X, Li N. Quantification of triacontanol and its PEGylated prodrug in rat plasma by GC–MS/MS: Application to a pre-clinical pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1089:8-15. [DOI: 10.1016/j.jchromb.2018.04.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/10/2018] [Accepted: 04/21/2018] [Indexed: 12/18/2022]
|
22
|
Athmouni K, Belhaj D, Mkadmini Hammi K, El Feki A, Ayadi H. Phenolic compounds analysis, antioxidant, and hepatoprotective effects of Periploca angustifolia extract on cadmium-induced oxidative damage in HepG2 cell line and rats. Arch Physiol Biochem 2018; 124:261-274. [PMID: 29156993 DOI: 10.1080/13813455.2017.1395890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A total of five components (Catechin, Caffeic acid, Ferulic acid, Rosmarinic acid, and Amentoflavone) were identified in Periploca angustifolia leaf methanolic extract. This extract did not cause any cytotoxic effect on HepG2 cell line within the range of concentrations tested (0-400 µg mL-1). Thus, pre-treatment with 100 µg mL-1 of P. angustifolia leaf methanolic extract (PAE) significantly (p < .05) protective HepG2 cells against cytotoxicity induced by cadmium exposure. However, Cd-intoxication significantly (p < .05) increased alanine and aspartate amino transferases serum activities (ALT and AST) and bilirubin content by 1.85-, 1.13-, and 3.55-fold, respectively. The levels of hepatic antioxidant parameters including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were significantly (p < .05) decreased in Cd-intoxicated rats with concomitant enhancement of lipid peroxidation. Our results showed that P. angustifolia leaf methanolic extract can induce antioxidant effects and also exerts beneficial effects for the treatment of Cd-induced hepatotoxicity.
Collapse
Affiliation(s)
- Khaled Athmouni
- a Faculty of Sciences, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology , University of Sfax , Sfax , Tunisia
- b Faculty of Sciences, Department of life sciences, Laboratory of Animal Ecophysiology , University of Sfax , Sfax , Tunisia
| | - Dalel Belhaj
- a Faculty of Sciences, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology , University of Sfax , Sfax , Tunisia
- c National Engineering School, Engineering Laboratory of Environment and Ecotechnology , University of Sfax , Sfax , Tunisia
| | - Khaoula Mkadmini Hammi
- d Laboratoire des Plantes Aromatiques et Médicinales (LPAM) , Centre de Biotechnologie de Borj - Cédria , Sfax , Tunisia
| | - Abdelfattah El Feki
- b Faculty of Sciences, Department of life sciences, Laboratory of Animal Ecophysiology , University of Sfax , Sfax , Tunisia
| | - Habib Ayadi
- a Faculty of Sciences, Department of Life Sciences, Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology , University of Sfax , Sfax , Tunisia
| |
Collapse
|
23
|
Feng S, Dai Z, Liu A, Wang H, Chen J, Luo Z, Yang CS. β-Sitosterol and stigmasterol ameliorate dextran sulfate sodium-induced colitis in mice fed a high fat Western-style diet. Food Funct 2018; 8:4179-4186. [PMID: 29034917 DOI: 10.1039/c7fo00375g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytosterols, the plant analogues of cholesterol, widely occur in the human diet. In this study, we investigated and compared the effects of stigmasterol and β-sitosterol (both with purities ≥95%) on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J male mice fed a high fat Western-style diet. Mice treated with DSS developed severe mucosal colitis, with a marked distortion and crypt loss of colonic surface epithelium. Both β-sitosterol and stigmasterol significantly inhibited colon shortening, lowered fecal hemoglobin content, and reduced the severity of colitis in the middle and distal colon (p < 0.05). These phytosterols also significantly suppressed the activation of nuclear factor-kappa B. They also significantly decreased colony stimulating factor-1 and the nuclear translocation of inflammatory master regulator nuclear factor-kappa B. Stigmasterol significantly lowered the colonic inflammation score and the expression of cyclooxygenase-2 and colony stimulating factor-1, while β-sitosterol was less or not effective. These results suggest that dietary intake of stigmasterol and β-sitosterol ameliorates colitis. Such activities of stigmasterol and β-sitosterol in humans remain to be investigated.
Collapse
Affiliation(s)
- Simin Feng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Feng S, Gan L, Yang CS, Liu AB, Lu W, Shao P, Dai Z, Sun P, Luo Z. Effects of Stigmasterol and β-Sitosterol on Nonalcoholic Fatty Liver Disease in a Mouse Model: A Lipidomic Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3417-3425. [PMID: 29583004 DOI: 10.1021/acs.jafc.7b06146] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To study the effects of stigmasterol and β-sitosterol on high-fat Western diet (HFWD)-induced nonalcoholic fatty liver disease (NAFLD), lipidomic analyses were conducted in liver samples collected after 33 weeks of the treatment. Principal component analysis showed these phytosterols were effective in protecting against HFWD-induced NAFLD. Orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and S-plots showed that triacylglycerols (TGs), phosphatidylcholines, cholesteryl esters, diacylglycerols, and free fatty acids (FFAs) were the major lipid species contributing to these discriminations. The alleviation of NAFLD is mainly associated with decreases in hepatic cholesterol, TGs with polyunsaturated fatty acids, and alterations of free hepatic FFA. In conclusion, phytosterols, at a dose comparable to that suggested for humans by the FDA for the reduction of plasma cholesterol levels, are shown to protect against NAFLD in this long-term (33-week) study.
Collapse
Affiliation(s)
- Simin Feng
- Department of Food Science and Technology , Zhejiang University of Technology , Hangzhou 310014 , People's Republic of China
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
- Zhejiang University , College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing , Hangzhou 310058 , People's Republic of China
| | - Ling Gan
- Department of Food Science and Technology , Zhejiang University of Technology , Hangzhou 310014 , People's Republic of China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Anna B Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Wenyun Lu
- Department of Chemistry & Lewis-Sigler Institute for Integrative Genomics , Princeton University , Princeton , New Jersey 08544 , United States
| | - Ping Shao
- Department of Food Science and Technology , Zhejiang University of Technology , Hangzhou 310014 , People's Republic of China
| | - Zhuqing Dai
- Institute of Agro-product Processing , Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , People's Republic of China
| | - Peilong Sun
- Department of Food Science and Technology , Zhejiang University of Technology , Hangzhou 310014 , People's Republic of China
| | - Zisheng Luo
- Zhejiang University , College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling Ministry of Agriculture, Zhejiang Key Laboratory for Agri-Food Processing , Hangzhou 310058 , People's Republic of China
| |
Collapse
|
25
|
Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog Lipid Res 2018; 70:35-61. [DOI: 10.1016/j.plipres.2018.04.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 01/08/2023]
|
26
|
de Figueiredo LC, Bonafe EG, Martins JG, Martins AF, Maruyama SA, de Oliveira Santos Junior O, Biondo PBF, Matsushita M, Visentainer JV. Development of an ultrasound assisted method for determination of phytosterols in vegetable oil. Food Chem 2018; 240:441-447. [DOI: 10.1016/j.foodchem.2017.07.140] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/14/2016] [Accepted: 07/26/2017] [Indexed: 12/29/2022]
|
27
|
Novak A, Gutiérrez-Zamora M, Domenech L, Suñé-Negre JM, Miñarro M, García-Montoya E, Llop JM, Ticó JR, Pérez-Lozano P. Development and validation of a simple high-performance liquid chromatography analytical method for simultaneous determination of phytosterols, cholesterol and squalene in parenteral lipid emulsions. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/15/2017] [Accepted: 08/24/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Ana Novak
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences; University of Barcelona; Barcelona Spain
| | - Mercè Gutiérrez-Zamora
- Service of Development of Medicines, Faculty of Pharmacy and Food Sciences; University of Barcelona; Barcelona Spain
| | - Lluís Domenech
- Service of Development of Medicines, Faculty of Pharmacy and Food Sciences; University of Barcelona; Barcelona Spain
| | - Josep M. Suñé-Negre
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences; University of Barcelona; Barcelona Spain
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology research group; Bellvitge Biomedical Research Institute (IDIBELL); Av. Granvia de l’Hospitallet, 199-203 08090 L'Hospitalet de Llobregat Spain
| | - Montserrat Miñarro
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences; University of Barcelona; Barcelona Spain
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology research group; Bellvitge Biomedical Research Institute (IDIBELL); Av. Granvia de l’Hospitallet, 199-203 08090 L'Hospitalet de Llobregat Spain
| | - Encarna García-Montoya
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences; University of Barcelona; Barcelona Spain
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology research group; Bellvitge Biomedical Research Institute (IDIBELL); Av. Granvia de l’Hospitallet, 199-203 08090 L'Hospitalet de Llobregat Spain
| | - Josep M. Llop
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences; University of Barcelona; Barcelona Spain
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology research group; Bellvitge Biomedical Research Institute (IDIBELL); Av. Granvia de l’Hospitallet, 199-203 08090 L'Hospitalet de Llobregat Spain
| | - Josep R. Ticó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences; University of Barcelona; Barcelona Spain
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology research group; Bellvitge Biomedical Research Institute (IDIBELL); Av. Granvia de l’Hospitallet, 199-203 08090 L'Hospitalet de Llobregat Spain
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences; University of Barcelona; Barcelona Spain
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology research group; Bellvitge Biomedical Research Institute (IDIBELL); Av. Granvia de l’Hospitallet, 199-203 08090 L'Hospitalet de Llobregat Spain
| |
Collapse
|
28
|
Fibigr J, Šatínský D, Solich P. A UHPLC method for the rapid separation and quantification of phytosterols using tandem UV/Charged aerosol detection – A comparison of both detection techniques. J Pharm Biomed Anal 2017; 140:274-280. [DOI: 10.1016/j.jpba.2017.03.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/21/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022]
|
29
|
Xiang LW, Liu Y, Li HF, Lin JM. Simultaneous extraction and determination of free and conjugated phytosterols in tobacco. J Sep Sci 2016; 39:2466-73. [PMID: 27159657 DOI: 10.1002/jssc.201600247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
Acid hydrolysis and alkaline saponification were incorporated into a microwave-assisted extraction process for the simultaneous extraction of free and conjugated phytosterols from tobacco. The crude extract of the microwave-assisted extraction was purified by C18 solid-phase extraction and then determined by high-performance liquid chromatography. Phytosterols of cholesterol, ergosterol, stigmasterol, campesterol, and β-sitosterol were determined by chromatographic quantification. The multiple parameters of microwave-assisted extraction were optimized by a uniform design method. The optimal ratio of extraction ethanol solvent to tobacco mass was 30 mL/g. The microwave-assisted extraction acid hydrolysis was carried out in sulfuric acid medium by heating for 10 min at 55°C. The microwave-assisted extraction alkaline saponification was performed after adding excessive sodium hydroxide by heating another 10 min. The repeatability of the proposed method was acceptable with recoveries from 69.68 to 88.17% for the phytosterols. Five target phytosterols were all found in the tobacco samples, and the contents were significantly different in samples from different producing areas.
Collapse
Affiliation(s)
- Lei-Wen Xiang
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, PR China
- Institute of Food and Fermentation Industries, Fuqing Branch of Fujian Normal University, Fuqing, PR China
| | - Yan Liu
- Beijing Engineering Research Center of Food Safety Analysis, Beijing Center for Physical and Chemical Analysis, Beijing, PR China
| | - Hai-Fang Li
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, PR China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalysis Methods and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, PR China
| |
Collapse
|