1
|
Kotsiou K, Terzidis MA, Papageorgiou M. Effect of Baking Conditions on Mycotoxin Levels in Flatbreads Prepared from Artificially Contaminated Doughs. Foods 2025; 14:910. [PMID: 40231926 PMCID: PMC11941633 DOI: 10.3390/foods14060910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/16/2025] Open
Abstract
This study investigated the impact of baking conditions on mycotoxin content in Greek pita bread, a single-layered flatbread baked at high temperatures for short time intervals. Dough samples were artificially contaminated with a multi-mycotoxin mixture, including aflatoxins (AFs) G2, G1, B2, and B1; ochratoxin A (OTA); deoxynivalenol (DON); and zearalenone (ZEA). Flatbreads were baked under three temperature-time combinations (220, 270, and 320 °C for 4, 2, and 1 min, respectively), with additional evaluation of a parbaking process (baking halted at 75% of the total time for each respective temperature, bread was stored at -18 °C, then bread was baked for 3 min at 180 °C). A QuEChERS-LC-MS/MS method was implemented for the determination of mycotoxins. The results demonstrated varying degrees of thermal degradation, with AFs B1 and G1 showing the highest decrease (39% on average), followed by AFG2, AFB2, ZEA, and DON (16-25%), while OTA remained relatively thermostable. Multivariate analyses classified flatbreads into two groups: higher baking temperatures and parbaking favored reductions in AFG1, AFG2, ZEA, OTA, and AFB2 levels while longer baking times at lower temperatures favored DON and AFB1 reduction. These findings provide insights for optimizing baking conditions to improve food safety in industrial and home-baking applications.
Collapse
Affiliation(s)
- Kali Kotsiou
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece;
| | - Michael A. Terzidis
- Laboratory of Chemical Biology, Department of Nutritional Sciences and Dietetics, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece;
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece;
| |
Collapse
|
2
|
Ji X, He Y, Xiao Y, Liang Y, Yang W, Xiong L, Guo C, Zhang J, Wang X, Yang H. Distribution and safety evaluation of deoxynivalenol and its derivatives throughout the wheat product processing chain. Food Res Int 2024; 192:114784. [PMID: 39147488 DOI: 10.1016/j.foodres.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The distribution of deoxynivalenol (DON) and its derivatives 3-acetyldeoxynivalenol (3-Ac-DON) and 15-acetyldeoxynivalenol (15-Ac-DON) throughout the wheat processing chain were systemically evaluated by one-to-one corresponding studies of the whole processing chain. DON and its derivatives were determined by liquid chromatography-mass spectrometry (LC-MS/MS) in wheat grains and corresponding wheat bran, wheat flour, and semi-finished and finished wheat flour-based products. This investigation showed that wheat grain processing to wheat flour significantly decreased the levels of DON by approximately 52.7%-68.2%. Wheat flour processing of wheat flour-based products decreased the DON concentration by approximately 7.0%-70.6%. Among the processing methods, biscuit making showed the largest reduction (70.6%). The co-occurrence frequency of DON with low levels of 3-Ac-DON and 15-Ac-DON was significantly greater in wheat grains and wheat bran than in wheat flour. For wheat flour-based products, only the distribution pattern of 3-Ac-DON was observable in processed wheat flour products prepared using grains heavily contaminated with DON. In China, to the best of our knowledge, the processing factors (PFs) of DON in wheat flour and wheat flour-based products were systematically evaluated for the first time. The average PF of DON was 0.35 for wheat flour and the average PFs were 0.37-0.84 for wheat flour-based products, with biscuits having the smallest PF (0.37), indicating DON significantly decreasing in biscuit making. Furthermore, dietary exposure assessment of DON indicated an acceptable overall health risk in Chinese consumers, with the highest exposure being observed in infants and young children. This study provides important references for classified management of DON limits in wheat and its various products in China.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yeyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ying Liang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Weikang Yang
- Yangzhou Fangguang Food Co., Ltd, Yangzhou, 225100, China
| | - Lina Xiong
- Beingmate (Hangzhou) Food Research Institute Co., Ltd., Hangzhou 310057, Zhejiang, China
| | - Cheng Guo
- Yangzhou Fangguang Food Co., Ltd, Yangzhou, 225100, China
| | - Jiahong Zhang
- Beingmate (Hangzhou) Food Research Institute Co., Ltd., Hangzhou 310057, Zhejiang, China
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
3
|
Recent advances on formation, transformation, occurrence, and analytical strategy of modified mycotoxins in cereals and their products. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
The effect of technological processes on contamination with B-class trichothecenes and quality of spring wheat products from grain harvested at different times. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:788-802. [PMID: 35323092 DOI: 10.1080/19440049.2022.2036823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The study aimed to investigate the effect of technological processes on deoxynivalenol (DON), 3-acetyl-deoxynivalenol (3-ADON) and 15-acetyl-deoxynivalenol (15-ADON) concentrations and quality of spring wheat products from grain harvested at different times. In this study, 408 samples were analysed for DON, 3-ADON and 15-ADON contamination by the HPLC method with UV detection. Delays in harvesting due to cool and rainy weather conditions resulted in increased DON, 3-ADON and 15-ADON levels. The highest DON concentrations were determined in bran. Higher DON concentrations in the bran indicate the protective function of the grain hull. On the other hand, the highest levels of minerals have been found in bran and whole grain flours, highlighting the importance of consuming these milling fractions as a mineral source with sustained health benefits. Our results showed that DON is stable at 170 °C, and high DON levels in whole-meal flour and white flour could not be converted or decomposed during baking. The levels of 3-ADON and 15-ADON in whole-meal flour bread and white flour bread were significantly reduced but not completely removed. The levels of DON and its derivatives 3-ADON and 15-ADON were significantly reduced in starch and gluten produced from contaminated whole meal flour; however, the washing process did not completely eliminate these toxic compounds. The concentrations of mycotoxins in starch and gluten remained relatively high. Negative correlation was found in highly contaminated samples between DON and bread baking properties. Also, inverse relationship was found between high mycotoxin concentrations and mineral element content in white flour.
Collapse
|
5
|
Hole A, Rud I, Sahlstrøm S, Ivanova L, Eriksen G, Divon H. Heat-induced reduction of deoxynivalenol and its modified forms during flaking and cooking of oat. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Deoxynivalenol (DON) and its modified forms deoxynivalenol-3-glucoside (DON-3G) and 3-acetyl-deoxynivalenol (3-ADON) are common contaminants in Norwegian oats. In order to provide more information about the fate of these mycotoxins during oat processing, the levels of DON, DON-3G, 3-ADON and the sum of them (total DON) were determined using LC-HRMS/MS at different processing steps. Oat groat was softened by either steaming or conditioning, rolled into flakes of two thicknesses, and subsequently cooked to produce flake porridges. Flour of oat groat (untreated or kilned) was cooked to flour porridges. The flaking process had major effect on the mycotoxin levels in resulting flakes, with significant impact for type of softening regime, but not for flake size. Steam-softening caused the largest reduction of DON, DON-3G and total DON in flakes, retaining 41, 60 and 46%, respectively, compared to oat groat. In contrast, 3-ADON in flakes was most reduced by conditioning, to 29% of the levels in oat groat. Cooking to porridge from flakes did not result in any additional mycotoxin reduction, though significant impact of flake size was shown in the final porridges, with highest reduction of total DON in the porridges originating from steamed thick flakes. Cooking porridge from untreated oat flour gave significant reduction in mycotoxin levels, however not for kilned oat flour which had already undergone reduction during kilning. In conclusion, the study shows that processes involving heat-treatment, i.e. kilning, steaming or cooking, efficiently reduced total DON in oats during flaking and porridge cooking, and reduction is dependent on previous processing steps.
Collapse
Affiliation(s)
- A.S. Hole
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433 Ås, Norway
| | - I. Rud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433 Ås, Norway
| | - S. Sahlstrøm
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Osloveien 1, 1433 Ås, Norway
| | - L. Ivanova
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| | - G.S. Eriksen
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| | - H.H. Divon
- Norwegian Veterinary Institute, Elizabeth Stephansens vei 1, 1433 Ås, Norway
| |
Collapse
|
6
|
Jorquera-Pereira D, Pavón-Pérez J, Ríos-Gajardo G. Identification of type B trichothecenes and zearalenone in Chilean cereals by planar chromatography coupled to mass spectroscopy. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1778-1787. [PMID: 34254899 DOI: 10.1080/19440049.2021.1948618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High-performance thin-layer chromatography (HPTLC) and HPTLC coupled with mass spectrometry (MS) methods were described for the simultaneous determination of zearalenone (ZEA); type B trichothecenes (TCT-B); nivalenol (NIV) and deoxynivalenol (DON) along with its acetylated derivatives: 3-acetyldeoxynivalenol (3-ADON) and 15-acetyldeoxynivalenol (15-ADON). The extract samples were cleaned-up with Bond Elut Mycotoxin® solid-phase extraction cartridges. Then, separation was performed on HPTLC silica gel 60 F254 plates using toluene, ethyl acetate and formic acid (1:8:1 v/v/v) as mobile phase. Derivatisation was then performed with 10% aluminium trichloride in 50% methanol. Mycotoxin standards and spiked cereals grains were identified by UV spots at 366 nm, with retention factors (RF) of 0.20 (NIV), 0.39 (DON), 0.45 (15-ADON), 0.50 (3-ADON) and 0.60 (ZEA). Some parameters of validation were determined. Calibration data (n = 5) fitted a linear regression model with determination coefficients, R2 > 0.99. The recovery was determined in triplicate at two levels, ranging from 84.3 ± 2.2% to 114.2 ± 11.7%. Detection limits ranged from 80 to 120 μg kg-1 and quantification limits ranged from 120.0 to 200 μg kg-1. The analysis by HPTLC/electrospray (ESI)-MS in negative mode confirmed the presence of TCT-B and ZEA standards in Chilean cereals with mass signals at m/z 355, 371, 337, and 317 for DON, NIV, 3-ADON and 15-ADON, and ZEA, respectively.
Collapse
Affiliation(s)
- Diego Jorquera-Pereira
- Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Interdisciplinary Group of Marine Biotechnology (GIBMAR), Center for Biotechnology, University of Concepcion, Concepcion, Chile.,Interdisciplinary Research Laboratory in Mycotoxins, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Jessy Pavón-Pérez
- Interdisciplinary Group of Marine Biotechnology (GIBMAR), Center for Biotechnology, University of Concepcion, Concepcion, Chile
| | - Gisela Ríos-Gajardo
- Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Interdisciplinary Group of Marine Biotechnology (GIBMAR), Center for Biotechnology, University of Concepcion, Concepcion, Chile.,Interdisciplinary Research Laboratory in Mycotoxins, Department of Food Science and Technology, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| |
Collapse
|
7
|
Feizollahi E, Roopesh MS. Mechanisms of deoxynivalenol (DON) degradation during different treatments: a review. Crit Rev Food Sci Nutr 2021; 62:5903-5924. [PMID: 33729830 DOI: 10.1080/10408398.2021.1895056] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deoxynivalenol (DON) is one of the main trichothecenes, that causes health-related issues in humans and animals and imposes considerable financial loss to the food industry each year. Numerous treatments have been reported in the literature on the degradation of DON in food products. These treatments include thermal, chemical, biological/enzymatic, irradiation, light, ultrasound, ozone, and atmospheric cold plasma treatments. Each of these methods has different degradation efficacy and degrades DON by a distinct mechanism, which leads to various degradation byproducts with different toxicity. This manuscript focuses to review the degradation of DON by the aforementioned treatments, the chemical structure and toxicity of the byproducts, and the degradation pathway of DON. Based on the type of treatment, DON can be degraded to norDONs A-F, DON lactones, and ozonolysis products or transformed into de-epoxy deoxynivalenol, DON-3-glucoside, 3-acetyl-DON, 7-acetyl-DON, 15-acetyl-DON, 3-keto-DON, or 3-epi-DON. DON is a major problem for the grain industry and the studies focusing on DON degradation mechanisms could be helpful to select the best method and overcome the DON contamination in grains.
Collapse
Affiliation(s)
- Ehsan Feizollahi
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - M S Roopesh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Han L, Li Y, Jiang J, Li R, Fan G, Lei Z, Wang H, Wang Z, Zhang W. Preparation and characterisation of monoclonal antibodies against deoxynivalenol. ITALIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1080/1828051x.2020.1763861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Li Han
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuetao Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Renfeng Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Guoying Fan
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhuang Lei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Haojie Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ziliang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
9
|
Conversion of Deoxynivalenol-3-Glucoside to Deoxynivalenol during Chinese Steamed Bread Processing. Toxins (Basel) 2020; 12:toxins12040225. [PMID: 32260237 PMCID: PMC7232505 DOI: 10.3390/toxins12040225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
We reported the conversion of deoxynivalenol-3-glucoside (D3G) to deoxynivalenol (DON) during Chinese steamed bread (CSB) processing by artificial D3G contamination. Meanwhile, the effects of enzymes in wheat flour and those produced from yeast, along with the two main components in wheat flour-wheat starch and wheat gluten-on the conversion profiles of D3G were evaluated. The results showed D3G could convert to DON during CSB processing, and the conversion began with dough making and decreased slightly after fermentation and steaming. However, there was no significant difference in three stages. When yeast was not added, or enzyme-deactivated wheat flour was used to simulate CSB process, and whether yeast was added or not, D3G conversion could be observed, and the conversion was significantly higher after dough making. Likewise, D3G converted to DON when wheat starch and wheat gluten were processed to CSB, and the conversion in wheat starch was higher.
Collapse
|
10
|
Wan J, Chen B, Rao J. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr Rev Food Sci Food Saf 2020; 19:928-953. [PMID: 33331688 DOI: 10.1111/1541-4337.12546] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 12/30/2022]
Abstract
Mycotoxins contamination in cereal-based food is ubiquitous according to systematic review of the scientific documentation of worldwide mycotoxin contamination in cereal and their products between 2008 and 2018, thus representing food safety issue especially in developing tropical countries. Food processing plays a vital role to prevent mycotoxin contamination in food. Therefore, it is with great urgency to develop strategies to inhibit fungi growth and mycotoxin production during food processing. This review begins by discussing physicochemical properties of five most common mycotoxins (aflatoxins, fumonisins, ochratoxins, deoxynivalenol, and zearalenone) found in cereal grains, regulation for mycotoxins in food, and their potential negative impact on human health. The fate of mycotoxins during major cereal-based food processing including milling, breadmaking, extrusion, malting, and brewing was then summarized. In the end, traditional mitigation strategies including physical and chemical and potential application of biocontrol agent and essential oil nanoemulsions that can be applied during food processing were discussed. It indicated that no single method is currently available to completely prevent mycotoxin contamination in cereal foods.
Collapse
Affiliation(s)
- Jing Wan
- Department of Plant Sciences, North Dakota State University, Fargo, ND.,School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND
| |
Collapse
|
11
|
Guo H, Ji J, Wang J, Sun X. Deoxynivalenol: Masked forms, fate during food processing, and potential biological remedies. Compr Rev Food Sci Food Saf 2020; 19:895-926. [DOI: 10.1111/1541-4337.12545] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and NutritionJiangnan University Wuxi China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and NutritionJiangnan University Wuxi China
| | - Jia‐sheng Wang
- Department of Environmental ToxicologyUniversity of Georgia Athens Georgia
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and NutritionJiangnan University Wuxi China
| |
Collapse
|
12
|
Wu L, Zhang H, Hu X, Zhang Y, Sun L, Li W, Wang B. Deacetylation of 3-acetyl-deoxynivalenol in wheat flour is mediated by water-soluble proteins during the making of Chinese steamed bread. Food Chem 2020; 303:125341. [PMID: 31442898 DOI: 10.1016/j.foodchem.2019.125341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/28/2022]
Abstract
To find the determining factors for 3-acetyl-deoxynivalenol (3-ADON) deacetylation during wheat-based food production, wheat flours with different heat treatments, different matrixes of the starch-gluten mixture, and different protein fractions (Osborne classification) were evaluated. The deacetylation behavior of 3-ADON was significantly suppressed for heat-treated wheat flours, indicating that heating induced change of the functional or chemical properties of wheat grain components, especially for proteins. Among the different matrixes, only 3% of the 3-ADON in starch was converted to DON, however, this value reached 60-75% for wheat flour. The results showed that proteins were responsible for the deacetylation of 3-ADON. After separation, only albumins mediated the deacetylation of 3-ADON into DON in four protein fractions. The proteins were identified by LC-MS/MS, and the results suggested that cytochrome P450, acetylesterase and histone deacetylase were the potential targeted enzymes that mediated the deacetylation of 3-ADON during dough preparation for wheat-based food production.
Collapse
Affiliation(s)
- Li Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Huijie Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Xuexu Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Yan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Lijuan Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Weixi Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Bujun Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
13
|
Foroud NA, Baines D, Gagkaeva TY, Thakor N, Badea A, Steiner B, Bürstmayr M, Bürstmayr H. Trichothecenes in Cereal Grains - An Update. Toxins (Basel) 2019; 11:E634. [PMID: 31683661 PMCID: PMC6891312 DOI: 10.3390/toxins11110634] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023] Open
Abstract
Trichothecenes are sesquiterpenoid mycotoxins produced by fungi from the order Hypocreales, including members of the Fusarium genus that infect cereal grain crops. Different trichothecene-producing Fusarium species and strains have different trichothecene chemotypes belonging to the Type A and B class. These fungi cause a disease of small grain cereals, called Fusarium head blight, and their toxins contaminate host tissues. As potent inhibitors of eukaryotic protein synthesis, trichothecenes pose a health risk to human and animal consumers of infected cereal grains. In 2009, Foroud and Eudes published a review of trichothecenes in cereal grains for human consumption. As an update to this review, the work herein provides a comprehensive and multi-disciplinary review of the Fusarium trichothecenes covering topics in chemistry and biochemistry, pathogen biology, trichothecene toxicity, molecular mechanisms of resistance or detoxification, genetics of resistance and breeding strategies to reduce their contamination of wheat and barley.
Collapse
Affiliation(s)
- Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Danica Baines
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada.
| | - Tatiana Y Gagkaeva
- Laboratory of Mycology and Phytopathology, All-Russian Institute of Plant Protection (VIZR), St. Petersburg, Pushkin 196608, Russia.
| | - Nehal Thakor
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada.
| | - Ana Badea
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada.
| | - Barbara Steiner
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Maria Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| | - Hermann Bürstmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln 3430, Austria.
| |
Collapse
|
14
|
Stadler D, Lambertini F, Woelflingseder L, Schwartz-Zimmermann H, Marko D, Suman M, Berthiller F, Krska R. The Influence of Processing Parameters on the Mitigation of Deoxynivalenol during Industrial Baking. Toxins (Basel) 2019; 11:E317. [PMID: 31167404 PMCID: PMC6628453 DOI: 10.3390/toxins11060317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/03/2022] Open
Abstract
Deoxynivalenol (DON), a frequent contaminant of flour, can be partially degraded by baking. It is not clear: (i) How the choice of processing parameter (i.e., ingredients, leavening, and baking conditions) affects DON degradation and thus (ii) how much DON can be degraded during the large-scale industrial production of bakery products. Crackers, biscuits, and bread were produced from naturally contaminated flour using different processing conditions. DON degradation during baking was quantified with the most accurate analytical methodology available for this Fusarium toxin, which is based on liquid chromatography tandem mass spectrometry. Depending on the processing conditions, 0-21%, 4-16%, and 2-5% DON were degraded during the production of crackers, biscuits, and bread, respectively. A higher NaHCO3 concentration, baking time, and baking temperature caused higher DON degradation. NH4HCO3, yeast, vinegar, and sucrose concentration as well as leavening time did not enhance DON degradation. In vitro cell viability assays confirmed that the major degradation product isoDON is considerably less toxic than DON. This proves for the first time that large-scale industrial baking results in partial detoxification of DON, which can be enhanced by process management.
Collapse
Affiliation(s)
- David Stadler
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
| | - Francesca Lambertini
- Barilla G. R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122 Parma, Italy.
| | - Lydia Woelflingseder
- Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria.
| | - Heidi Schwartz-Zimmermann
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria.
| | - Michele Suman
- Barilla G. R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122 Parma, Italy.
| | - Franz Berthiller
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz-Str. 20, 3430 Tulln, Austria.
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, University Road, Belfast BT7 1NN, Northern Ireland, UK.
| |
Collapse
|
15
|
Changes in masked forms of deoxynivalenol and their co-occurrence with culmorin in cereal-based products: A systematic review and meta-analysis. Food Chem 2019; 294:587-596. [PMID: 31126504 DOI: 10.1016/j.foodchem.2019.05.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/26/2019] [Accepted: 05/07/2019] [Indexed: 11/24/2022]
Abstract
This study was aimed to evaluate the fate of D3G, 3-ADON, and 15-ADON during various processing steps (milling, fermentation, baking and cooking with water) of different cereal-based products, as well as the co-occurrence of culmorin (CUL) and its derivatives (15-Hydroxy-CUL and 5-Hydroxy-CUL. Some databases such as Science Direct, PubMed, Scopus, and Embase were screened to collect the relevant published papers between January 1983 to October 2018, and 23 articles with 319 data were included. The baking resulted in reductions in the concentration of all types of investigated masked mycotoxins, i.e., 15-ADON (-25%) > 3-ADON (-15%) > D3G (-6%). Also, rank order of CUL and its derivatives based on occurrence was CUL (70%) > 15-Hydroxy-CUL (47%) > 5-Hydroxy-CUL (15%) and their rank based on their concentration was 5-Hydroxy-CUL (99.21 µg/kg) > CUL (48.84 µg/kg) > 15-Hydroxy-CUL (9.39 µg/kg) > Hydroxy -CUL (0.06 µg/kg) > 12-Hydroxy-CUL (0.05 µg/kg) > 14-Hydroxy-CUL (0.01 µg/kg).
Collapse
|
16
|
Stadler D, Lambertini F, Bueschl C, Wiesenberger G, Hametner C, Schwartz-Zimmermann H, Hellinger R, Sulyok M, Lemmens M, Schuhmacher R, Suman M, Berthiller F, Krska R. Untargeted LC–MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread. Food Chem 2019; 279:303-311. [DOI: 10.1016/j.foodchem.2018.11.150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022]
|
17
|
Arrúa Alvarenga AA, Moura Mendes Arrua J, Cazal Martínez CC, Arrúa Alvarenga PD, Fernández Ríos D, Pérez Estigarribia PE, Kohli MM. Deoxynivalenol screening in wheat‐derived products in Gran Asunción, Paraguay. J Food Saf 2018. [DOI: 10.1111/jfs.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Juliana Moura Mendes Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Dirección General de Investigación Científica y Tecnológica, Universidad Nacional de Asunción San Lorenzo, Paraguay
| | | | | | | | | | - Man Mohan Kohli
- Cámara Paraguaya de Exportadores y Comercializadores de Cereales y Oleaginosas Asunción, Paraguay
| |
Collapse
|
18
|
Tibola CS, de Miranda MZ, Paiva FF, Fernandes JMC, Guarienti EM, Nicolau M. Effect of breadmaking process on mycotoxin content in white and whole wheat breads. Cereal Chem 2018. [DOI: 10.1002/cche.10079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Flávia Fernandes Paiva
- Department of Agroindustrial Science and Technology; Federal University of Pelotas; Capão do Leão RS Brazil
| | | | | | | |
Collapse
|
19
|
Schaarschmidt S, Fauhl-Hassek C. The Fate of Mycotoxins During the Processing of Wheat for Human Consumption. Compr Rev Food Sci Food Saf 2018; 17:556-593. [PMID: 33350125 DOI: 10.1111/1541-4337.12338] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 01/10/2023]
Abstract
Mycotoxins are a potential health threat in cereals including wheat. In the European Union (EU), mycotoxin maximum levels are laid down for cereal raw materials and final food products. For wheat and wheat-based products, the EU maximum levels apply to deoxynivalenol (DON), zearalenone, aflatoxins, and ochratoxin A. This review provides a comprehensive overview on the different mycotoxins and their legal limits and on how processing of wheat can affect such contaminants, from raw material to highly processed final products, based on relevant scientific studies published in the literature. The potential compliance with EU maximum levels is discussed. Of the four mycotoxins regulated in wheat-based foods in the EU, most data are available for DON, whereas aflatoxins were rarely studied in the processing of wheat. Furthermore, available data on the effect of processing are outlined for mycotoxins not regulated by EU law-including modified and emerging mycotoxins-and which cover DON derivatives (DON-3-glucoside, mono-acetyl-DONs, norDONs, deepoxy-DON), nivalenol, T-2 and HT-2 toxins, enniatins, beauvericin, moniliformin, and fumonisins. The processing steps addressed in this review cover primary processing (premilling and milling operations) and secondary processing procedures (such as fermentation and thermal treatments). A special focus is on the production of baked goods, and processing factors for DON in wheat bread production were estimated. For wheat milling products derived from the endosperm and for white bread, compliance with legal requirements seems to be mostly achievable when applying good practices. In the case of wholemeal products, bran-enriched products, or high-cereal low-moisture bakery products, this appears to be challenging and improved technology and/or selection of high-quality raw materials would be required.
Collapse
Affiliation(s)
- Sara Schaarschmidt
- Dept. Safety in the Food Chain, German Federal Inst. for Risk Assessment (BfR), Max-Dohrn-St. 8-10, D-10589 Berlin, Germany
| | - Carsten Fauhl-Hassek
- Dept. Safety in the Food Chain, German Federal Inst. for Risk Assessment (BfR), Max-Dohrn-St. 8-10, D-10589 Berlin, Germany
| |
Collapse
|
20
|
Development of a Novel Immunoaffinity Column for the Determination of Deoxynivalenol and Its Acetylated Derivatives in Cereals. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1211-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Torović L. Fusarium toxins in corn food products: a survey of the Serbian retail market. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1596-1609. [PMID: 29279009 DOI: 10.1080/19440049.2017.1419581] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper presents data on the occurrence of Fusarium toxins - zearalenone (ZEA), deoxynivalenol (DON) and fumonisins (FUMs) B1 and B2 - in corn flours and corn flakes marketed in Serbia. A total of 71 samples were collected over 2013-2016 and analysed using HPLC with UV or fluorescence detection. In the case of corn flours, none of the samples taken in 2013 exhibited the presence of ZEA or DON, whereas 90% were positive for FUMs. In 2015, occurrence was very high: ZEA 93%, DON 86% and FUMs 100% (mean 43.3, 322.6 and 323.0 μg kg-1, respectively), with 21% of the samples exceeding the maximum level for ZEA and 7% for DON and FUMs. In 2016, a lower occurrence was recorded in the case of ZEA (75%) and DON (38%), with drastically lower mean contamination levels (six- and 10-fold, respectively), while FUMs stayed at 97%, with twofold lower mean. The maximum level was exceeded only for ZEA (3%). The frequency of ZEA-DON-FB1 co-occurrence was 86% in 2015 and 25% in 2016. Regarding corn flakes, occurrence summarised for the study period was 87% ZEA, 73% FUMs and 40% DON. One sample (7%) exceeded the maximum levels for both ZEA and DON. Observed occurrence changes were in agreement with the climatic conditions during corn growing seasons preceding the market release of the processed products.
Collapse
Affiliation(s)
- Ljilja Torović
- a University of Novi Sad , Faculty of Medicine, Department of Pharmacy , Novi Sad , Serbia.,b Institute of Public Health of Vojvodina , Center for Hygiene and Human Ecology , Novi Sad , Serbia
| |
Collapse
|
22
|
Axel C, Zannini E, Arendt EK. Mold spoilage of bread and its biopreservation: A review of current strategies for bread shelf life extension. Crit Rev Food Sci Nutr 2018; 57:3528-3542. [PMID: 26980564 DOI: 10.1080/10408398.2016.1147417] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Microbial spoilage of bread and the consequent waste problem causes large economic losses for both the bakery industry and the consumer. Furthermore the presence of mycotoxins due to fungal contamination in cereals and cereal products remains a significant issue. The use of conventional chemical preservatives has several drawbacks, necessitating the development of clean-label alternatives. In this review, we describe current research aiming to extend the shelf life of bread through the use of more consumer friendly and ecologically sustainable preservation techniques as alternatives to chemical additives. Studies on the in situ-production/-expression of antifungal compounds are presented, with special attention given to recent developments over the past decade. Sourdough fermented with antifungal strains of lactic acid bacteria (LAB) is an area of increasing focus and serves as a high-potential biological ingredient to produce gluten-containing and gluten-free breads with improved nutritional value, quality and safety due to shelf-life extension, and is in-line with consumer's demands for more products containing less additives. Other alternative biopreservation techniques include the utilization of antifungal peptides, ethanol and plant extracts. These can be added to bread formulations or incorporated in antimicrobial films for active packaging (AP) of bread. This review outlines recent progress that has been made in the area of bread biopreservation and future perspectives in this important area.
Collapse
Affiliation(s)
- Claudia Axel
- a School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| | - Emanuele Zannini
- a School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| | - Elke K Arendt
- a School of Food and Nutritional Sciences , University College Cork , Cork , Ireland
| |
Collapse
|
23
|
Jiang D, Chen J, Li F, Li W, Yu L, Zheng F, Wang X. Deoxynivalenol and its acetyl derivatives in bread and biscuits in Shandong province of China. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2017; 11:43-48. [PMID: 29125057 DOI: 10.1080/19393210.2017.1402824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the present study, 100 commercial breads and biscuits were investigated for the occurrence of deoxynivalenol (DON) and its acetylated derivatives 3-acetyldeoxynivalenol (3-Ac-DON) and 15-acetyldeoxynivalenol (15-Ac-DON). The target mycotoxins were determined by isotope dilution ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). DON was determined in 95% of the test samples with a mean value of 153.3 µg/kg. Compared with DON, 3-Ac-DON and 15-Ac-DON were far less frequently detected, with mean values of 1.14 and 0.37 µg/kg, respectively. The estimated daily intakes of the sum of DON and its derivatives in breads and biscuits were 0.0059 and 0.0313 µg/kg bw/day, respectively, which was within the group provisional tolerable daily intake of 1.0 µg/kg bw/day set by the Joint FAO/WHO Expert Committee on Food Additives. In the future, systematic monitoring programmes of DON and its derivatives in relevant foodstuffs are still necessary for food safety and human health.
Collapse
Affiliation(s)
- Dafeng Jiang
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Jindong Chen
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Fenghua Li
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Wei Li
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Lianlong Yu
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Fengjia Zheng
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| | - Xiaolin Wang
- a Department of Chemistry and Physics, Shandong Center for Food Safety Risk Assessment , Shandong Center for Disease Control and Prevention , Jinan , People's Republic of China.,b Academy of Preventive Medicine , Shandong University , Jinan , People's Republic of China
| |
Collapse
|
24
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Wallace H, De Saeger S, Eriksen GS, Farmer P, Fremy JM, Gong YY, Meyer K, Naegeli H, Parent-Massin D, Rietjens I, van Egmond H, Altieri A, Eskola M, Gergelova P, Ramos Bordajandi L, Benkova B, Dörr B, Gkrillas A, Gustavsson N, van Manen M, Edler L. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J 2017; 15:e04718. [PMID: 32625635 PMCID: PMC7010102 DOI: 10.2903/j.efsa.2017.4718] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin primarily produced by Fusarium fungi, occurring predominantly in cereal grains. Following the request of the European Commission, the CONTAM Panel assessed the risk to animal and human health related to DON, 3-acetyl-DON (3-Ac-DON), 15-acetyl-DON (15-Ac-DON) and DON-3-glucoside in food and feed. A total of 27,537, 13,892, 7,270 and 2,266 analytical data for DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside, respectively, in food, feed and unprocessed grains collected from 2007 to 2014 were used. For human exposure, grains and grain-based products were main sources, whereas in farm and companion animals, cereal grains, cereal by-products and forage maize contributed most. DON is rapidly absorbed, distributed, and excreted. Since 3-Ac-DON and 15-Ac-DON are largely deacetylated and DON-3-glucoside cleaved in the intestines the same toxic effects as DON can be expected. The TDI of 1 μg/kg bw per day, that was established for DON based on reduced body weight gain in mice, was therefore used as a group-TDI for the sum of DON, 3-Ac-DON, 15-Ac-DON and DON-3-glucoside. In order to assess acute human health risk, epidemiological data from mycotoxicoses were assessed and a group-ARfD of 8 μg/kg bw per eating occasion was calculated. Estimates of acute dietary exposures were below this dose and did not raise a health concern in humans. The estimated mean chronic dietary exposure was above the group-TDI in infants, toddlers and other children, and at high exposure also in adolescents and adults, indicating a potential health concern. Based on estimated mean dietary concentrations in ruminants, poultry, rabbits, dogs and cats, most farmed fish species and horses, adverse effects are not expected. At the high dietary concentrations, there is a potential risk for chronic adverse effects in pigs and fish and for acute adverse effects in cats and farmed mink.
Collapse
|
25
|
Wu L, Qiu L, Zhang H, Sun J, Hu X, Wang B. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology. Toxins (Basel) 2017; 9:toxins9020057. [PMID: 28208576 PMCID: PMC5331436 DOI: 10.3390/toxins9020057] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/26/2017] [Accepted: 02/04/2017] [Indexed: 11/16/2022] Open
Abstract
Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) are the most common contaminants in cereals worldwide, causing a wide range of adverse health effects on animals and humans. Many environmental factors can affect the production of these mycotoxins. Here, we have used response surface methodology (RSM) to optimize the Fusarium graminearum strain 29 culture conditions for maximal toxin production. Three factors, medium pH, incubation temperature and time, were optimized using a Box-Behnken design (BBD). The optimized conditions for DON production were pH 4.91 and an incubation temperature of 23.75 °C for 28 days, while maximal ZEN production required pH 9.00 and an incubation temperature of 15.05 °C for 28 days. The maximum levels of DON and ZEN production were 2811.17 ng/mL and 23789.70 ng/mL, respectively. Considering the total level of DON and ZEN, desirable yields of the mycotoxins were still obtained with medium pH of 6.86, an incubation temperature of 17.76 °C and a time of 28 days. The corresponding experimental values, from the validation experiments, fitted well with these predictions. This suggests that RSM could be used to optimize Fusarium mycotoxin levels, which are further purified for use as potential mycotoxin standards. Furthermore, it shows that acidic pH is a determinant for DON production, while an alkaline environment and lower temperature (approximately 15 °C) are favorable for ZEN accumulation. After extraction, separation and purification processes, the isolated mycotoxins were obtained through a simple purification process, with desirable yields, and acceptable purity. The mycotoxins could be used as potential analytical standards or chemical reagents for routine analysis.
Collapse
Affiliation(s)
- Li Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
- Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Lijuan Qiu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
| | - Huijie Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
- Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Juan Sun
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
- Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Xuexu Hu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
- Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| | - Bujun Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St., Haidian District, Beijing 100081, China.
- Laboratory of Quality and Safety Risk Assessment for Cereal Products (Beijing), Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
26
|
Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing: a review study. Mycotoxin Res 2016; 33:79-91. [PMID: 27866369 DOI: 10.1007/s12550-016-0263-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/26/2016] [Accepted: 10/30/2016] [Indexed: 02/02/2023]
Abstract
Deoxynivalenol (DON), the most commonly occurring trichothecene in nature, may affect animal and human health through causing diarrhea, vomiting, gastrointestinal inflammation, and immunomodulation. DON-3-glucoside (DON-3G) as a major plant metabolite of the mycotoxin is another "emerging" food safety issue in recent years. Humans may experience potential health risks by consuming DON-contaminated food products. Thus, it is crucial for human and animal health to study also the degradation of DON and DON-3G during thermal food processing. Baking, boiling, steaming, frying, and extrusion cooking are commonly used during thermal food processing and have promising effects on the reduction of mycotoxins in food. For DON, however, the observed effects of these methods, as reported in numerous studies, are ambiguous and do not present a clear picture with regard to reduction or transformation. This review summarized the influence of thermal processing on the stability of DON and the formation of degradation/conversion products. Besides this, also a release of DON and DON-3G from food matrix as well as the release of DON from DON-3G during processing is discussed. In addition, some conflicting findings as reported from the studies on thermal processing as well as cause-effect relationships of the different thermal procedures are explored. Finally, the potential toxic profiles of DON degradation products are discussed as well when data are available.
Collapse
|
27
|
Vidal A, Sanchis V, Ramos AJ, Marín S. The fate of deoxynivalenol through wheat processing to food products. Curr Opin Food Sci 2016. [DOI: 10.1016/j.cofs.2016.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Wu L, Wang B. Transformation of deoxynivalenol and its acetylated derivatives in Chinese steamed bread making, as affected by pH, yeast, and steaming time. Food Chem 2016; 202:149-55. [DOI: 10.1016/j.foodchem.2016.01.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 12/17/2015] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
|
29
|
Generotti S, Cirlini M, Malachova A, Sulyok M, Berthiller F, Dall'Asta C, Suman M. Deoxynivalenol & Deoxynivalenol-3-Glucoside Mitigation through Bakery Production Strategies: Effective Experimental Design within Industrial Rusk-Making Technology. Toxins (Basel) 2015. [PMID: 26213969 PMCID: PMC4549723 DOI: 10.3390/toxins7082773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the scientific field, there is a progressive awareness about the potential implications of food processing on mycotoxins especially concerning thermal treatments. High temperatures may cause, in fact, transformation or degradation of these compounds. This work is aimed to study the fate of mycotoxins during bakery processing, focusing on deoxynivalenol (DON) and deoxynivalenol-3-glucoside (DON3Glc), along the chain of industrial rusk production. Starting from naturally contaminated bran, we studied how concentrations of DON and DON3Glc are influenced by modifying ingredients and operative conditions. The experiments were performed using statistical Design of Experiment (DoE) schemes to synergistically explore the relationship between mycotoxin reduction and the indicated processing transformation parameters. All samples collected during pilot plant experiments were analyzed with an LC-MS/MS multimycotoxin method. The obtained model shows a good fitting, giving back relevant information in terms of optimization of the industrial production process, in particular suggesting that time and temperature in baking and toasting steps are highly relevant for minimizing mycotoxin level in rusks. A reduction up to 30% for DON and DON3Glc content in the finished product was observed within an acceptable technological range.
Collapse
Affiliation(s)
- Silvia Generotti
- Department of Food Science, University of Parma, Parco Area delle Scienze 95/A, Parma 43124, Italy.
- Barilla G.R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122 Parma, Italy.
| | - Martina Cirlini
- Department of Food Science, University of Parma, Parco Area delle Scienze 95/A, Parma 43124, Italy.
| | - Alexandra Malachova
- Christian Doppler Laboratory for Mycotoxin Research and Center for Analytical Chemistry, Department IFA-Tulln, University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenzstr. 20, 3430 Tulln, Austria.
| | - Michael Sulyok
- Christian Doppler Laboratory for Mycotoxin Research and Center for Analytical Chemistry, Department IFA-Tulln, University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenzstr. 20, 3430 Tulln, Austria.
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Research and Center for Analytical Chemistry, Department IFA-Tulln, University of Natural Resources and Applied Life Sciences, Vienna, Konrad Lorenzstr. 20, 3430 Tulln, Austria.
| | - Chiara Dall'Asta
- Department of Food Science, University of Parma, Parco Area delle Scienze 95/A, Parma 43124, Italy.
| | - Michele Suman
- Barilla G.R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122 Parma, Italy.
| |
Collapse
|