1
|
Zhou J, Xu D, Cao J, Shi W, Zhang X, Lin H, Yin C, Li L, Xu D, Liu G. Facile Preparation of Magnetic COF-on-COF for Rapid Adsorption and Determination of Sulforaphane from Cruciferous Vegetables. Foods 2024; 13:409. [PMID: 38338544 PMCID: PMC10855713 DOI: 10.3390/foods13030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Sulforaphane (SFN) is a natural isothiocyanate compound widely abundant in cruciferous vegetables with multiple bioactive functions. However, traditional analytical methods for the extraction and determination of SFN are cumbersome, time-consuming, and low sensitivity with large amounts of organic solvents. Herein, novel magnetic COF-on-COFs (MB-COFs) were fabricated using Fe3O4 as a magnetic core and COFs-1 grown with COFs-2 as a shell, and they were used as efficient adsorbents of magnetic dispersive solid-phase extraction for rapid quantification of SFN in cruciferous vegetables by combining with HPLC-MS/MS. At the optimal ratio of COFs-1 to COFs-2, MB-COFs had a spherical cluster-like structure and a rough surface, with a sufficient magnetic response for rapid magnetic separation (1 min). Due to the introduction of Fe3O4 and COFs-2, MB-COFs exhibited outstanding extraction efficiencies for SFN (92.5-97.3%), which was about 18-72% higher than that of the bare COFs. Moreover, MB-COFs showed good adsorption capacity (Qm of 18.0 mg/g), rapid adsorption (5 min) and desorption (30 s) to SFN, and favorable reusability (≥7 cycles) by virtue of their unique hierarchical porous structure. The adsorption kinetic data were well fitted by the pseudo-second-order, Ritchie-second-order, intra-particle diffusion, and Elovich models, while the adsorption isotherm data were highly consistent with the Langmuir, Temkin, and Redlich-Peterson models. Finally, under the optimized conditions, the developed method showed a wide linear range (0.001-0.5 mg/L), high sensitivity (limits of quantification of 0.18-0.31 μg/L), satisfactory recoveries (82.2-96.2%) and precisions (1.8-7.9%), and a negligible matrix effect (0.82-0.97). Compared to previous methods, the proposed method is faster and more sensitive and significantly reduces the use of organic solvents, which can achieve the efficient detection of large-scale samples in practical scenarios. This work reveals the high practical potential of MB-COFs as adsorbents for efficient extraction and sensitive analysis of SFN in cruciferous vegetables.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China (H.L.); (D.X.)
| | - Dan Xu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Jiayong Cao
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China
| | - Weiye Shi
- Institute of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xuan Zhang
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China
| | - Huan Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China (H.L.); (D.X.)
| | - Chen Yin
- Hebei Key Laboratory of Quality and Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou 075000, China
| | - Lingyun Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China (H.L.); (D.X.)
| | - Donghui Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China (H.L.); (D.X.)
| | - Guangyang Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China (H.L.); (D.X.)
| |
Collapse
|
2
|
Untargeted metabolomic analysis of honey mixtures: discrimination opportunities based on ATR-FTIR data and machine learning algorithms. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Sun Y, Tang Z, Hao T, Qiu Z, Zhang B. Simulated Digestion and Fermentation In Vitro by Obese Human Gut Microbiota of Sulforaphane from Broccoli Seeds. Foods 2022; 11:foods11244016. [PMID: 36553758 PMCID: PMC9778330 DOI: 10.3390/foods11244016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND sulforaphane is a kind of isothiocyanate, which is obtained by hydrolysis of glucosinolate by the unique myrosinase in plants. It has been proved to prevent the occurrence of many chronic diseases, such as obesity, diabetes and cancer. OBJECTIVE The impact of SFN on obese human gut flora, however, has not been established. METHODS In this research, SFN was isolated from broccoli seeds and then refined to achieve 95% purity. Next, an investigation was conducted into the digestion and fermentation processes of SFN. RESULTS The stability of the SFN in simulated saliva, gastric fluid, and intestinal juice provides evidence that it can reach the gut and be available for utilization by gut microflora. In vitro fermentation of SFN by gut microbes in obese patients results in alteration in constitution of microbiota and production of short chain fatty acids. As the result of SFN ingestion by human gut bacteria, the content of butyric and valeric acids increased 1.21- and 1.46-fold, respectively. In obese human guts, the relative abundances of the beneficial genera including Lactobacillus, Weissella, Leuconosto, Algiphilus and Faecalibacterium significantly increased, whilst the detrimental genera, such as Escherichia-Shigella, Klebsiella, Clostridium_sensu_stricto_1, Sutterella, Megamonas and Proteus drastically declined. CONCLUSION Taken together, these findings demonstrate that SFN can be used as a nutraceutical ingredient for obese patients and for improving human health.
Collapse
Affiliation(s)
- Yifei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhaocheng Tang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tingting Hao
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zeyu Qiu
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Baolong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: ; Tel.: +86-25-8439-0292
| |
Collapse
|
4
|
Current Methods for the Extraction and Analysis of Isothiocyanates and Indoles in Cruciferous Vegetables. ANALYTICA 2021. [DOI: 10.3390/analytica2040011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cruciferous vegetables are characterized by the presence of sulfur-containing secondary plant metabolites known as glucosinolates (GLS). The consumption of cruciferous vegetables such as broccoli, cabbage, rocket salad, and cauliflower has been related to the prevention of non-communicable diseases. Their beneficial effects are attributed to the enzymatic degradation products of GLS, e.g., isothiocyanates and indoles. Owing to these properties, there has been a shift in the last few years towards the research of these compounds and a wide range of methods for their extraction and analytical determination have been developed. The aim of this review is to present the sample preparation and extraction procedures of isothiocyanates and indoles from cruciferous vegetables and the analytical methods for their determination. The majority of the references that have been reviewed are from the last decade. Although efforts towards the application of eco-friendly non-conventional extraction methods have been made, the use of conventional solvent extraction is mainly applied. The major analytical techniques employed for the qualitative and quantitative analysis of isothiocyanates and indoles are high-performance liquid chromatography and gas chromatography coupled with or without mass spectrometry detection. Nevertheless, the analytical determination of isothiocyanates presents several problems due to their instability and the absence of chromophores, making the simultaneous determination of isothiocyanates and indoles a challenging task.
Collapse
|
5
|
Vitamin K in COVID-19—Potential Anti-COVID-19 Properties of Fermented Milk Fortified with Bee Honey as a Natural Source of Vitamin K and Probiotics. FERMENTATION 2021. [DOI: 10.3390/fermentation7040202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitamin K deficiency is evident in severe and fatal COVID-19 patients. It is associated with the cytokine storm, thrombotic complications, multiple organ damage, and high mortality, suggesting a key role of vitamin K in the pathology of COVID-19. To support this view, we summarized findings reported from machine learning studies, molecular simulation, and human studies on the association between vitamin K and SARS-CoV-2. We also investigated the literature for the association between vitamin K antagonists (VKA) and the prognosis of COVID-19. In addition, we speculated that fermented milk fortified with bee honey as a natural source of vitamin K and probiotics may protect against COVID-19 and its severity. The results reported by several studies emphasize vitamin K deficiency in COVID-19 and related complications. However, the literature on the role of VKA and other oral anticoagulants in COVID-19 is controversial: some studies report reductions in (intensive care unit admission, mechanical ventilation, and mortality), others report no effect on mortality, while some studies report higher mortality among patients on chronic oral anticoagulants, including VKA. Supplementing fermented milk with honey increases milk peptides, bacterial vitamin K production, and compounds that act as potent antioxidants: phenols, sulforaphane, and metabolites of lactobacilli. Lactobacilli are probiotic bacteria that are suggested to interfere with various aspects of COVID-19 infection ranging from receptor binding to metabolic pathways involved in disease prognosis. Thus, fermented milk that contains natural honey may be a dietary manipulation capable of correcting nutritional and immune deficiencies that predispose to and aggravate COVID-19. Empirical studies are warranted to investigate the benefits of these compounds.
Collapse
|
6
|
Mangla B, Beg S, Alam O, Ahsan W, Haque A, Patel KS, Almalki WH, Alrobaian M, Kohli K. Systematic development and validation of RP-HPLC method for simultaneous estimation of tamoxifen and sulphoraphane with specific application for nanolipidic formulations. ARAB J CHEM 2020; 13:7909-7920. [DOI: 10.1016/j.arabjc.2020.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
7
|
Xiong Q, Tian X, Li W, Chen L, Zhou M, Xu C, Ru Q. Sulforaphane alleviates methamphetamine-induced oxidative damage and apoptosis via the Nrf2-mediated pathway in vitro and in vivo. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1784099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Qi Xiong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Xiang Tian
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Weiling Li
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Lin Chen
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Mei Zhou
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Congyue Xu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| | - Qin Ru
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, PR People’s Republic of China
| |
Collapse
|
8
|
Mangla B, Alam O, Rub RA, Iqbal M, Singh A, Patel KS, Kohli K. Development and validation of a high throughput bioanalytical UPLC-MS/MS method for simultaneous determination of tamoxifen and sulphoraphane in rat plasma: Application to an oral pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122260. [PMID: 32679526 DOI: 10.1016/j.jchromb.2020.122260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022]
Abstract
Tamoxifen (TAM) is the choice of a drug approved by the Food and Drug Administration (FDA) for the treatment of estrogen-positive receptor (ER+) breast cancer. Sulphoraphane (SFN), a natural plant antioxidant compound, also acts on estrogen-positive breast cancer receptor. Thus, a combination of TAM with SFN is preferred as it helps to minimize the drug-related toxicity and increases the therapeutic efficacy by providing synergistic anticancer effects of both drugs. In the present study, a new simple, sensitive, precise, and selective UPLC-MS/MS method was developed for the simultaneous quantification of tamoxifen and sulphoraphane using propranolol as an internal standard (IS) in rat plasma. Chromatographic separation was achieved on reverse phase Acquity UPLC BEH C18 column (50 mm × 2.1 mm, i.d., 1.7 μm) with an isocratic mobile phase composed of solvent A (0.1% formic acid in acetonitrile) and B (0.1% formic acid in water) (80:20, v/v) at a flow-rate of 0.4 mL/min. The detection and quantification of analytes was performed on Waters ZsprayTM Xevo TQD using selected-ion monitoring operated under a positive electrospray ionization mode. The transitions were m/z = 372.0 [M+H]+ → 71.92 for tamoxifen, m/z = 177.9 [M+H]+ → 113.9 for sulphoraphane and m/z = 260.3 [M+H]+ → 116.1 for propranolol. The method was linear over the concentration range of 8-500 ng/mL (r2 = 0.9996) for tamoxifen, 30-2000 ng/mL (r2 = 0.9998) for sulphoraphane with insignificant matrix effect and high extraction recovery on spiked quality control (QC) samples. The intra- and inter-batch precisions and accuracy were within the acceptable limits, and both the analytes were found to be stable throughout the short term, long term and freeze thaw stability studies. The validated method was successfully applied for the simultaneous estimation of TAM and SFN in an oral pharmacokinetic study in female Wistar rats. This developed UPLC-MS/MS method could be a valuable tool for future pharmacokinetic interaction, therapeutic drug monitoring and pharmacokinetic characterization of novel formulations.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Abdur Rub
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Bioavailability Unit, Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Kuldeep Singh Patel
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University, Noida, Utter Pradesh 201303, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Ye X, Ma S, Zhang L, Zhao P, Hou X, Zhao L, Liang N. Trace enantioselective determination of triazole fungicides in honey by a sensitive and efficient method. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Determination of flubendiamide in honey at trace levels by using solid phase extraction and liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem 2017; 232:169-176. [DOI: 10.1016/j.foodchem.2017.03.162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 11/22/2022]
|
11
|
Russo M, Spagnuolo C, Russo GL, Skalicka-Woźniak K, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Crit Rev Food Sci Nutr 2017; 58:1391-1405. [PMID: 28001083 DOI: 10.1080/10408398.2016.1259983] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the past decades, extensive studies have reported the potential chemopreventive activity of sulforaphane, an isothiocyanate derived from glucoraphanin, occurring in large amounts in Brassica genus plants. Sulforaphane was found to be active against several forms of cancer. A growing body of data shows that sulforaphane acts against cancer at different levels, from development to progression, through pleiotropic effects. In this review, we discuss the available experimental and clinical data on the potential therapeutic role of sulforaphane against cancer. Its effects range from the protection of cells from DNA damage to the modulation of the cell cycle via pro-apoptotic, anti-angiogenesis and anti-metastasis activities. At molecular level, sulforaphane modulates cellular homeostasis via the activation of the transcription factor Nrf2. Although data from clinical studies are limited, sulforaphane remains a good candidate in the adjuvant therapy based on natural molecules against several types of cancer.
Collapse
Affiliation(s)
- Maria Russo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Carmela Spagnuolo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Gian Luigi Russo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Krystyna Skalicka-Woźniak
- b Department of Pharmacognosy with Medicinal Plants Unit , Medical University of Lublin , Lublin , Poland
| | - Maria Daglia
- c Department of Drug Sciences , Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia , Italy
| | - Eduardo Sobarzo-Sánchez
- d Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry , Faculty of Pharmacy, University of Santiago de Compostela , Spain
| | - Seyed Fazel Nabavi
- e Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Seyed Mohammad Nabavi
- e Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
Kokotou MG, Revelou PK, Pappas C, Constantinou-Kokotou V. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli. Food Chem 2017; 237:566-573. [PMID: 28764036 DOI: 10.1016/j.foodchem.2017.05.139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/16/2017] [Accepted: 05/28/2017] [Indexed: 11/27/2022]
Abstract
Broccoli is a rich source of bioactive compounds. Among them, sulforaphane and indole-3-carbinol have attracted a lot of attention, since their consumption is associated with reduced risk of cancer. In this work, the development of an efficient and direct method for the simultaneous determination of sulforaphane and indole-3-carbinol in broccoli using UPLC-HRMS/MS is described. The correlation coefficient, and limits of detection (LOD) and quantification (LOQ) were 0.993, 0.77mg/L and 2.35mg/L for sulforaphane and 0.997, 0.42mg/L, 1.29mg/L for indole-3-carbinol, respectively. The content of sulforaphane and indole-3-carbinol varied between 72±9-304±2mg and 77±1-117±3mg per 100g of fresh florets, respectively. Taking into consideration the differences in cultivar, geography, season and environmental factors, the results agreed with values published in the literature using other techniques.
Collapse
Affiliation(s)
- Maroula G Kokotou
- Chemical Laboratories, Agricultural University of Athens, Iera odos 75, Athens 11855, Greece
| | | | - Christos Pappas
- Chemical Laboratories, Agricultural University of Athens, Iera odos 75, Athens 11855, Greece
| | | |
Collapse
|
13
|
Ares AM, Ayuso I, Bernal JL, Nozal MJ, Bernal J. Trace analysis of sulforaphane in bee pollen and royal jelly by liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1012-1013:130-6. [DOI: 10.1016/j.jchromb.2016.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 11/24/2022]
|