1
|
Serra LA, Mendes TD, Marco JLD, de Almeida JRM. Application of Thermomyces lanuginosus polygalacturonase produced in Komagataella phaffii in biomass hydrolysis and textile bioscouring. Enzyme Microb Technol 2024; 177:110424. [PMID: 38479075 DOI: 10.1016/j.enzmictec.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/29/2024]
Abstract
In this work, the polygalacturonase (TL-PG1) from the thermophilic fungus Thermomyces lanuginosus was heterologously produced for the first time in the yeast Komagataella phaffii. The TL-PG1 was successfully expressed under the control of the AOX1 promoter and sequentially purified by His-tag affinity. The purified recombinant pectinase exhibited an activity of 462.6 U/mL toward polygalacturonic acid under optimal conditions (pH 6 and 55 ˚C) with a 2.83 mg/mL and 0.063 μmol/minute for Km and Vmax, respectively. When used as supplementation for biomass hydrolysis, TL-PG1 demonstrated synergy with the enzymatic cocktail Ctec3 to depolymerize orange citrus pulp, releasing 1.43 mg/mL of reducing sugar. In addition, TL-PG1 exhibited efficiency in fabric bioscouring, showing potential usage in the textile industry. Applying a protein dosage of 7 mg/mL, the time for the fabric to absorb water was 19.77 seconds (ten times faster than the control). Adding the surfactant Triton to the treatment allowed the reduction of the enzyme dosage by 50% and the water absorption time to 6.38 seconds. Altogether, this work describes a new versatile polygalacturonase from T. lanuginosus with the potential to be employed in the hydrolysis of lignocellulosic biomass and bioscouring.
Collapse
Affiliation(s)
- Luana Assis Serra
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergy, Brasília, Brazil; Graduate Program of Microbial Biology, Institute of Biology, University of Brasília, Brazil
| | | | | | - João Ricardo Moreira de Almeida
- Laboratory of Genetics and Biotechnology, EMBRAPA Agroenergy, Brasília, Brazil; Graduate Program of Microbial Biology, Institute of Biology, University of Brasília, Brazil.
| |
Collapse
|
2
|
Deng Q, Sun X, Gao D, Wang Y, Liu Y, Li N, Wang Z, Liu M, Wang J, Wang Q. Characterization of Two Novel Rumen-Derived Exo-Polygalacturonases: Catalysis and Molecular Simulations. Microorganisms 2023; 11:microorganisms11030760. [PMID: 36985333 PMCID: PMC10059216 DOI: 10.3390/microorganisms11030760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Pectinases are a series of enzymes that degrade pectin and have been used extensively in the food, feed, and textile industries. The ruminant animal microbiome is an excellent source for mining novel pectinases. Two polygalacturonase genes, IDSPga28-4 and IDSPga28-16, from rumen fluid cDNA, were cloned and heterologously expressed. Recombinant IDSPGA28-4 and IDSPGA28-16 were stable from pH 4.0 to 6.0, with activities of 31.2 ± 1.5 and 330.4 ± 12.4 U/mg, respectively, against polygalacturonic acid. Hydrolysis product analysis and molecular dynamics simulation revealed that IDSPGA28-4 was a typical processive exo-polygalacturonase and cleaved galacturonic acid monomers from polygalacturonic acid. IDSPGA28-16 cleaved galacturonic acid only from substrates with a degree of polymerization greater than two, suggesting a unique mode of action. IDSPGA28-4 increased the light transmittance of grape juice from 1.6 to 36.3%, and IDSPGA28-16 increased the light transmittance of apple juice from 1.9 to 60.6%, indicating potential application in the beverage industry, particularly for fruit juice clarification.
Collapse
Affiliation(s)
- Qian Deng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaobao Sun
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Deying Gao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuting Wang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nuo Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhengguang Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mingqi Liu
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jiakun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou 310058, China
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-88982389
| |
Collapse
|
3
|
Hao MJ, Wu D, Xu Y, Tao XM, Li N, Yu XW. A Novel Endo-Polygalacturonase from Penicillium rolfsii with Prebiotics Production Potential: Cloning, Characterization and Application. Foods 2022; 11:3469. [PMID: 36360082 PMCID: PMC9656037 DOI: 10.3390/foods11213469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2024] Open
Abstract
In this study, a potential producer of prebiotics, a novel endo-polygalacturonase pePGA from Penicillium rolfsii BM-6, was successfully expressed in Komagataella phaffii, characterized and applied to produce pectic oligosaccharides. The optimum temperature and pH of pePGA were 60 °C and 6.0. The purified recombinant enzyme showed a good pH stability and was stable from pH 3.5 to 8.0. The Km, Vmax and kcat values of pePGA were 0.1569 g/L, 12,273 μmol/min/mg and 7478.4 s-1, respectively. More importantly, pePGA-POS, the pePGA hydrolysis products from commercial pectin, had good prebiotic and antibacterial activities in vitro. The pePGA-POS was able to significantly promote the growth of probiotics; meanwhile, the growth of Escherichia coli JM109, Staphylococcus aureus and Bacillus subtilis 168 was effectively inhibited by pePGA-POS. In addition, pePGA-POS also had the DPPH radical scavenging capacity. These properties of pePGA-POS make pePGA attractive for the production of prebiotics.
Collapse
Affiliation(s)
- Meng-Jie Hao
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dan Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiu-Mei Tao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Ning Li
- Guangzhou Puratos Food Co., Ltd., Guangzhou 511400, China
| | - Xiao-Wei Yu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Lu B, Xian L, Zhu J, Wei Y, Yang C, Cheng Z. A Novel Endo-Polygalacturonase from Penicillium oxalicum: Gene Cloning, Heterologous Expression and Its Use in Acidic Fruit Juice Extraction. J Microbiol Biotechnol 2022; 32:464-472. [PMID: 35001012 PMCID: PMC9628815 DOI: 10.4014/jmb.2112.12023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022]
Abstract
An endo-polygalacturonase (endo-PGase) exhibiting excellent performance during acidic fruit juice production would be highly attractive to the fruit juice industry. However, candidate endo-PGases for this purpose have rarely been reported. In this study, we expressed a gene from Penicillium oxalicum in Pichia pastoris. The recombinant enzyme PoxaEnPG28C had an optimal enzyme activity at pH 4.5 and 45°C and was stable at pH 3.0-6.5 and < 45°C. The enzyme had a specific activity of 4,377.65 ± 55.37 U/mg towards polygalacturonic acid, and the Km and Vmax values of PoxaEnPG28C were calculated as 1.64 g/l and 6127.45 U/mg, respectively. PoxaEnPG28C increased the light transmittance of orange, lemon, strawberry and hawthorn juice by 13.9 ± 0.3%, 29.4 ± 3.8%, 95.7 ± 10.2% and 79.8 ± 1.7%, respectively; it reduced the viscosity of the same juices by 25.7 ± 1.6%, 52.0 ± 4.5%, 48.2 ± 0.7% and 80.5 ± 2.3%, respectively, and it increased the yield of the juices by 24.5 ± 0.7%, 12.7 ± 2.2%, 48.5 ± 4.2% and 104.5 ± 6.4%, respectively. Thus, PoxaEnPG28C could be considered an excellent candidate enzyme for acidic fruit juice production. Remarkably, fruit juice production using hawthorn as an material was reported for the first time.
Collapse
Affiliation(s)
- Bo Lu
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, P.R. China
| | - Liang Xian
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530007, P.R. China
| | - Jing Zhu
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China
| | - Yunyi Wei
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China
| | - Chengwei Yang
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China
| | - Zhong Cheng
- Nanning University, 8 Longting Road, Nanning, Guangxi 530200, P.R. China,Corresponding author Phone: +86-771-5900891 Fax: +86-771-5900885 E-mail:
| |
Collapse
|
5
|
Application of Enzyme-Assisted Extraction for the Recovery of Natural Bioactive Compounds for Nutraceutical and Pharmaceutical Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073232] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Enzyme-assisted extraction (EAE) involves the use of hydrolytic enzymes for the degradation of the cell wall or other cell components. This supports the diffusion of the solvent into the plant or fungal material, leading to easier elution of its metabolites. This technique has been gaining increasing attention, as it is considered an eco-friendly and cost-effective improvement on classical or modern extraction methods. Its promising application in improving the recovery of different classes of bioactive metabolites (e.g., polyphenols, carotenoids, polysaccharides, proteins, components of essential oil, and terpenes) has been reported by many scientific papers. This review summarises information on the theoretical aspects of EAE (e.g., the components of the cell walls and the types of enzymes used) and the most recent discoveries in the effective involvement of enzyme-assisted extraction of natural products (plants, mushrooms, and animals) for nutraceutical and pharmaceutical applications.
Collapse
|
6
|
Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02678-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ibrahim E, Mahmoud A, Jones KD, Taylor KE, Hosseney EN, Mills PL, Escudero JM. Kinetics and thermodynamics of thermal inactivation for recombinant Escherichia coli cellulases, cel12B, cel8C, and polygalacturonase, peh28; biocatalysts for biofuel precursor production. J Biochem 2021; 169:109-117. [PMID: 32810224 DOI: 10.1093/jb/mvaa097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/11/2020] [Indexed: 11/13/2022] Open
Abstract
Lignocellulosic biomass conversion using cellulases/polygalacturonases is a process that can be progressively influenced by several determinants involved in cellulose microfibril degradation. This article focuses on the kinetics and thermodynamics of thermal inactivation of recombinant Escherichia coli cellulases, cel12B, cel8C and a polygalacturonase, peh 28, derived from Pectobacterium carotovorum sub sp. carotovorum. Several consensus motifs conferring the enzymes' thermal stability in both cel12B and peh28 model structures have been detailed earlier, which were confirmed for the three enzymes through the current study of their thermal inactivation profiles over the 20-80°C range using the respective activities on carboxymethylcellulose and polygalacturonic acid. Kinetic constants and half-lives of thermal inactivation, inactivation energy, plus inactivation entropies, enthalpies and Gibbs free energies, revealed high stability, less conformational change and protein unfolding for cel12B and peh28 due to thermal denaturation compared to cel8C. The apparent thermal stability of peh28 and cel12B, along with their hydrolytic efficiency on a lignocellulosic biomass conversion as reported previously, makes these enzymes candidates for various industrial applications. Analysis of the Gibbs free energy values suggests that the thermal stabilities of cel12B and peh28 are entropy-controlled over the tested temperature range.
Collapse
Affiliation(s)
- Eman Ibrahim
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA.,Department of Botany and Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ahmed Mahmoud
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Kim D Jones
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Keith E Taylor
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Ebtesam N Hosseney
- Department of Botany and Microbiology, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Patrick L Mills
- Department of Chemical Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Jean M Escudero
- Department of Basic Sciences, St. Louis College of Pharmacy, St. Louis, MO 63110-1088, USA
| |
Collapse
|
8
|
Cheng Z, Xian L, Chen D, Lu J, Wei Y, Du L, Wang Q, Chen Y, Lu B, Bi D, Zhang Z, Huang R. Development of an Innovative Process for High-Temperature Fruit Juice Extraction Using a Novel Thermophilic Endo-Polygalacturonase From Penicillium oxalicum. Front Microbiol 2020; 11:1200. [PMID: 32595621 PMCID: PMC7303257 DOI: 10.3389/fmicb.2020.01200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Efficient and cost-effective production of thermophilic endo-polygalacturonase is desirable for industrial fruit juice production, because its application could shorten the processing time and lower the production cost, by eliminating the separate step of pectin degradation. However, no endo-polygalacturonase that both functions well at sufficiently high temperature and can be manufactured economically, has been reported previously. In this study, the cDNA encoding a thermophilic endo-polygalacturonase from Penicillium oxalicum CZ1028, was cloned and over-expressed in Pichia pastoris GS115 and Escherichia coli BL21(DE3). The recombinant proteins PoxaEnPG28B-Pp (from P. pastoris) and PoxaEnPG28B-Ec (from E. coli) were isolated and purified. PoxaEnPG28B-Pp was sufficiently thermostable for potential industrial use, but PoxaEnPG28B-Ec was not. The optimal pH and temperature of PoxaEnPG28B-Pp were pH 5.0 and 65°C, respectively. The enzyme had a low Km of 1.82 g/L and a high Vmax of 77882.2 U/mg, with polygalacturonic acid (PGA) as substrate. The performance of PoxaEnPG28B-Pp in depectinization of papaya, plantain and banana juices at 65°C for 15 min was superior to that of a reported mesophilic endo-polygalacturonase. PoxaEnPG28B-Pp is the first endo-polygalacturonase reported to show excellent performance at high temperature. An innovative process, including a step of simultaneous heat-treatment and depectinization of fruit pulps with PoxaEnPG28B-Pp, is reported for the first time.
Collapse
Affiliation(s)
- Zhong Cheng
- College of Mechatronic and Quality Technology Engineering, Nanning University, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liang Xian
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Dong Chen
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Jian Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yutuo Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liqin Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qingyan Wang
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Yunlai Chen
- School of Environment and Life Science, Nanning Normal University, Nanning, China
| | - Bo Lu
- National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Dewu Bi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Zhikai Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| | - Ribo Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China.,National Engineering Research Center for Non-food Biorefinery, State Key Laboratory of Non-food Biomass Enzyme Technology, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
9
|
Overexpression and Biochemical Characterization of an Endo-α-1,4-polygalacturonase from Aspergillus nidulans in Pichia pastoris. Int J Mol Sci 2020; 21:ijms21062100. [PMID: 32204337 PMCID: PMC7139513 DOI: 10.3390/ijms21062100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Pectinases have many applications in the industry of food, paper, and textiles, therefore finding novel polygalacturonases is required. Multiple sequence alignment and phylogenetic analysis of AnEPG (an endo-α-1,4-polygalacturonase from Aspergillus nidulans) and other GH 28 endo-polygalacturonases suggested that AnEPG is different from others. AnEPG overexpressed in Pichia pastoris was characterized. AnEPG showed the highest activity at pH 4.0, and exhibited moderate activity over a narrow pH range (pH 2.0-5.0) and superior stability in a wide pH range (pH 2.0-12.0). It displayed the highest activity at 60 °C, and retained >42.2% of maximum activity between 20 and 80 °C. It was stable below 40 °C and lost activity very quickly above 50 °C. Its apparent kinetic parameters against PGA (polygalacturonic acid) were determined, with the Km and kcat values of 8.3 mg/mL and 5640 μmol/min/mg, respectively. Ba2+ and Ni2+ enhanced activity by 12.2% and 9.4%, respectively, while Ca2+, Cu2+, and Mn2+ inhibited activity by 14.8%, 12.8%, and 10.2% separately. Analysis of hydrolysis products by AnEPG proved that AnEPG belongs to an endo-polygalacturonase. Modelled structure of AnEPG by I-TASSER showed structural characteristics of endo-polygalacturonases. This pectinase has great potential to be used in food industry and as feed additives.
Collapse
|
10
|
Pectin hydrolysis in cashew apple juice by Aspergillus aculeatus URM4953 polygalacturonase covalently-immobilized on calcium alginate beads: A kinetic and thermodynamic study. Int J Biol Macromol 2019; 126:820-827. [DOI: 10.1016/j.ijbiomac.2018.12.236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/28/2018] [Accepted: 12/25/2018] [Indexed: 12/17/2022]
|
11
|
Kinetic and thermodynamic characterization of a novel Aspergillus aculeatus URM4953 polygalacturonase. Comparison of free and calcium alginate-immobilized enzyme. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Identification of an acidic endo-polygalacturonase from Penicillium oxalicum CZ1028 and its broad use in major tropical and subtropical fruit juices production. J Biosci Bioeng 2017; 123:665-672. [DOI: 10.1016/j.jbiosc.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/19/2017] [Indexed: 02/05/2023]
|
13
|
Anand G, Yadav S, Yadav D. Production, purification and biochemical characterization of an exo-polygalacturonase from Aspergillus niger MTCC 478 suitable for clarification of orange juice. 3 Biotech 2017; 7:122. [PMID: 28567634 PMCID: PMC5451361 DOI: 10.1007/s13205-017-0760-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/02/2017] [Indexed: 10/19/2022] Open
Abstract
Polygalacturonases (PG) represent an important member of pectinases group of enzymes with immense industrial applications. A fungal strain Aspergillus niger MTCC478 was used for the production of polygalacturonase both under submerged and solid-state fermentation condition. Further its production was optimized under solid-state fermentation condition with media comprising of wheat bran and tea extract. Purification of an exo-PG was achieved by acetone precipitation (60-90%) and CM-cellulose column chromatography revealing 15.28-fold purification with a specific activity of 33.47 U/mg protein and 1.2% yield. A relative molecular mass of purified PG was approximately 124.0 kDa. The pH and temperature optimum was found to be 4 and 50 °C, respectively. The k cat and K m value for degradation of PGA by the purified enzyme was found to be 194 s-1 and 2.3 mg/mL, respectively. Cu2+ was found to enhance the PG activity while Ag+ completely inhibited the enzyme activity. The application of the purified PG in orange juice clarification was elucidated.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Sangeeta Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India.
| |
Collapse
|
14
|
Purification and biochemical characterization of an exo-polygalacturonase from Aspergillus flavus MTCC 7589. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Ibrahim E, Jones KD, Taylor KE, Hosseney EN, Mills PL, Escudero JM. Molecular and biochemical characterization of recombinant cel12B, cel8C, and peh28 overexpressed in Escherichia coli and their potential in biofuel production. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:52. [PMID: 28413443 PMCID: PMC5327597 DOI: 10.1186/s13068-017-0732-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/11/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The high crystallinity of cellulosic biomass myofibrils as well as the complexity of their intermolecular structure is a significant impediment for biofuel production. Cloning of celB-, celC-encoded cellulases (cel12B and cel8C) and peh-encoded polygalacturonase (peh28) from Pectobacterium carotovorum subsp. carotovorum (Pcc) was carried out in our previous study using Escherichia coli as a host vector. The current study partially characterizes the enzymes' molecular structures as well as their catalytic performance on different substrates which can be used to improve their potential for lignocellulosic biomass conversion. RESULTS β-Jelly roll topology, (α/α)6 antiparallel helices and right-handed β-helices were the folds identified for cel12B, cel8C, and peh28, respectively, in their corresponding protein model structures. Purifications of 17.4-, 6.2-, and 6.0-fold, compared to crude extract, were achieved for cel12B and cel8C, and peh28, respectively, using specific membrane ultrafiltrations and size-exclusion chromatography. Avicel and carboxymethyl cellulose (CMC) were substrates for cel12B, whereas for cel8C catalytic activity was only shown on CMC. The enzymes displayed significant synergy on CMC but not on Avicel when tested for 3 h at 45 °C. No observed β-glucosidase activities were identified for cel8C and cel12B when tested on p-nitrophenyl-β-d-glucopyranoside. Activity stimulation of 130% was observed when a recombinant β-glucosidase from Pcc was added to cel8C and cel12B as tested for 3 h at 45 °C. Optimum temperature and pH of 45 °C and 5.4, respectively, were identified for all three enzymes using various substrates. Catalytic efficiencies (kcat/Km) were calculated for cel12B and cel8C on CMC as 0.141 and 2.45 ml/mg/s respectively, at 45 °C and pH 5.0 and for peh28 on polygalacturonic acid as 4.87 ml/mg/s, at 40 °C and pH 5.0. Glucose and cellobiose were the end-products identified for cel8C, cel12B, and β-glucosidase acting together on Avicel or CMC, while galacturonic acid and other minor co-products were identified for peh28 action on pectin. CONCLUSIONS This study provides some insight into which parameters should be optimized when application of cel8C, cel12B, and peh28 to biomass conversion is the goal.
Collapse
Affiliation(s)
- Eman Ibrahim
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363 USA
- Department of Botany and Microbiology, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| | - Kim D. Jones
- Department of Environmental Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363 USA
| | - Keith E. Taylor
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Ebtesam N. Hosseney
- Department of Botany and Microbiology, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| | - Patrick L. Mills
- Department of Chemical Engineering, Texas A&M University-Kingsville, Kingsville, TX 78363 USA
| | - Jean M. Escudero
- Department of Basic Science, St. Louis College of Pharmacy, St. Louis, MO 63110-1088 USA
| |
Collapse
|
16
|
Rheological and chemical properties of pectin enriched fractions from different sources extracted with citric acid. Carbohydr Polym 2017; 156:443-451. [DOI: 10.1016/j.carbpol.2016.09.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/28/2016] [Accepted: 09/14/2016] [Indexed: 02/02/2023]
|
17
|
Anand G, Yadav S, Yadav D. Purification and characterization of polygalacturonase from Aspergillus fumigatus MTCC 2584 and elucidating its application in retting of Crotalaria juncea fiber. 3 Biotech 2016; 6:201. [PMID: 28330273 PMCID: PMC5033773 DOI: 10.1007/s13205-016-0517-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 11/26/2022] Open
Abstract
Polygalacturonases represents an important member of pectinases group of enzymes with diverse industrial applications and is widely distributed among fungi, bacteria, yeasts, plants and some plant parasitic nematodes. An endo-polygalacturonase from a new fungal source Aspergillus fumigatus MTCC 2584 was produced under solid-state fermentation conditions and was purified simply by acetone precipitation and gel-filtration chromatography technique. The approximate molecular weight of the purified PG was found to be 43.0 kDa as revealed by SDS-PAGE. The pH optimum of the purified enzyme was found to be 10.0 and was stable in the pH range of 7-10. The optimum temperature of purified PG was found to be 30 °C. The Km and Kcat of the purified enzyme were 2.4 mg/ml and 44 s-1, respectively, and the metal ions Cu2+ and K+ were found to enhance the enzyme activity while Ag+, Ca2+ and Hg2+ were inhibitory in nature. Based on its alkaline nature, the potential of purified PG in retting of natural fiber Crotalaria juncea was elucidated in the absence of EDTA. This is probably the first report of alkaline PG from Aspergillus fumigatus.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Sangeeta Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India
| | - Dinesh Yadav
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, UP, 273 009, India.
| |
Collapse
|
18
|
Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. J Biosci Bioeng 2016; 122:539-544. [DOI: 10.1016/j.jbiosc.2016.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/06/2016] [Accepted: 05/08/2016] [Indexed: 11/22/2022]
|
19
|
Sassi AH, Tounsi H, Trigui-Lahiani H, Bouzouita R, Romdhane ZB, Gargouri A. A low-temperature polygalacturonase from P. occitanis: characterization and application in juice clarification. Int J Biol Macromol 2016; 91:158-64. [DOI: 10.1016/j.ijbiomac.2016.05.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|